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Kompren: Modeling and Generating Model Slicers∗

Arnaud Blouin† Benoît Combemale‡ Benoit Baudry§ Olivier Beaudoux¶

Abstract
Among model comprehension tools, model slicers are tools
that extract a subset of model elements, for a specific pur-
pose. Model slicers provide a mechanism to isolate and fo-
cus on parts of the model, thereby improving the overall
analysis process. However, existing slicers are dedicated
to a specific modeling language. This is an issue when
we observe that new domain specific modeling languages
(DSMLs), for which we want slicing abilities, are created al-
most on a daily basis. This paper proposes the Kompren lan-
guage to model and generate model slicers for any DSL (e.g.
modeling for software development or for civil engineering)
and for different purposes (e.g. monitoring and model com-
prehension). We detail the semantics of the Kompren lan-
guage and of the model slicer generator. This provides a
set of expected properties about the slices that are extracted
by the different forms of the slicer. Then we illustrate these
different forms of slicers on case studies from various do-
mains.
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1 Introduction

1.1 Context

Program slicing [44] is a "technique for focusing on cer-
tain aspects of a program’s behavior and removing all other
parts of code not concerned with this behavior [23]". The
two major slicing methods are currently static and dynamic
slicing. Static slicing is an operation that takes as input slic-
ing criteria, i.e. variables and their position in the program
to slice. This operation produces as output a slice composed
of the statements that may have effects on the slicing crite-
ria. The static slicing operation does not execute or interpret
the program so that the output slice may not be minimal.
For instance, control flows such as if(foo) then ...
else ... endif are not evaluated to state which con-
ditional branch, then or else, must be sliced; the whole if
statement is sliced. Dynamic slicing remedies this draw-
back by evaluating the programs’ statements. The interested
reader can refer to [35, 13, 11, 45, 39] for more details on
program slicing.

Model slicing is a model comprehension technique in-
spired by program slicing. The process of model slicing
involves extracting a subset of model elements which rep-
resent a model slice. The model slice may vary depend-
ing on the intended purpose. For example, when seeking
to understand a large class diagram, it may help to extract
the sub-part of the diagram that includes only the dependen-
cies of a particular class. For other comprehension purposes
one might want the footprint of model operations [17], or
extracting information from several interdependent models
[23].

Program slicing transposed to models can be divided into
static and dynamic slicing as well. Static model slicing con-
sists in slicing models according to structural criteria. For
instance, slicers relying on the MOF (Meta-Object Facility1)
metametamodel will slice the structure of models (classes,
properties, etc.). Dynamic model slicing considers the be-
havioral semantics of the input metamodel and requires the
execution of the sliced model. For example, slicing an au-
tomaton with respect to a specific event as a slicing criterion,
consists in extracting a sub-automaton, which reacts to the
selected event. In this paper we focus on static slicing of
models.

There has been previous work on the definition of model
slicers. But all the existing model slicers are dedicated to
extracting one form of slice from models that conform to
a specific metamodel. In times when new domain specific

1http://www.omg.org/mof/
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modeling languages (DSMLs) appear regularly to improve
productivity, this becomes an issue: on the one hand, it is
not convenient to develop slicers from scratch for each new
DSML; on the other hand, these DSMLs will provide full
expected benefits for productivity only if they are supported
by the same analysis and comprehension tools as general
purpose languages. Thus it is necessary to develop a gen-
erative approach that will automatically build model slicers
for new metamodels.

1.2 Contributions

In this paper we propose Kompren2, a DSML to model
model slicers for a particular domain (captured in a meta-
model). The knowledge gained from practical experience
and current model slicers, lead to the design choices of the
Kompren language. The primary objective of Kompren is
the selection of classes and properties in an input meta-
model. Kompren promotes the definition of slicers that slice
all necessary elements to make the slice a valid instance of
the input metamodel. Kompren also facilitates the relax-
ation of the conformance required by the input metamodel.
Kompren offers a set of language features to generate model
slicers that can still be parameterized to process the model
slice for a specific purpose. The different characteristics
of Kompren tackle two goals for our generative approach:
automatically building model slicers for any DSML; have
model slicers that can extract different forms of slices, de-
pending on the purpose of the slice.

The contributions of this paper are the following:

1. a language to model model slicers for any metamodel;

2. an illustration of the language expressiveness over
three uses cases on model operation analysis, model
comprehension, and model monitoring at runtime;

3. a systematic classification of properties one can expect
from the model slicers generated by Kompren;

4. an exhaustive classification of the related work on
model slicing;

5. a complete set of tools to define and execute model
slicers, including editors and a new version of the com-
piler featuring evaluated performance improvements.

This paper extends our work published at MODELS 2011
[7] with the last three contributions 3, 4, and 5.

1.3 Paper Outline

In section 2 we introduce several motivating scenarios that
illustrate the various forms of model slices that must be gen-
erated when analyzing models in various languages. Section
3 introduces the overview of building model slicers with the

2http://people.irisa.fr/Arnaud.Blouin/software_
kompren.html

Kompren language. Section 4 presents the Kompren lan-
guage: its metamodel, compiler, and concrete syntax. Sec-
tion 5 describes the Kompren tools provided to users and
different benchmarks to analyze the scalability of the im-
plementation. Section 6 demonstrates the expressiveness of
Kompren on the three illustrative cases introduced in Sec-
tion 2. Section 7 discusses the related work on model slic-
ing. Section 8 concludes this work and proposes a research
agenda on model slicing.

2 Heterogeneous Use Cases of Model
Slicing

The classical use of model slicing consists in extracting sub-
models from models by keeping conformance rules. How-
ever, as shown in the motivating use cases below model
comprehension also requires extracting models which do
not satisfy conformance. Still, this extraction can rely on
model slicing mechanism.

Use case 1: Model operation analysis. Given a model op-
eration on a large metamodel MM1, developers demand the
effective metamodel MM2 used by the operation such that
MM2 ⊂ MM1. For instance, when defining a state ma-
chine flattening operation over the UML metamodel, only
the UML class diagram and the UML state machine ele-
ments are used. This model operation must be analyzed to
select the MM1 elements it uses and to get the effective
metamodel MM2 [31].

In terms of program slicing this is similar to the tech-
nique used in bytecode shrinking. For example, Proguard
3 analyzes Java bytecode to eliminate all classes that are not
used.

Use case 2: Semantic zooming on models. Several pro-
gram slicing methods have been used to assist in program
comprehension (e.g. [6, 29]). Similarly, understanding and
manipulating large models require visualization techniques
to provide meaningful navigation capabilities [38]. Seman-
tic zooming is a Human-Computer Interaction (HCI) tech-
nique that can be applied for this purpose. In contrast to
physical zooming that alters the size of objects, semantic
zooming changes the type and meaning of information dis-
played by objects [15]. For instance, as shown in Fig. 1a,
semantically zooming on class inheritance extracts super-
classes of a given class. We can notice that semantic zoom-
ing does not require the output slices to conform to their
metamodel; the output slices are not saved as new models,
but used by HCI features to perform semantic zooming.
The model slicing applications are not limited to the com-
puter science domain. For example, recent work proposed a
model-driven approach in civil engineering for the interop-
erability and comprehension of building models [36]. This
application of MDE is particularly challenging for all MDE
tools since the entire model includes more than 5M of model

3http://proguard.sourceforge.net/
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(a) Viewing Super-classes of the UML Class Class

(b) Complex Mechanical Model of a Building, ex-
tracted from [36]

Figure 1: Examples of Semantic Zooms

elements. In this context, model slicing is particularly rel-
evant to understand and analyze the model from different
perspectives. Stakeholders may need tools to improve their
comprehension of the different concerns of the building be-
ing designed. In such a context, model slicers can extract
information from the whole building model to display dif-
ferent concerns. For example, Fig. 1b shows the mechanical
model of a building. Mechanical model stakeholders are ea-
ger to focus on the details of a given location or mechanism
of the building.

Use case 3: Model Monitoring at runtime. Monitor-
ing models at runtime is an important feature to control
their evolution. For example, state-based model stakehold-
ers may want to monitor the current state. Thus dedicated
tools need to extract only information relevant to the current
state. Such information must be incrementally extracted to
improve performance on large models. This use of model
slicing is similar to slicing techniques extract the value of
variables of a running program for debugging [39].

3 Overview

Fig. 2 provides an overview of the proposed approach to
model model slicers. The core contribution of this paper is
a modeling language dedicated to the construction of model
slicers. The language is called Kompren. All the concepts
and relations of Kompren are captured in a model slicer
metamodel (MSMM at the top of Fig. 2). A model slicer
model (MSM) expressed with Kompren refers to a set of
classes and relations from the input metamodel expressed
using an object-oriented meta-language (e.g., Ecore, in our
case). Instances of the referenced classes and relations will
be selected for slicing in the input model. Thus MSMM
points to Ecore to enable MSM to use Ecore elements from
an input metamodel. Because Ecore describes the struc-
ture of metamodels, the Kompren model slicers are syntac-
tic. MSMM also points to Kermeta [26], an action language
used to specify the behavior of a slicer. Kompren’s compiler
processes an MSM defined for an input metamodel and au-
tomatically generates an actual model slicer function (MSF).

Model Slicer
Model
MSM

Input
Metamodel

Model Slicer
MetaModel

MSMMEcore

Model Slicer
Function

MSF

Input
Model

Slice of
Model

Kermeta
Legend

conforms to

inputs for slicer
generation

automatically
generated

slicer's input / output

uses

Domain
Expert

Domain
User

slicer compiler

Figure 2: Overview for Modeling Model Slicers with Kom-
pren

In this context, a slicing criterion is a set of model el-
ements that provide the entry point for extracting a model
slice. Using Kompren, the MSM specifies the type of the
slicing criteria among the classes of the input metamodel.
Then, Kompren generates the set of corresponding parame-
ters for the MSF, letting the domain expert specify a slicing
criterion to execute the MSF.

This global approach is a two-level generation process:
Kompren’s compiler generates an MSF, which in turn gen-
erates model slices. From a methodological perspective, we
also distinguish two roles for Kompren users:

• Domain expert. The domain expert knows the domain
captured in the input metamodel and knows its con-
cepts and relationships. This person is thus in charge of
leveraging this domain to model one or several model
slicers relevant for this domain. The domain expert se-
lects the elements in the input metamodel that will be
processed by the model slicer through the MSF.
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• Domain users create models in the domain. These
users, through their modeling activities, can create
large instances of the input metamodel. At some point
these users need to extract slices thanks to the MSF.
These users parameterize the model slicer according
to their need and according to the values in the input
model.

4 Model-Driven Specification of
Slicers

4.1 Kompren Features for Model Slicer Gen-
eration

A model slicer is specified by a Model Slicer Model (MSM)
and implemented by a Model Slicing Function (MSF) gen-
erated from the MSM (cf. Fig. 3).

Model
Slicer

MSM

MSF

Legend
analytical representation

synthetical representation

Figure 3: Relationships between Model Slicer, MSM, and
MSF according to the analytical and synthetical representa-
tions proposed in [27]

An MSM enables the specification of classes and prop-
erties whose instances must be selected from a given input
model. Input models can be either structural or behavioral.
In both cases, the slicing operation consists in visiting the
model for a particular purpose according to the structure of
their metamodel and the classes and properties specified in
the MSM. Such a processing is performed by a Model Slic-
ing Function (MSF) generated from an MSM, and results in
a slice.

Below, we detail the features offered by Kompren to (i)
ease the modeling of MSMs, and to (ii) specify an evaluation
mode of an MSF. We also discuss the different properties
one can expect on slices generated by the MSF (cf. Fig. 4).
We use an example to illustrate theses features: the class di-
agram input metamodel (Fig. 5a) and the input model shown
in Fig. 5b.

Kompren proposes the following constructs to assist the
definition of an MSM (left part of Fig. 4):

• Add a transient opposite property in the input
metamodel to ease the slicing. For example, Fig. 6b
is a slice of 5b that selects A and its subclasses. To
ease the slicing of the input model, the MSM requires
the opposite of the superTypes property in the input
metamodel.

Kompren

Slicing
Mode

Input
Metamodel

Output
Metamodel

batch active
Transient
Opposite Filter M2M M2T

Endogenous
Model Slicer

Exogenous
Model Slicer

Inferred
Output

Metamodel

Imported
Ouput

Metamodel

Persistent
Opposite

Relaxed
Cardinality

[0..*] [0..*]

[0..*][0..*]

optional

mandatory

alternative
(xor)

or

Legend

cardinality[n..m]

1

4

32

Figure 4: Kompren’s Features

• Add constraints to filter the sliced elements with re-
spect to the input metamodel. For example, Fig. 6c is
a slice of 5b composed of the class A and of its com-
posite references only. Similarly, Fig. 6d is a slice of
5b that selects B and its direct supertypes.

4.1.1 Slicing Mode

The MSF can be generated from one MSM with one of the
following slicing mode:

• Batch: the MSF slices the input model once, when
called by the domain user (cf. use cases 1 and 2);

• Active: the MSF automatically updates the slice each
time the input model changes (cf. use case 3).

4.1.2 Slicing Output Formats

According to the specified MSF and the selected options, the
model slicers will generate model slices, which have differ-
ent properties. In the following we list the properties one
can expect from a model slice (right part of Fig. 4, feature
model below ’Output metamodel’).

First, the MSF can provide a resulting slice as a new
model satisfying all the structural constraints imposed by
the input metamodel. In such a case the slice is a valid in-
stance of the input metamodel, and we call the correspond-
ing model slicer an endogenous model slicer . For example,
Fig. 6a is a slice of Fig. 5b that includes only A and F, as
well as the mandatory classes D and E to satisfy the confor-
mance with the input metamodel.
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Figure 5: Class Model Example
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Figure 6: Slices of the Class Model given in Fig. 5b
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(a) Metamodel 5a augmented with the opposite lowerTypes
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Figure 7: Inferred Output Metamodels
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It is also possible to use Kompren to generate model
slicers that relax the conformity constraint on slices in ex-
change of additional features for model slicer modeling.

Model slicers providing a slice conforming to a different
metamodel than the input metamodel are called exogenous
model slicer. We distinguish two categories of exogenous
model slicers:

• Exogenous model slicers that generate a slice conform-
ing to a metamodel inferred by analyzing the MSM and
adapting the input metamodel (cf. Á in Fig. 4).

– Add a persistent opposite property in the out-
put metamodel. For example, Fig. 6b could
be saved with the opposites of the superTypes
property used to ease the slicing (e.g. to facilitate
its navigation according to this property in a later
processing). In such a case, the input metamodel
must be enriched with the opposite properties to
save the resulting slice (cf. Fig. 7a).

– Add constraints to filter the sliced elements re-
moving elements required to conforms to the
input metamodel. For example, Fig. 7b shows a
constrained version of the metamodel of Fig. 5a
where the two relations type (cardinality [1]) were
removed.

• Exogenous model slicers that generate slice conform-
ing to a metamodel explicitly imported by the domain
expert in its MSM definition (cf. Â in Fig. 4). For
example, Fig. 6e is an RDBMS4-based slice extracted
from Fig. 5b by selecting the class B and its direct
classes (A).

In addition to Model to Model (M2M) model slicers,
Kompren also supports the generation of MSF that produce
texual slices. We call these slicers Model to Text (M2T)
slicers. These can be used to print information about the
sliced model elements or to notify external tools about the
slice.

All the previous expected features were considered in the
design of the Kompren language. We present respectively
in the remainder of this section the abstract syntax, concrete
syntax, and semantics embedded into the compiler of the
Kompren language.

4.2 Kompren Abstract Syntax
The metamodel shown in Fig. 8 describes the abstract syn-
tax of Kompren. An instance of this metamodel is a Model
Slicer Model (MSM). The main package is slicer. In this
package, a Slicer is mainly composed of SlicedElements.
These sliced elements are the classes (SlicedClass) and the
properties (SlicedProperty) of interest in the Model Slic-
ing Function (MSF). All sliced elements belong to the in-
put metamodel identified in the slicer by its URI5 (uriMeta-
model ). Optional SlicedElements (i.e. isOption is true) are

4Relational DataBase Management System
5Uniform Resource Identifier

options of the generated MSF. This lets the domain user
choose whether an element must be considered during the
slicing.

A SlicedClass refers to a class (EClass) in the input meta-
model (domain). All instances of a referenced class in a
given input model are selected by the MSF. Then ctx (con-
tained in SlicedClass) serves as a temporary variable to suc-
cessively manipulate each instance (i.e. an iterator). The
type of this iterator (type in VarDecl) must correspond to the
sliced class. This constraint can be formalized using OCL
(Object Constraint Language6) as follows:

1 context SlicedClass inv:
2 self.domain = self.ctx.type

Similarly, a SlicedProperty refers to a property (EStruc-
turalFeature) in the input metamodel (domain). All in-
stances of a referenced property in an input model are se-
lected by the MSF. The src and tgt iterators allow the ma-
nipulation of the property’s source and target. The type of
the src and tgt iterators is respectively the source and the
target class of the property:

1 context SlicedProperty inv:
2 self.domain.eType = self.tgt.type &&
3 self.domain.eContainingClass=self.src.type

In addition, a sliced property may specify an Opposite-
Creation to define that an opposite must be created on the
targeted domain. The name of this new opposite is given
by the attribute name. By default, such opposites are used
as helpers for exploring the input metamodel and are not
serialized in the output slice. But developers may want to
serialize some of the opposites; in such a case, the attribute
transient of a given OppositeCreation must be set to false
and an output metamodel, augmented with the selected op-
posites, will be inferred.

We assume in this paper an input metamodel defined with
an existing object-oriented metamodeling language. In our
experiments we use the Ecore metamodeling language pro-
vided by the Eclipse Modeling Framework7 whose required
elements are imported in the package ecore. In Ecore, a
class and a property are identified by respectively the classes
EClass and EStructuralFeature. Another object-oriented
metamodeling language could be easily considered in Kom-
pren.

Moreover, the iterators on sliced elements (instances of
the specified SlicedClass and SlicedProperty) allow the do-
main expert to express the expected behavior for each se-
lected instance. The effect of the MSF on each selected
instance is described as an expression using an action lan-
guage. In our experiments, we use the action language of
Kermeta [26] whose required elements are imported in the
package kermeta. Another action language could be easily
considered in Kompren.

By default, the model slicer can be exogenous or endoge-
nous depending on the behavior defined by the developers.
The expressions onStart and onEnd are used to add a par-

6http://www.omg.org/spec/OCL/
7http://www.eclipse.org/modeling/
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Figure 8: Model Slicer Metamodel

ticular behavior in the MSF. These expressions are respec-
tively applied before and after the visit of the input model
(e.g. to import the required output metamodel and save the
resulting slice respectively). Expressions defined to bring
executability to slicers may require classes provided by third
party libraries, attributes, or operations needed to the slicing
process. Thus the domain expert can specify a helper that
will contain this information. The attribute strict (in Slicer)
defines whether the slicer must be endogenous (cf. Section
4.1.2). By setting the attribute strict to true, the model slicer
bypasses the filters expressed into the MSM to ensure slices
conform to the input metamodel.

c1 : Class

c2 : Class

ref : Reference

c4 : Class

r1

c3 : Class

r2

ref2 : Reference

Figure 9: Example of the Radius Process

The radius and the constraints can be used to filter the
sliced elements in the input model. The radius sets in the

MSM the focusedClasses for which the MSF should be lim-
ited to a selection within a given radius. Starting at 0, a value
is incremented on each visited class instance focused by the
radius. The slicing process stops when no elements can be
sliced anymore or when this value is greater than the radius
given as parameter. Fig. 9 shows an example of the radius
process where the focused class is Class and the slicing cri-
terion c1. Each dashed ellipse shows the sliced instances for
a specific radius value: c1, c2, c3, and ref are sliced when
the radius equals 1; ref , ref2, and c1 to c4 are sliced when
the radius equals 2. The radius is defined by the domain ex-
pert for a sliced class, and its value must be specified by the
domain user as a parameter of the MSF. The focused classes
must be included in the sliced classes that can be formalized
using OCL as follows:

1 context Slicer inv:
2 not self.radius.oclIsUndefined() implies
3 self.slicedElements->select{c |
4 c.isTypeOf(SlicedClass)}
5 ->includeAll(self.radius.focusedClasses)

The constraints allow the domain expert to define a con-
dition that must be respected to trigger the slicing of the
element targeted by the condition.

The inputClasses precise the type of the slicing criteria
that the MSF will take as input to start the slicing.

Finally, the attribute active permits to specify whether the
MSF must be executed as a batch or as an active process.
By default, the generated MSF is a batch process executed
a single time on the input model. By setting the attribute
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active to true the generated MSF is executed a first time,
and then observes modifications applied on the input model
to incrementally update the slice.

4.3 Concrete Syntax
A textual concrete syntax has been defined for Kompren al-
lowing the domain expert to define a Model Slicer Model
(MSM). As an example, the following listing shows the ac-
tive and non-strict MSM ClassModelSlicer (cf. line 1), for
the metamodel in Fig. 5a (cf. line 2). The classes of the
instances used to launch the Model Slicing Function (MSF)
are declared on line 3.

Thereafter, line 6 specifies a sliced class while lines 7 to
10 specify the sliced properties. An expression defined for
the sliced class Class is described on line 6 where cl refers
to the context of the sliced class. An optional property is il-
lustrated on line 7 with the keyword option. An opposite
to a property is defined with the keyword opposite as
shown on line 8 where lowerTypes is the name of the oppo-
site.

Line 4 illustrates how to declare a radius based on Class
to limit the selection in the input model by the MSF. The
definition of a constraint consists in specifying a Kermeta
boolean expression as shown on line 5. Lines 11 to 13 illus-
trate the definition of the preprocessing, the postprocessing,
and the helper of the slicer.

1 slicer active ClassModelSlicer {
2 domain: "platform:/resource/classModel.ecore"
3 input: Class
4 radius: Class
5 constraint: Reference.containment
6 slicedClass: Class cl[[ stdio.writeln(cl.name) ]]
7 slicedProperty: Class.superTypes option
8 slicedProperty: Class.superTypes opposite(lowerTypes)
9 slicedProperty: Class.structuralFeatures

10 slicedProperty: Reference.type
11 onStart [[ stdio.writeln("Starting slicing") ]]
12 onEnd [[ stdio.writeln("Ending slicing") ]]
13 helper [[ /* Definition of the helper */ ]]
14 }

4.4 Semantics
As defined in Fig. 2, model slicer models (MSM) are com-
piled into model slicer functions (MSF). This compilation
produces Kermeta programs composed of three parts. The
first part augments the input metamodel with required infor-
mation. This information is the opposites added to the input
metamodel and methods required by the visitor to explore
the input model. These methods are generated for the meta-
model elements selected in MSMs. If the slicer is defined
as strict, these methods are also generated for elements not
selected in MSMs but required to assure the semantic prop-
erties.

The second part performs a static analysis of the MSM to
infer whether a new metamodel is required as output meta-
model (usually to relax some cardinalities).

Finally, the compiler generates the MSF. The preprocess-
ing (onStart) and the postprocessing (onEnd) methods and
the Kermeta code corresponding to the helper are created.

From the input classes, the radius and the constraints defined
in MSMs are generated as parameters of the slicer function.
For instance, the following Kermeta code illustrates such
generation where: launch is the operation that starts the slic-
ing; inputClass:Class[0..*] defines the Class instances used
to launch the slicing (the slicing criteria); radius:Integer
specifies the slicing radius; composition:Boolean is a con-
straint that restricts the slicing of references to composite
references.

operation launch(inputClass:Class[0..*],
radius:Integer, composition:Boolean)

Once generated, the MSF can be executed by calling the
launch operation with its required parameters. The prepro-
cessing is first executed. Then begins the exploration of the
input model using the input instances (i.e. the slicing crite-
ria) given as parameters. Each of these instances is visited.
Visiting an instance or a property consists in executing the
associated behavior, i.e. the corresponding Kermeta expres-
sion defined by the domain expert. Each selected property
of the current visited class instance are then explored (if they
satisfy the constraints defined in MSMs) to recursively ex-
plore their target class instance. In case of a strict slicer, the
MSF also slices the required model elements to conform to
the input metamodel, and automatically add all the sliced
instances into a new model.

Because Kermeta does not support observability of Ecore
models, active slicers are based on the ActiveKermeta toolkit
[5]. ActiveKermeta adds observability to Ecore models
through the operations c.added{e | ...}, c.removed{e | ...},
and c.updated{p, e | ...}. These operations register a function
respectively invoked when the element e is added to collec-
tion c, removed from collection c, or when the element p is
replaced by the element e into c.

5 Tooling

5.1 Domain Expert

We provide domain experts with a comprehensive set of pro-
totyping tools to develop model slicers8. These tools are
composed of two editors and of a compiler running on the
top of Eclipse9 and Scala10.

5.1.1 The Kompren Editors

Two editors are provided for editing MSMs. The first one is
a customized Ecore reflexive editor that edits MSMs through
a tree-based presentation. The second editor is a textual
editor based on our proposed concrete textual syntax (see
Fig. 10 for a screenshot of this editor). This editor provides
auto-completion, serializes as Ecore models, and compiles
MSMs in MSFs.

8http://people.irisa.fr/Arnaud.Blouin/software_kompren.html
9http://www.eclipse.org/

10http://www.scala-lang.org/
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Figure 10: Kompren Editor in the Eclipse Environment

5.1.2 The Kompren Compiler

The MSM to MSF compiler has been developed using Ker-
meta 2 running on the top of Scala (Kermeta 2 programs
are compiled into Scala, then into Java byte-code). We per-
formed benchmarks on several use cases we developed to
study the compilation time. These uses cases have differ-
ent levels of complexity as described in Table 1. This table
describes the characteristics of the use cases: Sc and Sp re-
spectively define the number of classes and properties of the
input metamodel; Ssc and Ssp respectively define the num-
ber of the sliced classes and properties; Pk enumerates the
Kompren’s features used; Tc gives the average compilation
time (in second) for 100 executions of the use cases. The
experiments described in this section have been performed
on Linux using a laptop with a Core2Duo at 3.06GHz and
4Gb of RAM, Scala 2.9.0, and Java 7.

Use cases Sc Sp Ssc Ssp Pk Tc
Super-classes 1 1 1 1 not strict 0.189

State-machine 8 7 7 3 strict 0.209

Semantic not strict,
Zooming 20 51 9 10 opposite, 0.371

Ecore radius

Kermeta
Operation 73 95 1 29 not strict 0.503
Analysis

UML
Class Diagram 246 769 16 21 strict 2.026

Extraction

Table 1: Several MSM Compilation Benchmarks

For the simplest use case Tc equals 0.189s. For the most
complex one Tc equals 2.026s. Because finding the manda-
tory elements to slice requires extra computations, the strict
property complexifies the MSFs generation. Large input
metamodels increase the computations as well.

5.2 Domain User

Once defined by domain experts, MSF can be used by do-
main users. As the compiler, MSFs are Kermeta 2 programs
running on the top of Scala. MSFs take as inputs the slic-
ing criteria, the options, the constraints, and the radius value
as defined in the MSMs. MSFs produce as output either a
sliced model when the model slicer is strict, nor results as
defined by domain experts.

MSFs can be integrated into applications. For instance,
our tool that visualizes metamodels uses an MSF using the
Kermeta metamodel as input metamodel.

Sm Te
100 0.023

103 0.031

104 0.141

105 0.425

106 9775.51

Table 2: Several Execution Benchmarks of the State Ma-
chine Slicer

In our current prototype, the slicing process is based on
the visitor design pattern using a deep-first search algorithm.
Following Table 1, Table 2 gives the slicing execution time
Te (in second) for the state-machine slicing example pre-
sented in Table 1. The benchmarks have been performed
using input models of different sizes: Sm refers to the num-
ber of elements that the models contain. The goal of this
experiment is to demonstrate that Kompren can slice large
models in a reasonable time. For the sizes from 100 to 105,
100 models (more precisely 100 connected state-machines)
were randomly generated. Te is the average execution time
for slicing these models. Because of technical limits, only
a single model was randomly generated for the size 106. In
this case, Te is the average execution time for slicing this
model 100 times. The goal of this strict slicer is to slice
the whole input model using as input the initial state. For
the smallest size, 100, Te is 0.023. For the larger size, 106,
Te is 9775.51. Because of the model loading and saving
operations, the progression of the execution time over the
different sizes is not linear. The materials used for these
benchmarks are available on the Kompren website11.

5.3 Threats to Validity

The benchmarks performed on non-strict Kompren model
slicers strongly depend on the Kermeta expressions, defined
by the developers, used in the slicer. Optimizations may be
applied on our current prototyping implementation to im-
prove these benchmarks.

11http://people.irisa.fr/Arnaud.Blouin/software_
kompren.html
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The slicing execution time Te strongly depends on the pa-
rameters of the model slicers. For instance, the definition of
an opposite in a model slicer will increase the execution time
by 2 at least: before the slicing operation, the opposite must
be integrated into the input model; this operation requires
the whole exploration of the input model.

6 Validation
In this section, we apply our model slicing approach to three
heterogeneous case studies illustrating the main usages that
can be done using our approach.

6.1 Model Operation Analysis
Extracting static metamodel footprint for a model operation
defined over a metamodel MM1 (in our case the Kermeta
metamodel) consists in extracting the elements of MM1

used by the operation [17]. In this section, we use Kom-
pren to model the footprint generator proposed by Jeanneret
et al. [17] and the metamodel pruner proposed by Sen et
al. [31]. This use case illustrates the ability of Kompren to:
ease the slicer definition process; combine several Kompren
model slicers to perform a task not related to model slicing.

This model operation analysis is performed through two
model slicers: a first slicer analyzes the model operation to
extract the metamodel footprint, i.e. the list of MM1 ele-
ments used by the operation; a second slicer uses this foot-
print to extract the effective metamodel from MM1.

The first slicer extracts the list of MM1 elements used
by the operation. Because such a slice does not conform to
MM1, the slicer is not strict. The model operation is imple-
mented in Kermeta. Thus it is an instance of the Kermeta
metamodel MMop and the slicer explores classes and prop-
erties of MMop (lines 6 to 16). The result of the slicing
function will be the list of classes used in the operation (line
5). This list is defined in the helper (line 18). By default
all the classes that can come from either MM1 or MMop

are explored. Because only the classes from MM1 must be
stored, a helper is defined to select them (lines 19 to 25).

1 slicer OperationStaticAnalysis {
2 domain: "./kermeta.ecore"
3 // The model operation to analyse.
4 input : struct.ModelingUnit
5 slicedClass:struct.ClassDefinition cd[[addClassDef(cd)]]
6 slicedProperty: struct.ModelingUnit.packages
7 slicedProperty: struct.Package.ownedTypeDefinition
8 slicedProperty: struct.ClassDefinition.ownedOperation
9 slicedProperty: struct.ClassDefinition.ownedAttribute

10 slicedProperty: struct.Operation.ownedParameter
11 slicedProperty: struct.TypedElement.type
12 slicedProperty: struct.ParameterizedType.typeDefinition
13 slicedProperty: struct.Operation.body
14 slicedProperty: behavior.VariableDecl.type
15 slicedProperty: behavior.Block.statement
16 //... 29 properties of MMop are sliced.
17 helper [[
18 reference metamodelClassesUsed : ClassDefinition[0..*]
19 reference inputMetamodel : ModelingUnit
20 //... Load of the input metamodel.
21 operation addClassDef(cd: ClassDefinition): Void is do
22 if(inputMetamodel.contains(cd)) then
23 metamodelClassesUsed.add(cd)
24 end
25 end]]

26 }

The second slicer, modeled as follows, uses the footprint
computed by the first one. This slicer is defined as strict
(line 1) to create an output model that is an endogenous slice
of the input metamodel MM1 (specified line 2). This slicer
slices all the classes (line 4) linked to the input classes by
inheritance or properties (lines 10 to 12). All properties and
operations of the class sliced are included (lines 5 to 9). Be-
cause ClassDefinition is linked to Package by a 1..1 refer-
ence, this relation and its target class must be sliced to ex-
tract a strict slice. Since we model in strict mode, the pack-
ages containing sliced elements are sliced even if Package is
not modeled as a slicedClass. This mode also includes 1..n
attributes of classes ClassDefinition, Property, and Opera-
tion.

1 slicer strict MetamodelFootprintExtraction {
2 domain: "./kermeta.ecore"
3 input : struct.ClassDefinition
4 slicedClass: struct.ClassDefinition
5 slicedClass: struct.Property
6 slicedClass: struct.Operation
7 slicedProperty: struct.ClassDefinition.ownedAttribute
8 slicedProperty: struct.ClassDefinition.ownedOperation
9 slicedProperty: struct.Operation.ownedParameter

10 slicedProperty: struct.TypedElement.type
11 slicedProperty: struct.TypedDefinition.superType
12 slicedProperty: struct.ParameterizedType.typeDefinition
13 }

These Kompren model slicers are smaller than the Jean-
neret’s and Sen’s model slicers: around 70 Kompren LoC
compared to 1200 Kermeta LoC for both the static meta-
model footprinting and the metamodel pruner. The number
of generated Scala LoC when compiling a Kompren model
into an executable slicer (a Scala program) is another rele-
vant metric. This use case generated around 6700 of Scala
LoC 12. Because Kompren is a DSL dedicated to the defi-
nition of model slicers, Kompren hides some technical de-
tails such as the Visitor pattern. By opposition, Kermeta
and Scala are GPLs (General Purpose Language) that re-
quire the explicit definition of such technical details. This
difference can explain the gap in terms of LoC differences
between the slicers.

6.2 Bringing Semantic Zooming to Model Vi-
sualization

Model slicing can be used to bring semantic zooming to
model visualization. In this case, the slicer defines which
classes and relations of the visualized model must be dis-
played in the user interface (UI). For example, the following
code defines a slicer that slices Kermeta models. Because
the goal of this slicer is to notify the UI about sliced ele-
ments, it is not defined as strict. It takes as input instances
of ClassDefinition (line 3) selected by users using the UI. As
shown in Fig. 11, the UI displays classes, inheritances, and
properties. At the beginning of the slicing all these model el-
ements are hidden (line 23). Then when model elements are
sliced, the UI is notified that these elements must be shown

12This number can certainly be reduced by optimizing the compiler.
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(lines 7, 9, and 17). At the end of the slicing, the UI is
updated to perform the graphical changes (line 24). Some
properties must be explored to access the instances to slice
(lines 14 to 22). All these properties to slice are defined as
optional. Thus for each feature of the model visualizer (e.g.
showing the inheritance tree of a selected class), developers
can define which properties must be explored.

1 slicer kermetaSemanticZoom {
2 domain: "./kermeta.ecore"
3 input: struct.ClassDefinition
4 radius: struct.ClassDefinition
5 constraint: struct.Property.lower>0
6 slicedClass: struct.ClassDefinition cd[[
7 extern EntityView.showClass(cd) ]]
8 slicedClass: struct.Property prop {
9 extern ReferenceView.showReference(

10 prop.name, prop.owningClass,
11 prop.type.asType(Class).typeDefinition)
12 }
13 slicedProperty: struct.TypeDefinition.superType option
14 src tar[[
15 extern InheritanceView.showInheritance(
16 src, tar.asType(Class).typeDefinition)
17 ]]
18 slicedProperty: struct.ParameterizedType.typeDefinition
19 option
20 slicedProperty: struct.ClassDefinition.ownedAttribute
21 option
22 slicedProperty: struct.TypedElement.type option
23 onStart [[ extern ClassDiagramView.hideAllElements() ]]
24 onEnd [[ extern ClassDiagramView.updateView() ]]
25 }

The UI shown in Fig. 11 provides a spinner that permits to
define the radius effect of the slicing (defined line 4). The UI
also provides a check-box called ”With card 0”. This check-
box permits to set whether properties which lower cardinal-
ity equals 0 must be sliced or not (line 5). The graphical
representation of the model and the widgets of the UI are
defined separately from the slicer.

Figure 11: Class Diagram Visualizer Providing Semantic
Zooming Features

6.3 Monitoring State-machines at Runtime
Our model slicing approach can also be used to slice models
at runtime, i.e. the slicing process is no more a batch process
but is sustained at runtime to re-evaluate model elements
that change. In such a context, a slice can be used to observe
how a specific sliced part of a larger model evolves.

Fig. 12a describes a basic state-machine metamodel. The
root class StateMachine specifies all the states and transi-
tions defined within the state-machine. A Transition links a
source state and a target state; conversely, a State is linked to

(a) A State-Machine Metamodel

t1 s1 s2 s3

t2

t3
t4s0

(b) A State-Machine Model

Figure 12: A State-Machine Example

other states throughout incoming and outgoing transitions.
The relation currentState defines the current state during the
execution of the state-machine.

Fig. 12b shows a state-machine composed of four states
s0 to s3 and four transitions t1 to t4. Slicing such a model at
runtime consists in capturing the evolution of a model slice
while the state-machine is running, i.e. slicing changes of
the current state.

The following Kompren code slices the current state of a
state-machine and displays its name on changes. The slicer
first displays the name of the initial state. Whenever the
currentState relation cs is updated the anonymous function
given by the updated method is invoked. In this method
prev and next are the previous and the new states contained
in cs respectively. Running the CurrentStateSlicer with the
sequence of transitions t1 → t2 → t3 → t2 → t4 results in
displaying s0 → s1 → s2 → s1 → s2 → s3.

1 slicer active CurrentStateSlicer {
2 domain: "platform:/resource/statemachine.ecore"
3 input: StateMachine
4 slicedClass: PseudoState
5 slicedClass: State
6 slicedProperty: StateMachine.currentState cs [[
7 stdio.write(cs.name) // Printing the initial state
8 // Printing the state’s name on update
9 cs.updated{prev, next | stdio.write("->" + next.name)}

10 ]]
11 }

As this example illustrates, Kompren active slicers are
based on Active Kermeta that makes the four collections
provided by Kermeta (set, oset, seq, and bag) observable
[5]. Relation currentState is implemented using an Active
Kermeta set having its cardinality restricted to [1..1]. Us-
ing collections for relations with cardinality [0..1] or [1..1]
is mandatory for observing their content. Two others meth-
ods, added and removed, are provided by Active Kermeta
collections to respectively observe additions and removals
into collections.
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7 Related Work
We classified in Table 3 the main related work using the
slicer’s properties proposed in Fig. 4 (slicing mode, slicing
process, and slicer) supplemented with four others proper-
ties: Slice. States whether the output slices can be struc-
turally modified compared with the input models; KOM-
PRENable. Defines whether the slicing method can be done
using Kompren; Metamodel. The supported input meta-
model; Usage. The context of use of the slicing method.

To our best knowledge, Zhao [47] was the first to use pro-
gram slicing concepts at a higher level than code. He uses a
syntactic, batch, and endogenous slicing algorithm to slice
software architectures. Following this work, Kim et al. [20]
bring semantic slicing to software architecture.

Slicing state-based models has been widely tackled in the
literature [14, 21, 41, 22, 3, 43, 8, 25]. Koren et al. [21]
introduce a batch and endogenous slicing method that uses
dependency graphs (data and control dependencies) derived
from the state-based models to slice. This method does not
evaluate transitions’ condition and is thus syntactic. This
method provides a post-process step that merges states to
reduce the size of the slices.

Androutsopoulos et al. [3] propose different finite state-
based model slicing algorithms. Their basic slicer removes
a set of transitions to ignore and useless states. This algo-
rithm can be performed using our approach by defining pa-
rameters that state the slicer not to slice transitions having
given names. Their other algorithms extend the first one by
removing untriggerable transitions and merging states hav-
ing identical semantics. Our approach does not permit to
define such slicers.

Acher et al. [1, 2] propose a batch feature model slicer.
The slicing process is both semantic and syntactic: the
cross-cutting constraints are statically analyzed to define
features that must be or cannot be sliced. The output slices
still conform to their metamodel but may structurally differ;
the feature model and its cross-cutting constraints are first
transformed into predicates for analysis. These predicates
are then transformed in a sliced feature model.

Hubaux et al. [16] slice feature diagrams to design three
different views of an input diagram. The sliced diagrams
do not keep the same structure as the input diagram. This
approach does not consider cross-cutting constraints and is
thus syntactic.

Kelsen et al. [19] propose an approach for decompos-
ing models into sub-models to tame the complexity of large
models. This approach shares similarities with ours since
they are both not dedicated to a unique DSML and they can
extract sub-models of interest that still conform to the input
metamodel. However, their approach does not permit de-
velopers to specify the slicing process, i.e. to select which
elements of the input models must be sliced, and is restricted
to the strict model slicing usage.

Jeanneret et al. [17] introduce a method to statically or
dynamically extract model footprints. As discussed in Sec-

tion 6.1 the static footprinting can be done using Kompren.
But the dynamic footprinting refers to dynamic slicing con-
cepts that Kompren does not support yet.

Similarly, Ujhelyi et al. [40] develop a dynamic slicer for
model transformations. The goal of this slicer is two-fold:
providing transformation slices depending on the slicing cri-
terion; providing model slices (model footprints) composed
the model elements used by the transformation. Backtraces
of the execution of the transformation are used to slice the
statements used during the execution. Thus this approach
is both syntactic and semantic. No information is provided
regarding the conformance of the output slices toward their
metamodel.

Sen et al. [31] present an approach for pruning metamod-
els. The proposed pruner takes as input slicing criteria, i.e.
classes, operations, etc. of the metamodel to slice. The
pruner produces as output slices that satisfy all the structural
constraints imposed by the input metamodel. Such a pruner
is thus a slicing operation strictly endogenous, syntactically
based and is a batch process.

As state-based models, UML is widely tackled in the
literature [43, 18, 4, 32, 33, 34, 24, 23, 8]. Shaikh et
al. [32, 34, 33] use model slicing for verification purpose.
The goal of this approach is to check whether an input UML
model supplemented with OCL constraints has legal in-
stances. OCL constraints are thus analyzed and interpreted
to identify which model elements are constrained.

Closely to Sen’s work, Bae et al. [4] develop a tool, UML-
Slicer, to slice to UML metamodel. As Kompren this tool
slices using the structure of the model. But because UML-
Slicer does not provide radius and constraint features, it is
less expressive than Kompren.

Wang et al. [43] introduce a method to reduce the state
space during the model checking of UML statecharts. The
proposed slicing process is semantically based and exoge-
nous: the output slices are not UML statechart models but
extended hierarchical automata (EHA) used by the model
checker.

Lano et al. [24] present slicing techniques dedicated to
UML models. Using these techniques the output slices may
structurally differ from the input model without modifying
their semantics.

Lallchandani et al. [23] propose a slicing technique for
UML architectural models. Even if the proposed approach is
limited to UML architectural models, it uses slicing for dif-
ferent purposes such as regression testing and understanding
large architectures.

Samuel et al. [30] describe a UML activity diagram slic-
ing technique dedicated to the generation of test cases. The
input diagram is first converted into a flow dependency
graph to be then sliced and be used for the test case gen-
eration process.

Yatapanage et al. introduce a slicing technique to reduce
behavior tree models prior to verification. This batch pro-
cess uses the semantics of the input model to perform the
slicing and produces endogenous output slices.
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Fal et al. [10] propose a batch model slicer dedicated to
the slicing of SysML (Systems Modeling Language13) mod-
els related to safety requirements. The most important step
in this approach is the pre-process step that maps a require-
ments model to a SysML model. Once the mapping es-
tablished the slicing process operates on the structure of
the joined models. Requirements are used as input of the
slicer and their related SysML elements that conform to the
SysML metamodel.

Clark [9] introduces a model slicing theory that can be
used to implement the slicing function as model transfor-
mations. This theory is based both on the syntactic and the
semantics of the targeted language.

Obeo Designer14 offers the possibility to easily design
graphical viewpoints on large models. The representation
of a slice can be seen as a viewpoint. However, the tool is
limited to visualization and does not address manipulation
or serialization of the slices.

8 Conclusion and Future Work

8.1 Contributions

Many recent work inspired by program slicing [44] have
proposed operations that extract sub parts of models for
different purposes [32, 24, 19, 17]. These operations are
extremely helpful to assist comprehension when building
large models. With the growing adoption of domain-specific
modeling, these model comprehension abilities should be
available for any domain-specific modeling language. How-
ever, all existing model slicing approaches are dedicated to
one modeling language and one form of slice.

In this work we analyze needs for model slicing to pre-
cisely identify expected features for domain-specific model
slicers. The major contribution of this paper is the Kompren
language to model model slicers for domain-specific meta-
models. We develop a two-level generative approach on the
basis of Kompren: Kompren’s compiler processes Kompren
models to automatically generate a model slicer function;
this function can in turn automatically extract model slices
from domain-specific models.

This paper presents the details of Kompren’s features, ab-
stract and concrete syntax and tools. We propose an ex-
haustive state-of-art on model slicing. We also demonstrate
Kompren’s expressiveness through three different cases that
aim at slicing three different forms of slices in three differ-
ent domains. In particular we model the slicers defined by
Jeanneret et al. [17] and by Sen et al. [31] and show that
the Kompren models (a.k.a. model slicer models) are much
smaller and easier to understand and evolve than the original
slicers.

13http://www.sysml.org/
14http://obeo.fr/pages/obeo-designer

8.2 Research Agenda
As an immediate future work, we expect to provide empir-
ical evidence of the Kompren usability elaborating a qual-
itative evaluation. This will require a study with users to
evaluate the qualitative benefits of Kompren w.r.t the con-
struction of slicers with general purpose languages.

Then our perspectives are twofold. First, we aim at sup-
porting the definition of generic model slicer models. Cur-
rently, the definition of MSMs relies on a specific input
metamodel. For instance, one can define a MSM based
on the Ecore metamodel to slice class models. However,
slicing the class model in a UML class diagram, requires
defining a new MSM. But Ecore and UML Class diagram
share the concept of class model and relations. MSM defi-
nitions could thus be more generic by taking as input not a
metamodel (Ecore, UML) but a concept (class model), i.e.,
a model type [37].

Second, Kompren slicers are currently static since they
are based on the structure defined by the input metamodel.
A next step of our work will go toward dynamic model slic-
ing. "While static slicing computes slices with respect to any
execution, dynamic slicing computes slices with respect to a
particular execution" [35]. But while all programs are exe-
cutable, all models are not. Thus, it must be identified: the
different kinds of models that can be dynamically sliced; the
additional information to use for specifying dynamic model
slicers (action languages, etc.); the different applications of
dynamic model slicing (executable model debugging, etc.).
Then, other forms of dynamic slicing could be studied, such
as conditioned [28], quasi-static [42], and simultaneous slic-
ing [12], that compute slices with respect to a particular set
of executions.
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