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ABSTRACT
Only intrusive and expensive ways of precisely expressing
emotions has been proposed, which are not likely to ap-
pear soon in everyday Ubicomp environments. In this pa-
per, we study to which extent we can identify the emotion
a user is explicitly expressing through 2D and 3D gestures.
Indeed users already often manipulate mobile devices with
touch screen and accelerometers. We conducted a field study
where we asked participants to explicitly express their emo-
tion through gestures and to report their affective states. We
contribute by (1) showing a high number of significant cor-
relations in 3D motion descriptors of gestures and in the
arousal dimension; (2) defining a space of affective gestures.
We identify (3) groups of descriptors that structure the space
and are related to arousal. Finally, we provide with (4) a
preliminary model of arousal and we identify (5) interesting
patterns in particular classes of gestures. Such results are
useful for Ubicomp application designers in order to envi-
sion the use of gestures as a cheap and non-intrusive affec-
tive modality.
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ACM Classification Keywords
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INTRODUCTION
Nowadays, the number of smartphones users is increasing.
These devices are manipulated by their users everyday, ev-
erywhere, and for a lot of various daily purposes. As our
subjects self-reported during first interviews, it is not rare
to see users manipulating their device, not in a useful pur-
pose, but as a support to explicitly express emotions, e.g.,
irritation by forcefully shaking the device or impatience by
patting with fingertips on it. Such observations suggest that
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there might be a link between gestures performed by users
and the affective states users wish to express. In this paper
we address the problem of identifying to which extent such a
link exists between intentional expressive gestures and emo-
tions users explicitly wish to express. We neither address the
identification of intimate emotion nor the implicit gestural
activity of a user throughout the day.

The importance of including the affective aspect in comput-
ing systems in general have been already demonstrated by
the pioneers of affective computing [16], for instance for
adapting the interaction to increase performance or satisfac-
tion or for communicating subtle emotions to distant oth-
ers. Researchers then proposed techniques for identifying
emotions based on technologies that are intrusive (e.g., elec-
tromyography of the face), expensive (e.g., thermal imag-
ing) or not suitable for ubicomp (e.g., voice analysis subject
to background noises). Yet, the benefits of affective inter-
action could also apply to the use of mobile systems [3].
For instance, users could benefit from precisely specifying
an emotion in a mobile communication application, instead
of typing ambiguous, too narrow and incomplete emoticons
[3].

Motion [21] and surface [24] gestures are, respectively, per-
formed in 3D with a mobile device and in 2D on the touch-
screen of a mobile device, like a smartphone or a medi-
aplayer. Sensing these gestures is now widely done on many
mobile devices. Thus, 3D motion and 2D surface gestures
are ideal candidates for a cheap, discreet and mobile way
of expressing affective parameters. However, little is known
about the affective dimension of gestures: HCI researchers
mainly focused on gestures mapping to commands and af-
fective computing researchers mainly focused on non-ubicomp
situations of use. The challenge to explore the area of affec-
tive 2D surface and 3D motion gestures is high as it has never
been addressed before, but the possible benefits are promis-
ing, making this topic important to investigate.

After gathering and analyzing in situ and in the moment sam-
ples of the subjects’ gestures and emotions, we found that
249 descriptors of each collected gesture, 104 of them were
significantly correlated to at least one of the affective dimen-
sions reported by subjects. More precisely, a high number of
3D motion gesture descriptors were correlated to affective
dimensions and the arousal dimension of emotions was cor-
related to a high number of gestures descriptors. As corre-
lations were rather low, we gathered descriptors along more
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significant axes to define an affective gestures’ space. We
identified groups of descriptors that structure this space. Two
of them are related to arousal : minima of z projections of ac-
celeration (back-front of device) and its derivative on the one
hand, and duration and spectral descriptors on x and y pro-
jections (left-right and bottom-top of device) of either raw or
low-pass filtered acceleration on the other hand. Finally, we
provide with a preliminary model of arousal and we showed
that qualitative analysis of the data allowed us to identify in-
teresting patterns in particular classes of gestures, leading to
more targeted future studies.

The results of our study will be useful for ubicomp system
designers and developers in order to knowingly and reliably
use affective gestures as one of the affective modality in their
applications in a cheap and non-intrusive way.

In the paper, we present our field study and its results. We
then discuss the results and their implications, before con-
cluding and proposing future work. First we start by present-
ing how others contributed in solving the problem of linking
gestures and affective states in the next section.

RELATED WORK
Previous work contributed in solving the problem of sens-
ing affective states through gesturing from the viewpoint of
affective computing, gesture-based interaction and affective
gestural interaction.

Alternative Sensing for Affective Computing
In the field of affective computing, modalities usually con-
tributing to sense emotions are facial expressions, thermal
imaging of faces, vocal intonations, language, galvanic skin
response, electromyography of the face and heart rate. Un-
fortunately, these technologies are costly and intrusive, or
not always usable in a ubicomp situation. In a business meet-
ing for instance, it is not acceptable for an attendee to use
speech as an input to his/her interface, as it would disturb
the speaker. On the contrary, we aim to focus in this paper
on modalities that are discreet, widely available, cheap and
easy to use in ubicomp.

Researchers have introduced low-cost, non intrusive sensing
of emotions. The keyboard through keystrokes dynamics has
been shown as a promising way for sensing emotions [5].
Keyboards however are unfortunately not available while on
the move.

Others tried to sense emotions of mobile users. An idea
has been to use wearable computing to sense emotions [18].
For this, the user has to wear special clothing. Sensors em-
bedded in the clothing detect embrace, squeeze/press and
stroke actions centered around the arm. Others enhance a
mobile communication applications [23][8], using physio-
logical sensors. However with these solutions, users would
have to embed sensors in the sleeve of every piece of cloth-
ing - sometimes lacking sleeves - or wear a special equip-
ment everyday. On the contrary, a smartphone or a media
player is already carried everyday and everywhere by users.

Gesture-based interaction
Gesture-based interaction usually specifies commands, like
e.g., in one of the earliest gestural interaction techniques on
a surface [20] like a pinch gesture to pick up an object on
the surface. Gestures sets are mapped to sets of commands,
or less commonly, to parameters like in Control Menus [17].
Users need to implicitly or explicitly learn and train in order
to be able to use such a gesture-based interface, whether with
a device or on a surface.

Previous attempts tried to facilitate the learning of gestures
by finding clues in spontaneous users gestures. In [24], the
authors investigate spontaneous gestures proposed by users
for a given command on a touch-sensitive tabletop UI. They
find four dimensions for their taxonomy: form, nature, bind-
ing and flow. For instance, along the flow dimension a ges-
ture can be discrete when the action occurs after comple-
tion of the gesture, or continuous if the action occurs during
completion of the gesture. Even though these dimensions
could apply to affective gestures, it has not been investi-
gated yet that they actually are relevant to affective gestures.
In this paper, we would like to take the same approach by
finding clues in spontaneous gestures in order to find rel-
evant dimensions for affective gestures, on the contrary to
command-targeted gestures. Indeed, this work made clear
the need to involve end-users in the design of gestures for
interaction: Designer’s gestures set was shown significantly
different from user-defined gesture set.

Others tried to apply the same approach to find user-defined
3D motion gestures in mobile context [21]. From their tax-
onomy, physical characteristics can apply to affective ges-
tures. Among these, the kinematic impulse is the range of
jerk, e.g., change in acceleration; the dimensions of the ges-
tures, from one to 6 degree of freedom; the complexity of
a gesture, i.e. if it is composed of single, elementary ges-
tures between spatial discontinuities like a pause, or if it is a
single, elementary gesture. These three characteristics could
apply to affective gestures, but such a link has not yet been
explored.

Affective gestural interaction
In order to provide more expressivity, the combination of
2D surface and 3D motion gestures have been explored. For
instance, it is possible to distinguish gently swiping a finger
on the screen from ”drags with a hard onset” [11]. However,
the authors did not map them to affective states.

A promising link between the way one writes a letter with
a pen and the stress due to task difficulty was shown [1]:
Gesture duration, number of points, gesture length and pulse
rate were related to difficulty. However subjects were not
performing free gestures but had to write a specific letter and
the results are linked to physiological measurements but not
to any model of emotions.

Haptic gestures has been explored for emotional communi-
cation, through moving, squeezing, and stroking a custom
device [19] and through spontaneous gestures [9]. However,
the first experiment took place in a lab instead of in the wild
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and participants were only provided a limited set of gestures
to choose from - three different gestures only. Moreover,
even though their scenario stimuli had a strong emotional
component, no explicit link to an emotional model was pro-
posed.

The expressivity of gestures have been explored through cam-
era image processing [2]. Characteristics of expressivity
such as overall activation, spatial extent, temporal, fluidity,
power are computed. Another similar approach has been
explored in [7], where quality of gestures based on dance
characteristics has been detected through Kinect1. Move-
ment quality is defined as ”distinctly observable attributes
or characteristics produced by dynamics independently of
movement trajectory or shape”. In their paper, the authors
define three qualities: (1) breathing, an oriented increase of
hand’s velocity and a release of the hand with a slow ve-
locity, (2) jumping: caress on the surface where the hand
sweeps periodically from top to down at different position on
the interface, and (3) expanding: a multi-directional travel of
the hand on the surface. However, both of these approaches
are not explicitly linked to any emotional model. Moreover,
they need the user to stand in front of a camera and we would
like to avoid this constraint in order to be usable in a ubi-
comp application.

The link between gestures and emotions was analyzed. Fea-
tures of gross body movement and emotions categories were
shown related [15]. However, they consider whole body
movement, which is not applicable to gesturing with or on
a mobile device. The link between hand gestures and emo-
tions in theater plays was also examined [12]. Authors anno-
tated handedness, hand shape, palm orientation and motion
direction in two scenes of two version of the same play and
found correlation between handedness and emotion. Unfor-
tunately, there is no way to capture the handedness through a
mobile device and it is not straightforward that users gesture
the same way with free hands or while carrying a device.

Previous attempts to introduce affective gestures into mo-
bile devices include eMoto [6], a mobile service for sending
affective messages to others. For specifying a user’s affec-
tive states, eMoto uses a language of gestures, combining
two levels of (a) movement for pleasure and (b) pressure for
arousal. These gestures have been arbitrarily designed. On
the contrary, similarly to recent work in gesture-based in-
teraction [24][21], we would like to investigate user-defined
affective gestures. Towards this aim, we conducted the field
study that we present now.

FIELD STUDY
In order to investigate the link between 2D surface and 3D
motion gestures and expressed emotions, we gathered in situ
and in the moment data of the subjects’ gestures and emo-
tions. In this section, we describe our method for collecting
ecologically valid data for such an exploratory study (Expe-
rience Sampling Method (ESM) [10]), for ensuring a usable
dataset and analyzing the data.

1http://www.xbox.com/en-US/kinect, retrieved June 2012

Data Collection
The study gathered 12 adult subjects, expert everyday users
of mobile tactile devices like smartphones or media play-
ers. They were chosen to diversify as much as possible their
profiles: 6 were males and 6 females, aged 25-47 (mean=
32.92, s.d.= 6.76). Their various areas of work were soft-
ware, biology, didactics, social worker, executive assistant,
ski instructor and mountain guide. Subjects did not get any
compensation for participating in the study.

Subjects were asked to install an application on their per-
sonal, usual mobile device and use it to record gestures and
emotions during 15 days at least. Eleven subjects used their
Apple iPhones while a single subject used his iPod touch. As
a consequence to using their usual personal device for eco-
logical validity, we could not get gyroscopes data as these
were not available on all devices.

We used both event-contingent sampling and signal-contingent
sampling, as subjects were asked to use the application ei-
ther:

1. when they were experiencing a particular affective state.
Doing so allowed us not to miss intense, seldomly occur-
ing affective states.

2. when they received a text message asking them to do so.
One text message was sent everyday at a random time of
the awoken day to every participant. Doing so allowed us
to capture subsequent data per subjects, but also to capture
more neutral affective states that are not usually reported.

Figure 1 shows screenshots of the data collection application
manipulated by the participants. Sequentially, subjects were
prompted to:

1. Perform their gesture (Figure 1.a), either on the device’s
screen and/or with the device in the air. There were no
other restrictions on their gesture, as subjects were en-
couraged to provide us with unrevised behavior without
being influenced by capabilities of a system. While the
subject was performing a gesture, the application recorded
accelerometer and touches data, widely available on smart-
phones and media players. For these gestures, no feed-
back was provided through the interface, as we did not
want subjects to tailor their gesture to obtain a particular
feedback, e.g., drawing, but rather to express their emo-
tion through the gesture.

2. Specify their affective state (Figure 1.b). For this, we
used the PAD model [14] describing every emotions as
points in a orthogonal, three-dimensional and continuous
space of Pleasure (happy vs. unhappy, top slider of Fig-
ure 1.b), Arousal (excited vs. calm, middle slider of Fig-
ure 1.b) and Dominance (controlled vs. in-control, bot-
tom slider of Figure 1.b). PAD scales were instrumented
with the graphical Self-Assessment Manikin (Figure 1.b)
[13] to collect subjective report of emotion as PAD val-
ues. Among available emotional models, we chose one
that was not categorical in order to provide users with sub-
tle way of reporting their emotions. Indeed, it has been
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(a) (b) (c) (d)

Figure 1. Data Collection Application Screenshots: Collecting gesture (a), emotion (b), context (c) and Ending (d); Tapping Gesture (a’).

shown that a categorical model leads users to very often
use custom label for emotions as they do not always find
a proper one in the list [3].

3. Give some context information (Figure 1.c): The event
that triggered the emotion, whether they were at home,
at work, on the move or out, whether they were alone or
in company, and any other elements that could help them
remember this moment. Figure 1.d shows the final screen
when leaving the application.

During the 15 day study, we performed 3 interviews with
each participant. All interviews were recorded and later tran-
scribed. First, just before the study begins, we explained
its purpose, collected background data, trained subjects with
the SAM questionnaire with 3 contrasting scenarios (delighted,
shocked and relaxed) and had them try the application. Then,
half way during the study and at the end of the study, we so-
licited their feedback about the study, asked them to com-
ment on their reported gestures and emotions of the past
week and to demonstrate the reported gestures. We also
asked them if they ever wanted to express emotions in a way
that was not taken into account by the mobile phone (e.g.,
with pressure), and about the application they wish, or not,
for identification of emotions through gestures, their benefits
and drawbacks.

Dataset and Analysis
We collected 188 valid samples from all 12 subjects. Sam-
ples were not considered valid when unfinished or performed
during interviews for demonstration or try. Individual sub-
jects reported between 6 and 27 samples (one report every
two days vs. two reports a day). We collected on average
15.7 samples (median = 15.5, s.d. = 6.84) per subjects -
approximately one per day, as expected.

We prepared the data for analysis. From raw gesture logs
like represented in Figure 2 and 3, we computed descriptors
of gestures. Apart from general ones like duration, we com-
puted the 3D motion and 2D surface gestures descriptors to

X

Y

Z

Figure 2. Four of the 3D motion logs characterized by a pause where
the device is hold still and then an important movement in all three
directions, expressing high arousal.

be used in analysis.

3D motion gesture descriptors
Among the 188 gestures, 36 are 3D only and 152 are com-
bined 2D/3D gestures. For describing 3D motion, we con-
sidered (1) acceleration values and acceleration’s derivative
(Jerk) and (2) spectrum. First, for acceleration and jerk, we
considered projections of these on x (left-right of device), y
(bottom-top of device) and z (back-front of device) axes, and
also 3D vector length. We computed minimum, maximum,
amplitude, median, mean and variance of their signed and
absolute values. These descriptors were computed based on
both raw acceleration values and high-pass filtered accelera-
tion values, i.e. with gravity filtered out.

Second, for spectrum analysis, we computed the gap (G)
that maximizes the difference between most important and
less important frequencies in the spectrum of the accelera-
tion signal in order to reveal the periodicity of a gesture. We
also computed the number (N ) of important frequencies in
the spectrum, as well as the most important frequency (M ).
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Figure 3. Two of the 2D surface tapped gestures, where pleasure or
arousal are related to the number of strokes.

These three descriptors were computed for x, y and z pro-
jections of raw acceleration values, and for high-pass and
low-pass filtered acceleration values.

2D surface gesture descriptors
For describing 2D surface gestures, we considered (1) touches
and (2) strokes levels. For instance, the mean of a gesture’s
location can be (2) the mean of the mean for each strokes
or (1) the mean of all touches, regardless of the stroke they
belong to. We consider both as either one could be relevant
to our purpose.

First, we considered touches’ locations, touches’ slopes (an-
gle between two consecutive elementary drawn segments),
touches’ speeds (instantaneous speed between two consec-
utive elementary drawn segments). Second, we considered
the number of strokes, the strokes’ total length and strokes’
lengths, strokes’ locations, strokes’ speeds and strokes’ slopes.
When applicable, we computed these descriptors for projec-
tions on x and y axis and also for vectors’ length. Similarly
to 3D motion gestures descriptors, when possible, we com-
puted minimum, maximum, amplitude, median, mean and
variance of their signed and absolute values.

In total, 249 descriptors were computed for single gestures.
For both affective reports and gestures descriptors, we used
raw values on the one hand, and standard Z-Scores for each
subject on the other hand. Raw values for pleasure, arousal
and dominance were reported between 1 and 9, 1 being re-
spectively pleasant, excited and controlled and 9 respectively
being unpleasant, calm and in control (Figure 1.b).

RESULTS
In order to be able to unveil the dependance between ges-
tures and affective states, we first examined which of the
computed descriptors is relevant to affective states and which
are not. We then focused on identifying a gestures’ space
relevant to affective interaction. We also provide a prelimi-
nary model of arousal and qualitatively identified interesting
patterns in particular classes of gestures.

Relevant and Unrelevant Descriptors
We performed a study of Pearson correlation coefficient r in
order to evaluate the relationship between affective variables
and descriptors of gestures. The coefficient reflects the nois-
iness and direction of a linear relationship, but not the slope
of that relationship, nor many aspects of nonlinear relation-
ships. A coefficient of 1 means that both variables have the
same direction and no variance, -1 means that variables have
opposite direction and no variance, while 0 means no rela-
tionships between them, i.e. much variance. Statistical sig-
nificance of this relationship is evaluated with a Student test.
We report here only the significant relationships (|t| > 1.96,
i.e. α = 5%).

Pleasure
Pleasure is slightly positively correlated to:

• the median of the projection on the y axis of the accelera-
tion (r = 0.17, t = 2.42),

• the mean of the projection on the z axis of the jerk of
filtered acceleration (r = 0.16, t = 2.22).

This means that the more unpleasant the feeling is, the higher
these descriptors are.

If we consider Z-score of pleasure, then the number of im-
portant frequencies found in the spectrum of the high-pass
filtered value of the projection on the z axis of the acceler-
ation is found positively correlated to ZP (r = 0.17, t =
2.41).

Arousal
We found 97 3D motion descriptors that are correlated to the
arousal dimension of emotions. This very high number can
be explained by the fact that arousal is defined as the strength
of the emotion: the stronger the emotion is, the more ex-
pression we can expect through gestures. Out of these 97
correlations, the strongest ones are with:

• the mean of the absolute value of the x projection of the
high-pass filtered acceleration (r = −0.28, t = −3.97),

• the maximum of the signed value of the x projection of the
high-pass filtered acceleration (r = −0.28, t = −3.90)

• the maximum of the x projection of the derivative of the
raw acceleration (r = −0.30, t = −4.29)

• the maximum of the length of the derivative of raw accel-
eration (r = −0.28, t = −4.01)

• the amplitude of the length of the derivative of raw accel-
eration (r = −0.28, t = −4.02)

• the maximum of the x projection of the derivative of the
high-pass filtered acceleration (r = −0.28, t = −3.93)

• the maximum of the length of the derivative of high-pass
filtered acceleration (r = −0.31, t = −4.46)

• the amplitude of the length of the derivative of high-pass
filtered acceleration (r = −0.31, t = −4.47). Extreme
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examples of amplitude and arousal are shown in Figure
4a.

We can add that duration of the gesture is significantly cor-
related to arousal (r = 0.18, t = 2.56 for A and r = 0.20,
t = 2.77 for ZA). Interestingly, correlations with 2D surface
gestures descriptors were also found with arousal: the pro-
jection on the x axis of the maximum of the absolute speed
of the strokes is negatively correlated to arousal (r = −0.17,
t = −2.09 for A and r = −0.17, t = −2.11 for ZA), and
the amplitude of the slopes of strokes is correlated to ZA
(r = −0.16, t = −2.04).

Dominance
Dominance is slightly positively correlated to the number of
important frequencies found in the spectrum of the high-pass
filtered value of the projection on the x axis of the acceler-
ation (r = 0.21, t = 2.76). Dominance is also positively
correlated to the mean of the absolute value of y projection
of touches’ speed (r = 0.17, t = 2.11). This means that the
more the person feels in control, the higher these descriptors
are.

Dominance is also negatively correlated to the gap that max-
imizes the difference between most important and less im-
portant frequencies in the spectrum of the projection on the x
axis of the low-pass filtered acceleration signal (r = −0.18,
t = −2.43) and also to the gap that maximizes the differ-
ence between most important and less important frequencies
in the spectrum of the projection on the x axis of the accel-
eration signal (r = −0.18, t = −2.46). This means that the
less the person feels in control, the higher these descriptors
are.

If we consider Z-scores of dominance, then three descriptors
adds up to the significant ones : The amplitude of the pro-
jection on the y axis of the strokes’ locations (r = −0.16,
t = −2.01), the minimum of the projection on the y axis of
the strokes’ locations (r = 0.16, t = 1.98), the median of
the length of the acceleration vector (r = 0.16, t = 2.19).

Summary of relevant and unrelevant descriptors
In this section we presented descriptors that are significantly
correlated to affective dimensions P, A and D and their stan-
dardized value per subject. Designers should consider the
descriptors we reported in order to include gesture as an af-
fective input of an application, but also avoid the descriptors
that were not found correlated to any of the affective dimen-
sions. Yet, developers should be aware that the lower |r| is,
the larger the predictable interval of the affective dimension:
we showed that Ubicomp system designers could predict a
range of affective values. We found a much larger number of
correlations, much higher correlation coefficients and much
higher significance for the arousal dimension compared to
pleasure and dominance. This indicates that this dimension
is the most reliable for ubicomp designer to use in their ap-
plication.

As correlation coefficients are all below 0.40, little variance
of affective variables are explained by single descriptors.

This shows that there is no unique descriptor perfectly linked
to affective states. In order to provide a usable model of af-
fective gestures, we now explain how we gathered descrip-
tors in new axes defining an affective gestures’ space that
explain as much variance as possible.

From Single Descriptors to a Gestures’ Space
For a developer to identify an expressed emotion, consider-
ing all 249 descriptors is not practical. To reduce this num-
ber, a developer could consider only the most correlated de-
scriptors. But, due to descriptors’ correlation to each other,
it could be a waste of time and/or one could miss relevant
information. To find the best subset of descriptors, we con-
tribute with an affective gestures’ space that best describe
affective gestures.

We performed a principal component analysis (PCA) in or-
der to extract axes from the list of single descriptors. Fig-
ure 5 show the descriptors and the affective variables in the
space of the new significant axes. To take part in the axes,
we only considered descriptors that have the most significant
correlation coefficients (|t| > 2.50, i.e. α = 1%). For each
of descriptor, its 188 values are taken into account. Ges-
tures’ variables were used as active variables in PCA and
PAD variables as illustrative variables (black arrows in Fig-
ure 5). We only considered the three most significant axes,
i.e. with eigen values > 3. Figure 5 shows the projection of
descriptors on the subspaces defined by new axes 1 and 2,
and by new axes 2 and 3. The closer to unit circle a descrip-
tor is, the more it is important to structure the 3-axes space.
As one can see, the first axis (left horizontal axis of Figure
5) includes most of the information (64%), but the second
axis (left vertical axis and right horizontal axis of Figure 5)
includes 6% of the information and the third axis 5% (right
vertical axis of Figure 5).

Figure 4b shows some of the typical 3D logs of gestures
located in the subspace defined by new axes one and two,
i.e. whose coordinates on these axes are higher than others
gestures. Their positions are determined by a linear combi-
nation of severals descriptors. We can see on Figure 4b that
similar gestures are close to each other and that different ges-
tures are far from each other. For instance, the gestures at the
bottom right corner show more 3D movement than the ges-
tures at the top left corner. However, it is difficult to interpret
in a straightforward way how such a position in the space of
affective gestures can be obtained when executing a gesture.
We now explain how developers can locate gestures in the
space.

A benefit of these new axes for the identification of expressed
emotions is that it gives the information on which descrip-
tors to consider in order to locate a gesture in the space of
affective gestures. Now a developer can, for instance, con-
sider the three most important descriptors per direction of
each axis, in order to better represent the space of affective
gestures. Doing so, she/he would consider 18 descriptors:

• the minima of x, y and z projections of high-pass filtered
acceleration, respectively contributing to −0.91, −0.90,
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Figure 4. (a) Extreme examples of the arousal correlated amplitude of the length of the derivative of high-pass filtered acceleration. Left: User is
excited and moves the device in a very inconstant way. Right: User is calm and does not move the device. (b) 3D logs located in the subspace defined
by axes one and two.

−0.89 to the first axis; and the mean of the length of
the high-pass filtered acceleration vector, the mean of the
length of the acceleration derivative and the amplitude of
the length of the high-pass filtered acceleration, respec-
tively contributing to 0.96, 0.96, 0.95 to the first axis;

• the minima of the z projection of the high-pass filtered
and raw acceleration’s derivative and the maximum of the
y projection of the high-pass filtered acceleration, respec-
tively contributing to the second axis to −0.37, −0.33,
−0.32; and the variances of the z projections of the high-
pass filtered acceleration, raw acceleration’s derivative and
high-pass filtered acceleration’s derivative, respectively con-
tributing to the second axis to 0.41, 0.40, 0.39;

• G descriptors of y projection of raw acceleration and low-
pass filtered acceleration and duration, respectively con-
tributing to −0.75, −0.75, −0.63 to the third axis; and
the median of the y projection of the raw acceleration, the
mean of the z projection of the absolute value of the raw
acceleration and the N descriptor of the x projection of
the high-pass filtered acceleration, respectively contribut-
ing to 0.46, 0.42, 0.24 to the third axis.

By doing so, a developer would be ensured to have chosen
the 18 most structuring descriptors of the affective gestures’
space. Another way to benefit from this space would be to
consider groups of descriptors that are the most related to
an affective dimensions. We find 6 subgroups of descriptors
structuring the first and second axes (Figure 5, left).

• In the top left quarter, the blue � group of descriptors,
mostly gathering minimum of x and y projections of ac-
celeration and jerk;

• In the bottom left quarter, the purple O group, mostly
gathering minimum of z projections of acceleration and

jerk;

• In the top right corner, the green4 group, mostly gather-
ing maximum, amplitude and variance of z projection of
acceleration and jerk; the brown + group, mostly gather-
ing median of length of acceleration and jerk; the yellow
× group, mostly gathering maximum, amplitude, mean
and variance of length of acceleration and jerk;

• In the bottom right quarter, the red ◦ group, mostly gath-
ering maximum, amplitude and variance of x and y pro-
jection of acceleration and jerk.

We find a seventh interesting subgroup structuring axes 2
and 3 (Figure 5, right): the cyan � group, mostly gathering
duration and G descriptors on x and y projections, of either
raw or low-pass filtered acceleration.

Interestingly, on Figure 5 (left) the direction of standard arousal
ZA is exactly the direction of the purpleO group and on Fig-
ure 5 (right) exactly the direction of the cyan � group. This
means that a significant part of the variance of ZA can be
explained by these subgroups of descriptors. As a conse-
quence, for a developer to evaluate the arousal expressed by
a gesture, she/he can choose to compute these subgroups of
descriptors.

Towards Identification of Arousal
We performed a linear regression in order to investigate the
prediction of the emotion expressed by the user. We ap-
plied a backward stepwise method on the most significant
descriptors that defined the affective gestures’ space. With
this method, only the combination of descriptors that maxi-
mizes the explained variance of ZA is left in the model. We
report here the model for the arousal dimension, as it has the
strongest relationship with gestures. The model involves, re-
spectively, the minimum of the x projection of the high-pass
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Figure 5. Projection of descriptors and affective variables on the subspaces defined by axes one and two (left) and two and three (right).

filtered acceleration, the minimum of the z projection of the
high-pass filtered acceleration, the minimum of the z pro-
jection of the high-pass filtered acceleration’s derivative, the
duration of the gesture, the mean of the z projection of the
absolute value of the acceleration and the N descriptor of
the x projection of the high-pass filtered acceleration.

ZA = 0.33(±0.214)× FAccXMin

−0.62(±0.476)× FAccZMin

+0.56(±0.428)× FJerkZMin

+0.18(±0.140)×Duration
−0.21(±0.137)×AbsAccZMean

−0.14(±0.140)×NXHPF

This model is significant (Fisher test with F6,175 = 7.31,
α < 0.001). Confidence intervals (α = 5%) of coefficients
are indicated in the formula between parentheses. Not sur-
prisingly, we find here a combination of the descriptors that
belong both to (1) the 18 most structuring descriptors of the
three axes of the affective gestures’ space and (2) the groups
that most relates to arousal, i.e. purple O and cyan �.

This model is a first step towards identification of arousal
through gestures, the closest to reality we can present after
this first study. In order to open future direction of this work,
we now present specific patterns that we found and that will
lead to further studies.

Promising Findings
We manually classified gestures, in order to find interesting
patterns that could lead to further studies. We report here
two of these findings. First, Figure 2 shows four 3D mo-

tion gestures characterized by (1) a pause where the device
is hold still and then (2) more important movement in all
three x,y,z directions. Users holds their phones still before
forcefully shaking the device in all directions. In our study,
these gestures can be said to express a high arousal with a
95% confidence.

The second interesting pattern was found in tapped gestures,
like those of Figures 1.a’ and 3. In our study, for 2/3 of
them (triangles of Figures 6), the pleasure tends to be ex-
ponentially related to the number of strokes, until the num-
ber of strokes reaches 20 where ZP reaches a ceiling. This
means that the more the user taps on the screen, the less
happy she/he tends to feel. For the other third of the tapped
gestures that do not follow the exponential relationship (cir-
cles in Figures 6), then the arousal tends to have a negative
relationship to the number of strokes: the more the user taps
on the screen, the more aroused she/he tends to feel.

Finding like these ones will lead to future studies in order to
specifically investigate particular types of gestures and their
relationship to affective dimensions.

DISCUSSION
Limitations of our dataset
First, as seen in the second screen of Figure 1, the default
values of sliders for SAM forms were 5, i.e. the middle of
the scale. As a consequence, we collected very few values
between 4 and 5, and between 5 and 6. We explain this by
subjects not moving sliders for such a small increment. Un-
fortunately, it leads to a gap around 5 values in our dataset.
We believe this has little impact on the results, but a more ap-
propriate way of collecting data would have been to present
scales with no default values, forcing the participant to spec-
ify the closest values of PAD.
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Figure 6. (Left) Relationship between the number of strokes of the
tapped gestures and ZP: For triangles, the pleasure tends to be expo-
nentially related to the numbed of strokes, until the number of strokes
reaches 20 where ZP reaches a ceiling. (Right) Relationship between
the number of strokes of the tapped gestures and ZA: For circles, the
arousal tends to have a negative relationship to the number of strokes.

Second, several subjects reported that having ideas of ges-
tures was sometimes difficult. To overcome this, we would
now collect subjects’ confidence in their gesture to express
their emotion. This could allow using a confidence factor
for the gesture and better balance the influence of gestures
in our analysis.

The last limitation comes from the amount of samples. Ide-
ally, the more samples, the more reliable the results. But as
we had to propose an acceptable time for subjects to partic-
ipate in the study, we balanced the need for a large amount
of samples and for a short, lightweight study. Moreover, as
this is the first study of its kind, its aim was to open areas
for more targeted future work and the reasonable number of
samples we collected allowed us to identify promising ar-
eas, e.g., for arousal identification or for particular types of
gestures.

Implications and Applications
The obtained results are preliminary but have a number of
perspectives to be improved, refined and used. Our results
could be improved by conducting two studies. First, we
could deploy a version of the data collection software that
conducts modeling in the background thanks to the prelim-
inary model provided by this paper and prompts the user to
refine the system’s proposal or to perform again when it de-
tects a less clear affective gesture. Second, a study could be
run in order to collect more samples to improve results and
use methods, like classification, that demand a larger num-
ber of samples. Towards this aim, we could either (a) run a
study in a lab, eliciting emotions from users and asking them
to perform a gesture after each stimulus, or preferably for
ecological validity, (b) run a longer term study in the field.

Our results could be refined in four directions: First, we
could focus on particular types of gestures like the tapped
ones of Figure 3 and investigate how different ways of per-
forming a single type of gesture can relate to emotions. Sec-
ond, we could focus on single subjects and investigate if the
identification of emotion can be improved for a single sub-
ject. The limited agreement between subject can be an expla-
nation of the low correlations between gestures and reported

emotions. For instance, subject 9 and 12 show both strong,
but opposite correlations between arousal and the amplitude
of the length of the derivative of high-pass filtered accel-
eration. For similar descriptors, we could have better re-
sults when considering subjects independently. To do so, we
would need more samples of specific subjects, as an average
of 15 samples per subject is not enough.

Third, we could focus on introducing further low-cost, not
intrusive modalities for the identification of emotions ex-
plicitly expressed by mobile users. A subject of our study
proposed pressure as another modality he would like to use
while mobile to express emotions. Gyroscopes could also
be investigated, as they are now becoming more prevalent
in mobile device and that palm orientation has already been
found correlated to emotion categories for one actor in one
play and motion direction was correlated to pleasure for two
actors playing the same role [12]. Last, we could investigate
if the gestural modality for expressing emotions is more ef-
ficient, expressive or pleasurable for users than, e.g., typing
emoticons.

Our results could be used as an inspiration for future design
of a gesture-based affective UI based on real-world data, as
in [24]. The results of our study can lead to, e.g., a set of 4
gestures for each corner of the PA space. Such a set could
then be evaluated against the existing, arbitrary one [6]. An-
other perspective for the use of our results is to integrate the
gesture modality in an application in order to evaluate its
benefits for mobile applications. During the study, partici-
pants envisioned a lot of possible applications for such an
affective, gestural and mobile input. For instance, subjects
envisioned self-monitoring of emotional states in order to
control oneself. Gestures could be used to precisely spec-
ify an emotion in a communication application, instead of
typing ambiguous, too narrow and incomplete emoticons.
Earlier examples of using PAD values in applications can
be found, e.g. with discretized and textual feedback [4] or
continuous and graphical feedback [22].

CONCLUSION
In this paper we presented the results of a field study aiming
at enabling the identification of explicitly expressed emo-
tions of mobile users through 2D surface and 3D motion
gestures. Among 249 descriptors of each collected gesture,
we found that 104 of them were significantly correlated to
at least one of the affective dimensions reported by sub-
jects. More precisely, a high number of 3D motion gesture
descriptors were correlated to affective dimensions and the
arousal dimension of emotions was correlated to a high num-
ber of descriptors of gestures. As correlations were lower
than 0.40, we defined an affective gestures’ space, gather-
ing descriptors along more significant axes. We identified
groups of descriptors that structure this space. Two of them
are related to arousal : duration and G descriptors on x and
y projections of either raw or low-pass filtered acceleration
on the one hand, and minima of z projections of accelera-
tion and jerk on the other hand. Finally, we provided with
a preliminary model of arousal and we showed that quali-
tative analysis of the data allowed us to identify interesting
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patterns in particular classes of gestures.

This work presents the first naturally-gathered affective ges-
tures dataset and the first step towards unobtrusive and in-
expensive identification of the link between 2D surface/3D
motion gestures and affective states of a mobile user. This
work is a broad, exploratory research in a new field. Be-
fore this study, as we show in the first section, no other ap-
proach tackled the feasibility of identifying emotion through
3D motion and 2D surface gestures. This work is important
as it moves us closer to creating emotionally-aware ubiqui-
tous computing that can be widely deployed.
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