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Dense RGB-D mapping of large scale environments
for real-time localisation and autonomous navigation

Maxime Meilland, Patrick Rives and Andrew Ian Comport

Abstract— This paper presents a method and apparatus for
building 3D dense visual maps of large scale environments for
real-time localisation and autonomous navigation. We propose a
spherical ego-centric representation of the environment which
is able to reproduce photo-realistic omnidirectional views of
captured environments. This representation is composed of
a graph of locally accurate augmented spherical panoramas
that allows to generate varying viewpoints through novel view
synthesis. The spheres are related by a graph of 6d.o.f. poses
which are estimated through multi-view spherical registration.
It is shown that this representation can be used to accurately
localise a vehicle navigating within the spherical graph, using
only a monocular camera for accurate localisation. To perform
this task, an efficient direct image registration techniqueis
employed. This approach directly exploits the advantages of
the spherical representation by minimising a photometric error
between a current image and a reference sphere. Autonomous
navigation results are shown in challenging urban environ-
ments, containing pedestrians and other vehicles.

I. I NTRODUCTION

Acquiring 3D models of large scale environments is cur-
rently a key issue for a wide range of applications ranging
from interactive personal guidance devices to autonomous
navigation of mobile robots. In these applications it is impor-
tant, not only for human operators but also for autonomous
robots, to maintain a world map that holds a rich set of data
including photometric, geometric and saliency information.
It will be shown in this paper why it is advantageous to define
an ego-centricrepresentation of this information that allows
fast model acquisition whilst maintaining optimal realism
and accuracy.

An a-priori 3D model simplifies the localisation and navi-
gation task since it allows to decouple the structure and mo-
tion estimation problems. Current state of the art approaches
mostly rely on global3D CAD models [10] that are based on
tools and representations that have been developed mainly for
texture mapped virtual reality environments. Unfortunately,
these representations have difficulties in maintaining true
photo-realism and therefore they introduce reconstruction
errors and photometric inconsistencies. Furthermore, these
models are complicated to acquire and often resort to heavy
off-line modelling procedures. Whilst efforts are being made
to use sensor acquisition systems that automatically acquire
these classical virtual3D models [7], it is suggested in this

M. Meilland and P. Rives are with INRIA Sophia Antipolis
Méditerranée, 2004 Route des Lucioles BP 93, Sophia Antipolis, France,
{name.surname}@inria.fr

A.I. Comport is with CNRS, I3S Laboratory, Université NiceSophia
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paper that they are not sufficient to precisely represent real-
world data. Alternatively, it is proposed to use an ego-centric
model [17] that represents, as close as possible, real sensor
measurements.

A well known ego-centric representation model for camera
sensors is the spherical panorama. Multiple cameras systems
such as in [2] allow construction of high resolution spher-
ical views via image stitching algorithms such as reviewed
in [21]. However, contrary to virtual reality models, these
tools have been developed mainly for qualitative photo-
consistency but they rarely require3D geometric consistency
of the scene. This is mainly due to the fact that, in most
cases, it is impossible to obtain3D structure via triangula-
tion of points when there is no or little baseline between
images. Another approach is to use a central catadioptric
omnidirectional camera [20] and warp the image plane onto
a unit sphere using the model given in [8]. Unfortunately,
that kind of sensor has a poor and varying spatial resolution
and therefore is not well adapted to a visual memory of the
environment. Furthermore, these approaches assume a unique
center of projection, however, manufacturing such a system
is still a challenging problem [14].

In order to take advantage of both3D model based
approaches and photometric panoramas it is possible to
augmentthe spherical image with a depth image containing
a range for each pixel. The multi-camera sensor proposed
in [18] allows to acquire high resolution spherical images
augmented with depth information. An augmented sphere
then allows to perform novel view synthesis in a local domain
in all directions [1][6][17].

These ego-centric models are, however, local and do
not provide a global representation of the environment.
This problem can be solved by considering multiple aug-
mented spheres connected by agraph of poses that are
positioned optimally in the environment. Simple spherical
images positioned in the environment are already found in
commercial applications such as Google Street View, and
more recently in [13]. The easiest method for positioning
spheres would be via a global positioning system (GPS).
However, in urban environments this system fails easily
due to satellite occlusion. Alternatively, the robot-centred
representation introduced in [17][18] positions augmented
views globally within a precise topological graph via accu-
rate spherical visual odometry [6] and does not require any
external sensor. The present paper extends this preliminary
work, and demonstrates autonomous navigation results in
challenging environments using only a monocular camera
for localisation.



II. REAL-TIME EGO-CENTRIC TRACKING

The objective of this work is to perform real-time localisa-
tion and autonomous navigation using a known environment
model (see Fig. 2). The essential part of this paper is
therefore divided into two distinct but inter-related aspects:

• Offline learning - This phase consists in acquiring a3D

model of the environment and representing this information
in an optimal manner for ”on-line” localisation. It has been
chosen to develop a learning approach that is alsoefficient
so that, firstly, environments can be acquired rapidly and
secondly, so that the approach may be used for online
mapping in the near future. Essentially this involves filming,
tracking and mapping the3D environment (≈1Hz depending
on the approach). The local ego-centric3D model and the
global graph learning are illustrated in Section III.

• Online localisation and autonomous navigation- The
real-time phase involves estimating the 6d.o.f. pose of a
camera at frame-rate (here 45 Hz), onboard the vehicle.
This phase must take into account efficient optimisation
techniques that require a maximum amount of computation
to be performed ”off-line” during the learning phase. An ac-
curate vehicle position should be provided to autonomously
control the vehicle, as explained in Sections IV and V.

III. SPHERICAL EGO-CENTRED MODEL

An ego-centric3D model of the environment is defined
by a graph G = {S1, . . . ,Sn;x1, . . . ,xm} where Si

are augmented spheresthat are connected by a minimal
parametrisationx of each pose as:

T(x) = e[x]∧ =

[
R t

0 1

]
∈ SE(3), (1)

wherexab ∈ R
6 is the 6d.o.f. twist between the spherea

andb (see Fig. 2) defined as:

x =

∫ 1

0

(ω,υ)dt ∈ se(3), (2)

which is the integral of a constant velocity twist which
produces a poseT. The operator[.]∧ is defined as follows:

[x]∧ =

[
[ω]× υ

0 0

]
, (3)

where[.]× represents the skew symmetric matrix operator.

A. Augmented visual sphere

Each sphere is defined by the set

S = {IS ,PS ,ZS ,WS}, (4)

where:

- IS is the photometric spherical image. This image is
obtained from the custom camera system presented in
Section III-B by warping multiple images onto the sphere.

- PS = {q1, . . . ,qn} is a set of evenly spaced points on the
unit sphere whereq ∈ S2. These points have been sampled
uniformly on the sphere as in [17].

IS 1/ZS WS PS

Fig. 1. Local representation: augmented sphereS containing intensities
IS , depthmapZS , salliancyWS and a samplingPS .
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Fig. 2. Ego-centric representation: graph of spheresG allowing the
localisation of a vehicleV navigating locally within the graph.

- ZS are the depths associated with each pixel which have
been obtained from dense stereo matching. The3D point is
subsequently defined in the sphere asP = (q, Z).

- WS is a saliency image which contains knowledge of good
pixels to use for tracking applications. It is obtained by
analysing the Jacobian of the warping function so that the
pixels are ordered from best to worst in terms of how they
condition the pose estimation problem (the interested reader
can see [17] for more details).

B. Spherical acquisition system

To acquire augmented visual spheres, a custom made
multi-camera sensor is employed. This sensor, proposed in
[18] is composed of six wide angle stereo cameras, placed in
a ring configuration so that dense stereo matching [11] can be
performed between each camera pair. Such a system allows
to acquire high resolution visual spheres, with dense depth
information for almost each pixels of the spherical image, as
it can be seen on Figure 3.

C. Global sphere positioning

To accurately recover the position of the spheres of the
graph with respect to one-another, a 6d.o.f. multi-camera
localisation model is used based on accurate dense localisa-
tion [6][17]. ConsideringS∗, an augmented sphere defined
in Section III-B, the objective is to compute the pose between
a reference sphereS∗ and the next oneS. The localisation



(a) Spherical image.

(b) Associated depthmap.

Fig. 3. Example of an augmented spherical panorama obtainedusing a
multi-baseline spherical camera.

problem (also known as visual odometry) is solved using a
direct3D image registration technique that provides accurate
pose estimation [18]. Since this is a local optimisation
approach it is assumed that the camera framerate is high
(30Hz) and that interframe displacements are small (≤ 2m),
meaning a maximum speed of∼ 200km/h. It is noted here
that dense visual odometry is computationally efficient and
locally very accurate [6] so it has been deemed unnecessary
to perform costly bundle adjustment on local visibility win-
dows (although this slightly improves the estimate, it makes
timely scene acquisition practically infeasible).

In order to avoid reconstructing each sphere from the
learning sequence and to obtained a graph with minimal
redundancy, a robust statistical criteria is observed to choose
where to reconstruct a sphere and add it to the graph. This
allows compressing the original sequence of images to only
few spherical images (see [18]).

Since a visual odometry approach is employed, drift is
integrated over large scale trajectories (e.g.≤ 1%). To over-
come this problem, which might lead to inconsistencies in
the graph, a spherical loop closure detection is employed [5].
This technique detects loop closures from the appearance of
the images, using SIFT descriptors [15]. Loop closure detec-
tions allow to add new edges to the graph, corresponding to
new constraints. The final graph can be globally optimised
using a graph optimisation approach (e.g. [9]).

IV. REAL-TIME LOCALISATION

It is considered that during online navigation, a current im-
ageI , captured by a generic camera (e.g. monocular, stereo
or omnidirectional) and an initial guesŝT of the current
camera position within the graph are available. This initial
guess permits the extraction of the closest reference sphere
S

∗ from the graph. Contrary to non-spherical approaches, a
sphere provides all viewing directions and therefore it is not
necessary to consider the rotational distance (to ensure image
overlap). The closest sphere is subsequently determined
uniquely by translational distance. In particular this avoids

choosing a reference sphere that has similar rotation but
large translational difference which induces self occlusions
of buildings and also differences in image resolution caused
by distance (which affects direct registration methods).

Since a sphere provides all local information necessary for
6 d.o.f.localisation (geometric and photometric information),
an accurate estimation of the pose is obtained by an efficient
direct minimization:

e(x) = I

(
w(T̂T(x); s(Z,q∗

S))
)
− I

∗

S

(
s(ZS ,q

∗

S)
)
, (5)

wherex is the unknown 6d.o.f.pose increment. The warping
function w(.) transfers the current image intensities onto
the reference sphere pixelsqS through novel view synthesis
[1], using depth informationZS . The functions(.) selects
only informative pixels,w.r.t. the saliency mapWS which
is already pre-computed on the reference sphere [17]. This
selection speeds up the tracking algorithm without neither
degrading observability of3D motion nor accuracy.

The error functione(x) is minimized using an iterative
non-linear optimization (IRLS) detailed in Appendix VIII-A.
The estimation is updated at each step by an homogeneous
transformation:

T̂← T̂T(x), (6)

whereT̂ is the current pose estimate with respect to the clos-
est reference sphere which is determined from the previous
iterations up to timet− 1.

A maximum amount of pre-computation is performed
offline during the construction of the spheres (e.g. Jacobian
matrices and saliency maps) allowing the online algorithm
to be computationally very efficient: the camera pose can be
estimated at high frame rate (e.g.45 Hz for a current image
of 800× 600 pixels in size).

To farther improve performance, a coarse-to-fine optimiza-
tion strategy is employed by using multi-resolution spheres
(e.g.constructed by Gaussian filtering and sub-sampling [4]).
The minimization begins at the lowest resolution and the
result is used to initialize the next level repeatedly until
the highest resolution is reached. This greatly improves the
convergence domain/speed and some local minima can be
avoided. Finally, to ensure robustness to illumination changes
that occur between the reference images and the online
camera’s images, the method proposed in [19] is employed.
This method combines both model-based tracking (w.r.t. the
graph) and a non classic visual odometry approach, which
greatly improve robustness to large illumination changes
without necessitating the cost of estimating an illumination
model.

V. AUTONOMOUS NAVIGATION

During autonomous navigation, the aim is to follow auto-
matically a reference trajectoryU generated locally around
the learnt graph. The trajectoryU = {u∗

1,u
∗

2, . . . ,u
∗

n}
containsn input vectors such that:

u∗ = {x∗, y∗, ψ∗, U∗, ψ̇∗}, (7)
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Fig. 4. Regulated error for visual servoing. The current vehicle position is projected onto the closest reference trajectory edge. A reference position is
selected at a distanced, to generate longitudinal and angular errors{eq , eψ}.

where the pointo∗ = {x∗, y∗} is a desired position,ψ∗ is
the yaw angle,U∗ is the longitudinal velocity anḋψ∗ is the
desired angular velocity.

The control problem can be formulated as detailed in [3].
In the proposed case, avirtual vehicle is followed and used
to generate an error in translation and orientation that can
be regulated using state feedback. Longitudinal velocity is
controlled using a proportional feedback on the longitudinal
error and steering angle depends on yaw and transversal
errors. These errors are obtained by projecting the current
vehicle position onto the closest reference trajectory’s edge
(cf. Figure 4). The reference position is then selected by
translating the projected position along the trajectory bya
distanced.

The translation error between the reference point and the
current position is then defined by:

eq =

[
ex
ey

]
= RT

ψ∗(o− o∗) = RT
ψ∗

[
x− x∗

y − y∗

]
, (8)

where the rotation matrix ofψ∗ can be written by:

Rψ∗

[
cos(ψ∗) − sin(ψ∗)
sin(ψ∗) cos(ψ∗)

]
. (9)

The angular error is directly defined by:

eψ = ψ − ψ∗, (10)

and the control law, derived from [3] without the state
feedback on the velocities is:

{
U = U∗ − kx(|U

∗|+ ǫ)ex
ψ̇ = ψ̇∗ − ky|U

∗|ey − kψ|U
∗| tan(eψ)

, (11)

where the gainskx, ky, kψ andǫ are positive scalars.
An accurate 6d.o.f.vehicle localisation is computed using

only a monocular camera as detailed in Section IV. The
obtained 6d.o.f.pose is then converted into a 3d.o.f.position
(x, y, ψ) in the vehicle plane, and the resulting error is
regulated using equation (11).

Since the localisation algorithm provides a 45 Hz pose
estimation, no additional sensors or filtering are used for
the positioning and the vehicle is able to smoothly follow
trajectories. To ensure safe experiments, a SICK laser is

placed in the front of the vehicle and it is only employed to
detect pedestrians and other vehicles. Longitudinal velocity
is modulated with respect to the closest objects detected in
the laser trace and the vehicle is stopped under a certain
distance threshold (cf. Figure 5(e)).

A. Results

The mapping and re-localisation methods have been ex-
perimented in large scale environments. The following result
shows autonomous navigation in the city centre of Clermont-
Ferrand in France, obtained during the final experiments of
the CityVIP project (cf. Section VII). A learning phase has
been performed on a 490 meters trajectory, by manually
driving a vehicle equipped with the spherical acquisition
system. In order to ensure an admissible path for the online
trajectory (i.e. without obstacles), the trajectory obtained
during the learning phase was used as input for the online
navigation: however the localisation method is capable of
accurately localising a camera navigating within a different
region in the graph, as it is demonstrated in [18]. The
reference longitudinal velocity was set to1.2m/s for the
whole sequence.

Figure 5 shows the desired trajectory in black, and the
trajectory followed autonomously by the vehicle in red. The
vehicle starts at position (X=0,Y=0) and begins to move
along Y axis. The experiment finishes at position (X=-
62,Y=61). The vehicle was able to follow autonomously
the whole sequence, using only the monocular camera for
localisation. As it can be seen on figures (a),(b) and (c), the
accuracy of the localisation method allows to navigate in
narrowed corridors, whilst the employ of robust estimators
ensure robustness to occlusions like pedestrians. Images
(d) and (f) show the vehicle navigating in much larger
areas (open place). This kind of environment has shown
some limitations of vision based navigation. Since geometric
information is far from the camera (building facade), accurate
estimations of translations are degraded (infinite points are
invariant to translations). These effects can be seen on the
red trajectory around the landmark (e). However, this lack of
precision could be overcomed using additional sensors, such
as GPS and inertial measurements.
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VI. CONCLUSIONS

The approach described in this paper propose a fully auto-
mated mapping and re-localisation system, for autonomous
navigation in urban environments. The mapping method
allows to reconstruct dense visual maps of large scale3D

environments, using a spherical graph representation. It has
been shown that this representation is capable of reproducing
photometrically accurate views locally around a learnt graph.
Reconstructed spheres acquired along a trajectory are usedas
input for a robust dense spherical tracking algorithm which
estimates the spheres’ positions.

During online navigation, an efficient direct registration
technique is employed to accurately localise a monocular
camera. The robustness of the localisation method has been
validated in challenging urban sequences containing a lot of
pedestrians and outliers. The proposed localisation system is
only based on a standard monocular camera, no additional
sensors are used.

Future work will aim at improving the database construc-
tion, by geo-referencing the spherical graph in a GIS (Geo-
referenced Information System), which may contain higher
level information such as free space. This geo-location will
allow to use advanced path planning algorithms. To farther
improve the autonomous navigation solution, it should be
interesting to fuse vision based localisation, with GPS signal
and inertial measurements.
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VIII. A PPENDIX

A. Non-linear optimisation

The error function for the real-time tracking (5) is min-
imized using an iteratively re-weighted least squared non-
linear minimization:

O(x) = arg min
x

ρ(e(x)), (12)

by ∇O(x)|x=x̃ = 0, where∇ is the gradient operator with
respect to the unknownx defined in equation (2) assuming
a global minimum is reached atx = x̃.

An efficient second order minimisation approach is em-
ployed [16], which allows to pre-compute most of the
minimization parts directly on the reference image. In this
case the unknownx is iteratively updated using a Gauss-
Newton like optimization procedure:

x = −(JTDJ)−1JTDe(x), (13)

whereT is the transposition operator,JTDJ is the robust
Gauss-Newton Hessian approximation.J is the warping Ja-
cobian matrix of dimensionn×6. D is a diagonal weighting
matrix of dimensionn × n obtained by M-estimation [12]
which rejects outliers such as occlusions and local illumina-
tion changes.
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