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Intermediary Local Consistencies
Thierry Petit1

Abstract. We propose a new definition for characterizing levels
of consistency. A perspective is to provide new tools for classifying
filtering algorithms, including incomplete algorithms based on the
semantics of constraints.

1 INTRODUCTION

A filtering algorithm associated with a constraint is complete if it
achieves generalized arc-consistency (GAC). This means that the al-
gorithm removes from domains of variables all the values which can-
not belong to at least one valid assignment satisfying the constraint.
Depending on the size of problems and the nature of constraints, it
is not always possible to enforce GAC. For instance, if a constraint
involves n = 500 variables, using a O(n3) GAC algorithm is gen-
erally not reasonable. The same remark can be made for algorithms
using too heavy data structures. In this context, constraints are as-
sociated with algorithms that enforce weaker forms of consistency.
These intermediary consistencies are not always clearly formalized.

This article provides a new generic definition for characterizing
the levels of consistency associated with constraints. We discuss
some practical examples and identify the metrics that can be used
to classify the different levels of consistency.

2 SUPPORT-DIRECTED CONSISTENCIES

Given a constraint C(X) defined on a set of variables X , a filter-
ing algorithm removes values which, given the current variable do-
mains, cannot belong to a solution satisfying the constraint. Some
filtering algorithms evaluate all the values in domains (e.g., GAC),
while some other evaluate only the bounds of each domain, e.g.,
Bounds-Consistency (BC). In both cases, the viability of a value v
in the domain D(x) of a variable x ∈ X is checked by considering
either the set of solutions of C(X) according to the current domains,
or a superset of these solutions. We call this superset a relaxation
of C(X). This relaxation can be obtained either by relaxing the con-
straint C(X) itself, or by adding “virtually” some values in domains,
for instance by considering that domains have no holes. If value v
cannot belong to at least one solution of the relaxation then it can
be removed from D(x). Such a solution is called a support. Thus,
two main notions characterize the level of consistency of a filtering
algorithm: 1. The set of checked values (either all the values in do-
mains or only the bounds). 2. The relaxation of the constraint used
to search supports for values. We represent this relaxation by a set
of constraints. This point of view leads to a new definition of local
consistency, parameterized by the relaxation. We use the notations
min(x) = min(D(x)) and max(x) = max(D(x)).
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Definition 1 Given a constraint C(X), let Y = {y1, y2, . . . , yn} be
a set of variables one-to-one mapped with X = {x1, x2, . . . , xn},
such that ∀xi ∈ X, ∀yi ∈ Y , D(xi) ⊆ D(yi). Let C =
{C1(Y1), C2(Y2), . . . , Cm(Ym)} be a set of constraints such that
Y1 ∪ Y2 . . . Ym ⊆ Y and C(Y )⇒ C1(Y1) ∧ C2(Y2) . . . Cm(Ym).
Value v ∈ D(xi) has a (C, Y )-support on C(X) if and only if
∀Cj(Yj) ∈ C, either the variable yi mapped with xi is not in Yj

or yi ∈ Yj and Cj(Yj) has a solution with yi = v.
Constraint C(X) is (C, Y )-DC ((C, Y )-Domain Consistent) if and
only if ∀xi ∈ X , ∀v ∈ D(xi), v has a (C, Y )-support on C(X).
C(X) is (C, Y )-BC ((C, Y )-Bounds Consistent) if and only if ∀xi ∈
X , min(xi) and max (xi) have a (C, Y )-support on C(X).

Definition 1 can be specialized to the usual notions of GAC, BC
and Range-Consistency (RC) [2].

Property 1 C(X) is GAC ≡ C(X) is ({C(X)}, X)-DC. Let Y be
a variable set one-to-one mapped with X , with ∀yi ∈ Y,D(yi) =
{min(xi),min(xi) + 1, . . . ,max(xi)}. C(X) is RC ≡ C(X) is
({C(Y )}, Y )-DC. C(X) is BC ≡ C(X) is ({C(Y )}, Y )-BC.

Definition 1 is not restricted to the case where all the variables in Y
are involved in constraints of C, but constraints in C use exclusively
variables derived from variables in X . Our goal is to characterize
filtering algorithms, not reformulations. We thus consider that a fil-
tering algorithm does not add new variables to the problem. Other
generic consistencies can be defined, for instance by relaxing only
a subset of variables in X , or by checking real supports (like GAC)
only for the bounds (({C(X)}, X)-BC). Furthermore, Definition 1
characterizes the level of consistency of some specialized filtering
algorithms, which are not always clearly formalized in the literature.

Example 1 Consider the constraint s =
∑

xi∈X xi. GAC is NP-
Hard.2 Conversely, enforcing GAC on

∑
xi∈X xi ≤ s is in P [14].

Therefore, a possible consistency for s =
∑

xi∈X xi is (C, Y )-DC
with Y = X ∪{s} and C = {

∑
xi∈X xi ≤ s,

∑
xi∈X xi ≥ s}. ~

In Example 1, the obtained level of consistency is equivalent to BC.
This is not the case for some other filtering algorithms of constraints
that use a similar principle of relaxation for checking supports, such
as s =

∑
xi∈X x2

i , or the filtering algorithm of Cost-regular [3].
With respect to soft global constraints [9, 6], the variable that mea-
sures a violation degree is also generally filtered separately from its
minimum value and from its maximum value [5]. Many other exam-
ples exist, some of them relax both the constraint and the variables.

Comparison with Guido Tack’s Dissertation Tack [12] pro-
posed a characterization of propagation levels. The notion of com-
pleteness of domain approximations provides a classification. This

2 Checking the satisfiability of k=
∑

xi∈X xi, where k is an integer, requires
in the general case to solve the NP-Hard Subset-sum problem [4, p. 223].



characterization also considers the case of set variables, conversely
to Definition 1. It is thus more generic. Definition 1 deals with a set of
constraints C implied by the original constraint, which corresponds
concretely to many filtering algorithms of constraints, provided by
existing solvers. By evaluating properties of the set we obtain some
new and pragmatic measures for comparing local consistencies.

3 PROPERTIES AND PERSPECTIVES
We present and discuss some metrics for classifying intermediary
local consistencies, using Definition 1.

A. Set of solutions The levels of consistency weaker than GAC
cannot be totally ordered with respect to the set of solutions of the
relaxations of C(X) considered for checking supports. These sets of
are not necessarily included one another. However, some properties
exist. Given to levels of consistency Φ1 and Φ2 applied to a constraint
C(X), we say that Φ1 ≤ Φ2 when the set of values removed by Φ1

from the domains of variables in X is included in the set of values
removed by Φ2. By construction, this relation is transitive.

Property 2 If Y ⊆ Y ′ then (C, Y ′)-DC ≤ (C, Y )-DC and (C, Y ′)-
BC ≤ (C, Y )-BC.

Proof (Sketch): The same constraints in C are checked, with larger
domains in Y ′, compared with Y . Definition 1 imposes complete
checks (that is, a value v that does not satisfies a constraint Cj(Yj) ∈
C cannot have a (C, Y )-support). The set of supports of each v ∈
D(xi) with Y is included into the set obtained with Y ′. �

With respect to a comparison related to different sets C, recall that
in Definition 1 all Cj(Yj) ∈ C are considered separately. Therefore,
the fact that the set of solutions of the constraint network defined by a
set C is strictly included in the set of solutions obtained with another
set of constraints is not sufficient, in the general case, to prove an
inclusion. We thus consider a Berge-acyclic constraint network [1].

Property 3 Given two sets of constraints C =
{C1(Y1), C2(Y2), . . . , Cm(Ym)} and C′ =
{C′

1(Y ′
1 ), C′

2(Y ′
2 ), . . . , C′

m′(Y ′
m′)}, such that Y1 ∪ Y2 . . . Ym =

Y ′
1 ∪ Y ′

2 . . . Y
′
m′ ⊆ Y , If:

C1(Y1) ∧ . . . ∧ Cm(Ym) is a Berge-acyclic constraint network,
and C1(Y1) ∧ . . . ∧ Cm(Ym)⇒ C′

1(Y ′
1 ) ∧ . . . ∧ C′

m′(Y ′
m′),

then (C′, Y )-DC ≤ (C, Y )-DC and (C′, Y )-BC ≤ (C, Y )-BC .

Proof (Sketch): The set of solutions of the network NC = C1(Y1) ∧
. . . ∧ Cm(Ym) defined by C is included in the one of C′. If NC is
Berge-acyclic then any value v supported by all Cj(Yj)’s belongs to
a solution ofNC . From Definition 1, the property holds. �

Example 2 The Alldiff(X) constraint is satisfied if and only if all
the variables in X are pairwise distinct. In this example, the set Y
is defined as in Property 1, n is the size of X and d is the max-
imum domain size. In the literature, we find some filtering algo-
rithms for Alldiff(X): GAC (({C(X)}, X)-DC) in O(n1.5d) [11].
RC (({C(Y )}, Y )-DC) in O(n2) [7]. BC (({C(Y )}, Y )-BC) in
O(n. log(n)) [10, 8]. Some constraint toolkits such as Choco have
a propagator that simulates a clique of binary constraints of differ-
ence: (C6=, X)-DC with C6= = {xi 6= xj , i ∈ {1, 2, . . . n}, j ∈
{1, 2, . . . n}, i 6= j}). Its has an O(n2) time complexity per branch
of the search tree (it only reacts on variable assignments), which
leads to an average time complexity per node in O(n). We have:
({C(Y )}, Y )-BC ≤ ({C(Y )}, Y )-DC ≤ ({C(X)}, X)-DC.

(C6=, X)-DC ≤ ({C(X)}, X)-DC.
Observe that since C6= does not corresponds to a Berge-acyclic con-
straint network, the second inclusion cannot be reversed. ~

It is possible to compose several propagators for C(X). Given two
levels of consistency Φ1 and Φ2, Φ1 ≤ Φ1 ◦Φ2 and Φ2 ≤ Φ1 ◦Φ2.

B. Time complexity Given two levels of consistency Φ1 and Φ2

applied to a constraint C(X), we say that Φ1 >� Φ2 when the
best known algorithm for achieving Φ1 has a time complexity striclty
greater than the best known algorithm for achieving Φ2. This notion
is not formal but very useful in practice to deal with large problems.

Example 3 Consider the Alldiff(X) constraint of Example 2. Like
in the example 2, the set Y is defined as in Property 1. We have:
({C(X)}, X)-DC >� ({C(Y )}, Y )-BC
({C(Y )}, Y )-DC >� ({C(Y )}, Y )-BC
and ({C(Y )}, Y )-BC >� (C6=, X)-DC. ~

Time complexity is however not always the single criterion in the
context of large problems. Some algorithms involve too complex data
structures. In some cases, domains of variables must be represented
only by their bounds, for memory reasons (trail). Thus, even when a
GAC algorithm has a reasonable time complexity, e.g., less than or
equal to O(n. log(n)), implementing a BC algorithm can be useful.

C. Solution Counting The sets of solutions of distinct relaxations
of C(X) are not necessarily comparable. Conversely, the number of
solutions of such relaxations can be ordered. Techniques for evaluat-
ing the solution counting information of constraints [13] could be an
interesting metric to classify, possibly dynamically, several levels of
consistencies characterized with Definition 1 for a given constraint.
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