
HAL Id: hal-00753926
https://hal.inria.fr/hal-00753926

Submitted on 19 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

XSS-FP: Browser Fingerprinting using HTML Parser
Quirks

Erwan Abgrall, Yves Le Traon, Martin Monperrus, Sylvain Gombault, Mario
Heiderich, Alain Ribault

To cite this version:
Erwan Abgrall, Yves Le Traon, Martin Monperrus, Sylvain Gombault, Mario Heiderich, et al.. XSS-
FP: Browser Fingerprinting using HTML Parser Quirks. [Research Report] 12888, SnT. 2012. �hal-
00753926�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49846921?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00753926
https://hal.archives-ouvertes.fr

1

XSS-FP: Browser Fingerprinting using HTML
Parser Quirks

Abgrall Erwan, Yves Le Traon, Martin Monperrus, Sylvain Gombault, Mario Heiderich and Alain Ribault

Technical Report, University of Luxembourg, 2012.

Abstract—There are many scenarios in which inferring the
type of a client browser is desirable, for instance to fight against
session stealing. This is known as browser fingerprinting. This
paper presents and evaluates a novel fingerprinting technique to
determine the exact nature (browser type and version, eg Firefox
15) of a web-browser, exploiting HTML parser quirks exercised
through XSS. Our experiments show that the exact version of a
web browser can be determined with 71% of accuracy, and that
only 6 tests are sufficient to quickly determine the exact family
a web browser belongs to.

I. INTRODUCTION

In computer security, fingerprinting consists of identifying
a system from the outside, i.e. guessing its kind and version
[1] by observing specific behaviors (passive fingerprinting),
or collecting system responses to various stimuli (active fin-
gerprinting). A common example of fingerprinting is service
fingerprinting. It consists of identifying the daemon behind
an open port of a server. For instance, a port scanner may
output that the daemon behind port 22 is not the expected
SSH server, but a SMTP daemon, instance of the software
package “Postfix”, in version 7.

OS fingerprinting is another popular kind of fingerprinting
[2]. For instance, by sending carefully forged packets to the
target, slight differences between implementations of the TCP
protocol stack enable observers to identify the stack and its
underlying operating system. Fingerprinting is used in many
situations. For instance, security engineers use it to check
whether known vulnerabilities may affect a software system
or infrastructure.

Similarly to service or OS fingerprinting, browser finger-
printing consists of identifying a browser implementation and
version. Also similarly to OS fingerprinting, there are two
kinds of browser fingerprinting. On the one hand, one may
uniquely identify a browser (see e.g. [3]), on the other hand,
one may uniquely identify a browser type, that is, identifying
the browser implementation (e.g. Firefox vs Internet Explorer)
and its version number (e.g. IE8 vs IE9). They are orthogonal
concerns: the former is important w.r.t. privacy, the second is
important w.r.t. security, and there is no direct relation between
both.

In this paper, we address the latter, the fingerprinting of
browser type and version. There are many use cases of browser
fingerprinting (see Section ??) for instance to address the
problem of credentials stealing detection. Previous work in
the field of browser fingerprinting was based on analyzing
the JavaScript behavior [4] or the network behavior [5] of a
browser. In this paper, we propose to use the behavior of the

HTML parser under specific inputs to fingerprint the type and
version of browsers. We call those particular responses HTML
parser quirks1. Those specific inputs are the same that are
used for cross-site scripting attacks. This is completely novel
browser fingerprinting technique, with key advantages: 1)
compared to network-based fingerprinting, it can be achieved
at the application level with no access to the low level network
stack. 2) it is hardly spoofable; simulating the behavior of an
HTML parser is difficult without running the parser itself. We
will give more details on these points in Section II. To the
best of our knowledge, we are the first to use HTML parser
quirks to achieve browser fingerprinting.

Our experiments show that the exact version of a web
browser out of 77 can be determined thanks to its signature.
Moreover, using classification techniques described by Hall et
al. [6], only 6 XSS tests are sufficient to determine the exact
family a web browser belongs to.

Section II further discusses the rationales of browser fin-
gerprinting and using HTML parser quirks. Section III is an
overview of the approach. The next sections describe the XSS
vector collection, and the dedicated tool we have developed
to execute the HTML parser quirks. Section VI describes
data mining classification we use to fingerprint browsers.
Section VIII discusses our fingerprinting capabilities, includ-
ing a discussion on how fingerprints can be forged. Section
IX discusses browser fingerprinting from an expert security
engineer viewpoint. Section X is a comparison against the
related work, section XI concludes the paper.

II. RATIONALES

The HTTP protocol specifies that browsers should send a
specific string, value of the HTTP request header User-Agent
(UA), for identifying themselves. In practice, all browsers do
send this header. The rationale behind this header is to offer
the server a way to infer browser capabilities and serve specific
contents to more or less advanced browsers.

Can a server trust the User-Agent header to fingerprint a
browser ? No, this value is set by the browser and it cannot
be trusted since an attacker can modify it by patching the
browser (some browsers even offer to set it as a configuration
point). The User Agent string is commonly used by exploit
kits to attack servers by embedding a malicious payload in
the user-agent header.

1The Merriam-Webster dictionary defines a quirk as a “a peculiar trait”

2

Dataset of
Browsers

Dataset of
XSS Vectors

RSnake

Cheatsheet

Shazzer

HTML Parser
Quirks

XSS
Execution

Driver

Unknown
Client Browser

Dataset of
Fingerprints (XSS

Signatures)
Browser Family
Fingerprinting

(based on Decision
Trees)

Minimum
Fingerprinting

Data

Building Optimal
Decision Tree

Browser Version
Fingerprinting

(based on
Hamming
Distance)

Data

Process

Legend:

Fig. 1: Overview of Our browser Fingerprinting Process

A. Defeating Session Stealing with Browser Fingerprinting
Session stealing means stealing a cookie or a session ID in

order to access unauthorized resources. Server-side software
is responsible to detect session stealing. This can be done
through checking whether the presented cookie or session ID
matches the HTTP user-agent header. However, as said, this
does not work if attackers are able to steal both the credentials
and the user-agent. Checking credentials with IP addresses is
not a valid way to check session stealing due to users mobility
and NAT mechanisms.

With browser fingerprinting, at any point in time, server
software can: 1) verify whether the HTTP user-agent matches
the inferred browser type (detection of UA spoofing) 2) verify
whether the inferred browser type matches the browser that
was used on login (detection of session stealing).

Beyond this key use-case, there are many other uses of
browser fingerprinting, further discussed in Section IX.

B. The Benefits of Using HTML Parser Quirks For Finger-
printing

Previous work in the field of browser fingerprinting was
based on analyzing the JavaScript behavior [4] or the network
behavior [5] of browsers. In this paper, we use the HTML
parser quirks for browser fingerprinting. HTML parser quirks
are peculiar behaviors under specific inputs. They may have
different consequences, in particular incorrect rendering or
undesired execution of JavaScript code.

The latter point is daily exploited by cross-site scripting
attacks (XSS). A cross-site scripting attack embeds an exe-
cutable malicious payload into a piece of specific HTML code.
By replacing the malicious payload by a simple binary output
telling the server whether a specific parser behavior is observed
or not, one can observe from the server-side the execution of
HTML parser quirks. For us, those execution-based quirks are
invaluable: they are testable.

Furthermore, HTML parser quirks are known. The very
active community on cross-site scripting research has produced

inventories of HTML parser quirks. This means we have tons
of HTML parser quirks to achieve browser fingerprinting.

One might think that what we call “quirks” are essentially
“bugs”. We think that this distinction is not binary. Indeed, the
root cause of some known XSS vectors can be found in the
specification itself (e.g. the HTML5 specification), that is it is
not a standard implementation bug. Consequently, we consider
that the browser behavior under particular input is a “quirk”,
whether desired or not, and whether incorrect or not.

Compared to network-based fingerprinting, HTML-based
fingerprinting can be achieved at the application level with
no access to the low level network stack. This means that an
application can use browser fingerprinting (for instance for
detecting session stealing), while remaining OS independent.
For instance, a server-side application written can still perform
browser fingerprinting independently of the application server
(Tomcat, JBoss, etc.), the Java virtual machine (IBM J9,
OpenJDK, etc.) and the OS (Windows, Linux, etc.).

Last but not least, the behavior of an HTML parser is
very complex (that’s why so many cross-site scripting attacks
exist). Hence, the fingerprint of HTML parser quirks is hard to
spoof. In other terms, if an attacker wants to deploy counter-
measures to an HTML-based fingerprinting, he has no solution
but running all browsers in parallel.

The implementation of such HTML parser checks can be
achieved through the inclusion of a small invisible iframe.
Checks can be triggered upon sensitive actions or randomly.
We also imagine web application firewalls modifying some
pages on the fly to add the signature checks based on HTML
parser quirks.

C. Recapitulation

There is a need for browser fingerprinting, since the HTTP
protocol has no means to fight against session stealing. A
technique based on the observation of HTML parser quirks is
doable at the application level, and its counter-attack is hard,
since HTML parser behavior is hardly spoofable.

3

III. OVERVIEW OF THE APPROACH

Figure 1 presents an overview of our browser fingerprinting
approach. Using quirks to fingerprint web browsers is feasible
only if these quirks are testable, in the sense that the specific
behavior of the browser quirk can be observed through testing.
This is why we build our own dataset of testable quirks. They
come from different sources: collaborative, fuzzing techniques
such as Shazzer, existing referenced vectors (see section IV-A).

Based on this set of testable XSS vectors, a framework
called XSS Test Driver performs the full test suite on different
browsers, collecting as many XSS signatures as possible.
Each signature contains attributes describing the results of
all the tests. We consider an initial set of 77 browsers,
and the corresponding signatures are referred as the raw
dataset of browser signatures. This dataset can be directly
used for fingerprinting an unknown web browser, in order to
determine (1) its exact version based on a Hamming distance
between browser signatures. This set can also be used (2) as
input for machine learning techniques in order to build an
optimized decision tree. Such a decision tree allows the quick
classification of the family (e.g. Firefox or Chrome) of an
unknown web browser according to its responses to minimum
fingerprinting data (execution of a handful of quirks instead
of thousands). It has to be noted that the overall approach can
be applied using any testable quirks. All the fingerprinting
process steps are described in the following sections.

IV. A DATASET OF HTML PARSER QUIRKS

The following subsection describes the three sources we
have used to build a significantly large collection of XSS
vectors usable for fingerprinting. These sources include static
vector libraries as well as XSS fuzz generation tools.

A. RSnake’s XSS Cheat Sheet - Legacy Vector Collection

The XSS Cheat Sheet was created by R. ‘RSnake” Hansen et
al., and provides a richresource for penetration testers and de-
velopers. It showcases an overall of 1̃00 different XSS vectors
demonstrating character and string parsing issues, especially
for legacy browsers. The resource has not been updated for
many years though; modern HTML5 and SVG based attack
vector examples are not present in this document. A beta-
version of an overworked XSS Cheat Sheet was announced in
2010, but never found its way to a public release. The lack of
updates of this document lead to community-driven projects
such the HTML5 Security Cheatsheet (H5SC).

B. HTML5 Security Cheatsheet - Community Vector Collec-
tion

The HTML5 Security Cheatsheet (H5SC) is a community
driven project that aims at documenting and categorizing
known XSS and other client-side attack vectors. The H5SC
provides a simple JSON based storage model and allows
registered and approved contributors to add new XSS vectors,
modify existing data and most importantly provide version
information on which user agents are affected by the demon-
strated attack vector. This allows security professionals and

TABLE I: Composition of the XSS database (number of
XSS vectors per source)

Rsnake Html5Sec Shazzer Total
69 163 291 523

developers to protect their applications accordingly and even
perform basic risk assessment, for instance when fixing a
vector is in conflict with required application features. The
H5SC set contains 1̃20 individual attack vectors alongside with
detailed explanations on their inner workings.

C. Shazzer - Collabrative Fuzzing for Identifying XSS Vectors

Shazzer2 is a collaborative website aiming at providing
an interface for collaboratively specifying and identifying
possible XSS vectors. Shazzer offers enumeration templates
and an internal render and storage engine. A user can for
instance define a vector template containing various different
placeholders. After starting the actual fuzzing process, the
placeholders will be iteratively replaced by the corresponding
characters and rendered in an isolated iframe to see whether
the desired effect can be accomplished with the currently
tested characters. Shazzer has been used by a large number
of security testers to determine whether certain known an un-
known parser bugs in modern user agents have been discovered
and fixed.

The set of sources of XSS vectors is summarized Table I.
For a total of 523 vectors, the main provider is Shazzer (291).
The full vector list is available at http://xss2.technomancie.net/
vectors/

V. XSS EXECUTION DRIVER

In this section we present XSS Test Driver, our framework
to automatically perform the execution of XSS vectors for
fingerprinting. We use our whole XSS vector set on a set of
browsers, building a dataset of raw browser signatures.

A. Terminology

An XSS attack consists of executing code (mostly
JavaScript) inside a browser via a website, by injecting a
content (e.g. by posting a comment on a page). The injected
content is an XSS vector. For instance a very simple XSS vec-
tor is <script>alert(’foo’);</script>. An XSS
vector can be logically decomposed of three parts:

1) The XSS vector contains one or several HTML tags and
attributes

2) The payload is a piece of JavaScript code,
3) The payload format is a special way to encode the

payload.
In the above example, the vector is composed of the script

tags, the payload is a call to function alert , and the format is
“identity” (i.e. the payload in not encoded at all).

This is a very simple example of XSS vector. More complex
XSS Vectors benefit from the ever-growing functionalities
offered by browsers to developers. Each new API or language

2see http://shazzer.co.uk/home

4

subset that is able to execute or call JavaScript code can
be turned into an XSS vector. For more information on the
richness of XSS Vector forms, refer to section VIII-B and
look at the XSS Vector sources described in IV

An important characteristic of XSS vectors is that certain
XSS structures accept payloads in very specific formats. For
instance, some XSS structures require a link to JavaScript file,
others are successful only if the payload is encoded in base64.
Such behavior is either related to a specific feature, or to a bug.

An XSS vector can also depend on :
• The character set the browser should use to decode the

HTMK
• The content type of the transmitted resource
• The HTML Doctype of the HTML Document
Since the browsers rely on those pieces of information to

decode the received data and to parse them properly, some
quirks can be triggered by playing with those parameters on
the server side (ie: sending HTML4 vectors within an HTML5
context).

B. XSS Test Environment

The test environment of an XSS vector consists of two
parts: the HTML context and the encoding. The HTML context
(that we call “Web Context”) is composed of the doctype and
generally all the HTML surrounding the vector as well as the
MIME type specified in the HTTP headers. The encoding is
the character set declared in the http headers and used in the
document.

XSS vectors can be tested in different web contexts and
with different encodings. Hence, each XSS vector must be
executed by the product of the number of contexts and the
number of encodings. As we have 523 vectors, this may yield
a combinatorial explosion if we run all possible encodings
and web contexts. In the following experiments we limit the
test set to two web contexts: quirks and html5, and to one
encoding utf-8. Thus testing 523 Vectors with 2 web context
and 1 encoding generated 1046 test cases to run. Increasing the
number of encodings tested allows using more discriminating
quirks but it is a trade off to be made during the signature
collection, since it increases the number of tests to execute.

C. Test Logic

We use the following logic to chain the tests and collect the
results:

1) Each XSS attack is served by a URL containing a
JavaScript payload encoded with the proper format.
When the URL is requested, the test is marked as SENT.

2) The payload of an XSS attack contains a specific
JavaScript validation routine (described in V-D). When
the validation mechanism is triggered (the validation
routine is executed), the successful test is marked as
PASS.

3) The server then points to a new test by redirecting the
browser using a HTTP code 302 redirect.

4) Upon completion of the test suite, SENT tests cases are
considered failed and remains with this value.

TABLE II: Examples of results of the XSS Test Driver

Attr. browser 1-1-1 1-2-1 . . . 523-2-1
Value Safari 5 1 5 NA PASS NA

Firefox 11 0 PASS SENT NA

5) If for some reason a test is skipped, or if a new
untestded vector is introduced, the test result is marked
Not Available (NA).

This test logic avoids the use of JavaScript library, and uses no
interactions with the DOM. It can be fully automated by using
a runner script opening the next test inside an iframe. Chaining
test execution can also be done manually by browsing different
tests.

D. Callback Functions : Validating JavaScript Execution

Depending on the browser JavaScript Engine, and how and
where in the DOM the JavaScript call is done, some function
might not work. The first method in XSS Test Driver generates
a JavaScript redirect of the web page to the test validation
URL. But with some vectors, this method doesn’t trigger
the expected web page redirection. it is due to some iframe
sandbox mechanisms where the JavaScript code can’t access
window.location DOM property. A cookie based execution
validation was added then, adding a cookie in the browser to
validate execution of a given test case, but it triggered security
errors on Chrome iframe sandbox with srcdoc based vectors.
A XMLHttpRequest call is also present in the test payload,
triggering a specific validation URL. But this one too was
subject to some security restrictions with recent versions of
Chrome. We eventually added a -based callback to the
payload, adding an image to the DOM with an image source
set to a validation URL delivering a green PASS verdict image.

E. Browser Instance Description

For each tested browser, XSS Test Driver provides 1 signa-
ture instance (set of attributes) describing the results for the
whole test suite representing 1046 unitary test cases computed
from the 523 base XSS vectors. Each attribute name issued
from 1 test has the same name structure giving as many
different attribute names (like 90-2-1 for example) :

• XSS vector number of our test bed: 1 to 523,
• context of execution: 1 or 2,
• context of encoding: 1.

The possible values of these attributes are :
{SENT,PASS,NA} corresponding to the test logic,
Section V-C. This set of attributes is completed with a free
text describing the browser. Table II illustrates 2 instances
extracted from the real dataset.

VI. FINGERPRINTING METHODOLOGY

This section presents the methodology we use to fingerprint
browsers using their responses when executing XSS vectors
based tests. The signature dataset provided by XSS Test Driver
is used as input.

5

A. Exact Fingerprinting Based on Hamming Distance between
Browser Signatures

Similarity measurement is used to find nearest neighbors in
a set of vectors. An efficient way of doing it is to calculate the
Hamming Distance between vectors. The Hamming Distance
evaluates similarities between 2 vectors having the same
number of dimensions, and is defined as follow: for two
vectors V1 and V2, this measure corresponds to the number of
dimensions where the element of the vector V1 differs from
the element of the vector V2.

1) XSS Browser Signature: We define the browser signature
as a vector computed from a browser instance provided by
XSS Test Driver. The size of the vector is n where n is the
number of XSS vectors in the database (see IV). As defined
in the test logic section V-C, the value of each element is in
the set: {s, p, n} where

• s corresponds to SENT
• p corresponds to PASS
• n corresponds to NA
Let us consider the following simple signatures Sb1, Sb2

and Sb3 that are obtained from executing three XSS vectors
on three web browsers b1, b2 and b3.

• Sb1 = pps
• Sb2 = pns
• Sb3 = pnp
Sb1 captures the fact that the two first XSS-vector execu-

tions are PASS and the last SENT.
To deal with browsers for which we do not have enough

significant data for fingerprinting, we define a confidence value
based on the percentage of XSS vectors the web browser
executes:

∑
(PASS|SENT)/

∑
(XSSvectors). If this value

is too low for a given browser, we cannot trust its instance.
Browsers with signature confidence above 90% are used in
this paper.

2) Modified Hamming Distance: To measure similarity
between two browser signatures, we propose a modified Ham-
ming distance (MHD) in order to ignore NA in the signature.

Our distance works as follow: given two browser signatures,
it computes the Hamming distance only on XSS results that
are s or p in both signatures (not n). The modified Hamming
distance between Sb1 and Sb2 is 0, and the MHD between
Sb1 and Sb3 is 1.

When XSS Test Driver collects a signature, we compute
the MHD between this signature and the known signatures
from the browser dataset. When two browser signatures in the
database have a MHD of 0, the fingerprint cannot distinguish
among those corresponding browsers: they are similar, mean-
ing that we may have many signatures of very close versions
e.g., Firefox 10.1.1 and Firefox 10.1.2. If there is no browser
signature in the database with a distance of 0, we consider
the nearest neighbor defined the browser signature(s) with
the smallest MHD. Having a a nearest neighbor with a large
MHD means that the browser is clearly distinguished among
the dataset.

As a complement and to evaluate how the browsers belong-
ing to a family are grouped, we calculate the Median Distance
to the Family (MDF) of the browser. As its name suggests,

MDF indicates whether a browser is close to its siblings or
not. If all browsers of a family have a low MDF, it means
that the family is cohesive and they do share the same HTML
parser behavior. We also compute the Median Distance to the
Dataset (MDD) to determine outlier browsers, those that do
not resemble any other browser.

B. Browser Family Fingerprinting using Decision Trees

Identifying the browser family with a minimum of tests is
crucial when an attacker spoofs the UA string, in order to
minimize the spoof detection time. The raw dataset produced
by XSS Test Driver is also used to validate the fingerprinting
methodology based on machine learning algorithms.

1) Classification based on Decision Trees: The classifica-
tion algorithms based on decision trees (DT) are useful in
supervised data mining since they obtain reasonable accuracy
and are relatively inexpensive to compute. DT classifiers are
based on the divide and conquer strategy to construct an
appropriate tree from a given learning set containing a set
of labeled instances, whose characteristic is to have a class
attribute. As a well known and widely used algorithm, C4.5
(developed by Quinlan [7]) generates accurate decision trees
that can be used for effective classification. We have used
J48 decision tree algorithm, a Weka [6] implementation of
C4.5. It builds a decision tree from a set of training data also
with the concept of information entropy. It uses the fact that
each attribute of the data can be used to make a decision that
splits the data into smaller subsets. Like C4.5, J48 examines
the information gain ratio (can be regarded as normalized
information gain) that results from choosing an attribute for
splitting the data.

The attribute with the highest information gain ratio is
the one used to make the decision. The decision trees are
constructed as a set of rules during learning phase. Rules
can be seen as a tree composed of nodes containing tests on
attributes and leading to leaves containing the class of the
learned instance. It is then used to predict the class of new
instances belonging to a testing set, based on the rules.

2) Labeled Browser Instance Description: XSS Test Driver
provides the initial dataset needed to fingerprint the browser
family. The chosen browser families correspond to recent
browsers: Android, Chrome, Firefox, Internet Explorer(IE),
Opera and Safari. Table III summarizes the number of tested
browsers per browser family, a subset of 72 instances. To build
the labeled dataset, we consider as attributes for classification
the P, S and N values of the XSS test execution, and we add
an attribute labeled family. This family attribute may have one
of the 6 possible values listed in table III.

Table IV presents 2 labeled instances extracted from the real
data set.

3) Building the Decision Tree: We configure Weka Ex-
plorer to use J48 classification algorithm and family as class
attribute. Firstly, We consider the whole labeled data set
containing 72 instances to train J48 classifier. The generated
DT is composed of nodes containing tests on attributes values,
until the leaf containing the class attribute filled during the
learning phase. After the training phase, we use the same data

6

TABLE III: Distribution of Browser Families

Family Instances
Android 15
Chrome 19
Firefox 15

IE (Internet Explorer) 6
Opera 6
Safari 15

TABLE IV: Example of labeled signatures

Attr. 1-1-1 1-2-1 . . . 523-2-1 family
Value N P N Safari

P S N Firefox

set to test our DT and we compare the class obtained with the
DT to the class present in the instance: a difference reveals a
misclassification. The quantity of errors of this first evaluation
gives an estimation of the classifier produced by the whole
data set regarding the class attribute family.

VII. EXPERIMENTAL RESULTS

In this section we analyze the results of our browser
fingerprinting experiments.

A. Exact Fingerprinting Results

We have applied the method described in VI-A to fingerprint
our dataset of browsers in order to see whether the resulting
fingerprints are discriminant. Tables VIII and IX (at the end of
the paper for sake of readability) present our results. The first
column lists all browsers of our dataset. The second column
indicates the nearest neighbor within the dataset according
to the Hamming distance between browser signatures. The
third column gives the distance between those two neighbors.
The fourth and fifth columns are the median distances to
the browsers of the same family (MDF) and the number of
elements in the family. The last column is the median distance
to the whole dataset (to see whether they are family or true
outliers). The results are ordered by MDF.

First, one sees that for all browsers with a MHD of 0 to
their nearest neighbor, the neighbor is a browser of the same
family with a very close version number. This confirms the
soundness of our approach.

Second, i.e. 78% of our browser dataset have a nearest
neighbor at a MHD distance higher than 0. This means that
those browsers can perfectly be discriminated and that MHD
is an appropriate distance to capture both the family and the
version information. This confirms our intuition that browser
fingerprinting using XSS vectors is very discriminant.

Interestingly, browsers 89, 25 and 27 are exotic browsers
like the ones you can find inside set top boxes or smart-tv.
Their MDD is very high, showing that MDD actually cap-
tures the originality of browser implementation. For instance,
browsers with an older code base like Konqueror are at a
huge distance from the dataset mainly composed of recent
browsers. Also, the nearest neighbor of Rekonq is Safari 5.0.6,
which makes sense since they use the same major version of
the webkit engine (534). The MDFs of each browser in the

TABLE V: MHD Fingerprinting Efficiency analysis

MHD=0 nb of browsers FP rate Well Fingerprinted
22 77 28,57% 71,42%

TABLE VI: Browser family classification results

Total number of instances 72 100.00%
Correctly classified instances 71 98.61%
Incorrectly classified instances 1 1.38%

dataset indicates its proximity with the rest of its family. The
Firefox family and the Chrome family both contains a bigger
number of elements due to the higher pace of release. Time and
differences between two major versions of Firefox or Chrome
is equivalent to minor version changes for IE or Safari in term
of release time line.

Rekonq Linux, Origin and Konqueror browsers use Webkit
as HTML parser, as also do Safari, Chrome and Android. We
can see that browsers in the same family have similar MDF
(e.g. MDF = 15 for Firefox). This shows that MDF correctly
captures clusters of related browsers.

The summary of this experiment is that if two browsers
share the same HTML parsing code base, they also share
highly similar fingerprints.

B. Browser Family Fingerprinting Results

We use the whole dataset to train and build the decision tree
presented of Figure 2. We use this tree to classify the training
set, giving the results presented in table VI. The key point of
this decision tree is that one can classify 98% of the dataset
using only 6 runs of XSS vectors.

The confusion matrix highlights the accuracy of the classi-
fication using our DT. The diagonal of the matrix counts how
many instances belonging to a class are correctly classified
in this class. One can observe that the instance incorrectly
classified belongs to Android and is classified as Chrome.
Since Chrome and Android share a significant code base, it is
logic that some instances of Android are close to some Chrome
instances.

Vectors #89, #90, #128 and #258 come from Shazzer and
use parser bugs to special characters like 0x00. Vector #397 is
specific to Gecko-based browsers and come from html5sec3.

As a first experimentation, we plan to develop this approach
as a piece of software in a web application firewall. This first
step needs further investigations to validate our decision tree
on a larger set of browsers.

C. Recapitulation

Our experiments show that the exact version of a web
browser can be determined with 71% of accuracy (within
our dataset), and that only 6 tests are sufficient to quickly
determine the exact family a web browser belongs to.

3http://html5sec.org/#15

7

397-1-1

!=PASS 89-1-1

PASS IE

!=PASS 90-2-1
PASS 128-1-1

PASS 258-1-1
!=SENT Opera

SENT Safari

!=PASS Android

!=PASS Chrome

PASS Firefox

Fig. 2: Executing only 6 XSS vectors enables us to classify the browser family with 98% precision.

VIII. DISCUSSION

A. On Time and XSS

The fact that one can determine the browser exact version
just using quirks is appealing. In particular, one can wonder
whether there is some underlying logic in the way the quirks
occur, making them predictable. Indeed, we could expect two
successive versions of a given browser to exhibit more similar
quirks than more temporally distant ones. There may be
general temporal factors explaining the discrimination power
of HTML parser quirks. One of such explanation factor could
be the evolution of JavaScript and HTML norms over time.

In this section, we investigate two research questions to bet-
ter analyze the discrimination power of quirks (at least those
provoked by our XSS vector dataset) on which we build the
fingerprinting technique. The two research questions are: RQ1)
Can we observe general trends relating the temporal distance
of two web browser instances with their exhibited quirks?
RQ2) Does the discrimination power of quirks decrease when
the versions of a given web browser family are close?

Figure 3 answers to those questions. Each plot represents a
pair of web browser instances. The X-axis value is the time
period in days of the release dates of the two browsers. The
Y-axis value is the Hamming distance between both as defined
above. What we see in this figure is that there is no general
rule of the form, the longer between two versions, the more
differences between HTML quirks. Also, HTML quirks cannot
be only related to JavaScript or HTML evolution.

This is a strong argument in favor of our approach because
it means that one can trust the fingerprinting prediction, even
if the client browser is of an unknown type.

Concerning RQ2, we go more in depth in the analysis and
consider local factors, that may be related to the development
process into a same web browser family. Usually regression
tests are run to ensure that a new version does not behave in a
different manner than the previous one, at least for its existing
functionalities. We should thus observe that two versions close
from a temporal viewpoint have nearly the same Hamming
distance. As an example, Figure 4 (Opera alone) plots every
pair of web browser versions for Opera. Surprisingly, no clear
trend appears. This also applies to other browser families.
It seems that there is no systematic development processes
explaining the apparition or desperation of HTML browser
quirks. For browser fingerprinting, this is again very valuable,
because it enables us to also discriminate between two close
browser versions. For instance, as shown in Table IX, we are
to very clearly discriminate between Safari 4.0.4 and Safari

4.0.5 (distance of 13 much higher than zero).
To conclude, it does not seem possible to relate the quirks

discrimination power to general factors, while it seems that
a potential explanation may be flaws in the development
processes. It is interesting to observe (see annexes) that the
plots are completely different from one browser family to
another.

The classification of web browsers according to quirks must
thus follow another explanation than time. We develop this
point in the next section.

B. On Kinds of XSS

In this section, we provide some explanations on the dis-
crimination power of HTML parser quirks. The arguments
come from observations done during the experiments, as well
as from the experience of two authors (junior and senior se-
curity engineers in an IT security company). These arguments
form a kind of taxonomy of XSS vectors.

a) Vendor-dependent Vectors: Some vendors (especially
Opera and Microsoft Internet Explorer) ship a large variety of
features that are unique. This includes CSS expressions, Visual
Basic Script support, CSS vendor prefixes such as -o-link
and other exclusive and often non-standard features. Gecko-
based user agents supported by an installed Java Runtime
Engine (JRE) and corresponding browser plugin support a
non-standard feature called LiveConnect. Those unique ven-
dor features often come with XSS holes (vendor dependent
vectors), and are gold for fingerprinting. For instance, vector
#397 selected by the classifier is known to work only under
Firefox family browsers.

b) Feature-dependent Vectors: Some XSS vectors de-
pend on a specific feature (yet not vendor specific). Example
are the VML-based JavaScript execution and DOM modifica-
tion vectors functioning in older versions of Microsoft Internet
Explorer (IE). Indeed, IE browser is the one supporting the
legacy VML feature (a vector graphics format predecessor of
SVG – Scalable Vector Graphics). It has to be noted as that
support for this feature started with version 5.5 and ended
with version 8. Following versions 9 and 10 are not able to
render VML-based images without further effort, document
mode switches or additionally loaded behavior files. On the
other hand, early versions of Internet Explorer are not capable
of displaying SVG images properly – while IE9 and IE10 do.

c) Version-dependent Vectors: Some quirks are really
dependent on the version, especially HTML5-based XSS vec-
tors. Partial feature support can usually be detected without

8

TABLE VII: Confusion matrix

classified as a b c d e f
a = Safari 11 0 0 0 0 0
b = Firefox 0 15 0 0 0 0
c = IE 0 0 6 0 0 0
d = Opera 0 0 0 6 0 0
e = Android 0 0 0 0 14 1
f = Chrome 0 0 0 0 0 19

large effort and allows very distinct version determination.
An example for this classification is the support for features
such as Iframe sandboxes and the srcdoc functionality. Google
Chrome and Webkit browsers implemented partial support for
it, and made many minor releases until full its implementation.
As a consequence, fingerprinting across such minor versions
among the same browser family can be accomplished.

d) Parser-dependent Vectors: Some very discriminant
vectors are only dependent on parser specificities such as han-
dling padding characters. Earlier versions of Google Chrome
for instance allowed to use non-printable characters from the
lower ASCII range to be used as padding in URL protocol
handlers. This strange behavior was later on removed and
therefore enables a precise fingerprint distinguishing minor
versions of Webkit-based browsers. Similar effects can be
observed when testing against tolerance for white-space and
line breaks. Man browsers accept exotic characters such as the
OGHAM SPACE MARK as valid white space and therefore
semantically relevant part in HTML elements and attributes.
Vectors 89,90,128 and 258 selected by the classifier belong to
this category.

e) Mutation Behavior: Many browsers have slightly
different behaviors once certain DOM properties are being
accessed and mutated: it includes the properties innerHTML
and cssText, DOM nodes and CSS objects. Depending on the
context and browser version, character sequences are being
changed, entities are being decoded and escapes removed.
Special characters and ASCII non-printable may removed or
mutated as well – and thereby provide yet another goldmine
for successful fingerprinting.

f) Recapitulation: There are many sources of HTML
parsing specificities (vendors, features, versions, etc.). The key
reason of our fingerprinting capability resides in using all of
them in a single unified framework of testable parsing quirks
of the form of XSS vectors.

C. Limitations

We now discuss the important limitations of our approach.
First, a common weakness of browser fingerprinting tools is

that responses from the browser can be forged by the attacker:
the proposed technique does not offer an exception to this
rule. To spoof a victim XSS-based fingerprint, an attacker
must either emulate the behavior of a specific web browser
or have an adaptation environment enabling the deployment
of the appropriate web browser at runtime. The economical
aspect of security is a key factor in cyber-attacks, and our
technique makes user-agent based attacks more costly for the
attacker.

Second, we have shown that our technique enables defend-
ers to precisely determine the browser family and version.
However, in reality, most users will be using IE, Chrome,
or Firefox at their latest versions. In other terms, an attacker
would just have to deploy a handful of browsers at runtime
as a counter measure to our fingerprinting approach. This
is not only a limitation, in order to defeat spoofing of our
fingerprinting technique, it is a good idea to use a ”rare”
browser, both in terms of family and version.

Third, XSS bugs get fixed over time. This may be a
limitation since our fingerprinting capabilities may decrease
over time. So far, this is not true. According to our empirical
data, until now, the rate of XSS introduction (due to new
features) is comparable to the rate of XSS removals (due to
bug fixing).

Finally, the technique we propose only considers the quirks
related to html parsing, which can be seen as a limitation. Our
technique cannot fully protect a defender but should be used
as a lightweight technique to be used in complement to more
heavy-weight techniques (see related work).

IX. OTHER USES OF BROWSER FINGERPRINTING

Whatever the fight is, when the weapons are comparable,
harming a target requires the identification of weaknesses
to adapt the attack accordingly. Conversely, defending from
an attacker also requires a similar analysis that enables an
appropriate counter-attack. Besides, both opponents will de-
velop their own protecting measures, improving the armor
they wear; history has shown many examples of such up-to-
extreme improvements (e.g. plate armors of late occidental
Middle Age).

This symmetrical aspect of a fight, with the same offensive
weapons, also occurs in nowadays web security, in which the
notion of counter-attack is becoming crucial. While an attacker
will try to identify the exact web browser his victim uses to
imagine a dedicated attack, a defender of a web site may want
to detect the exact web browser the attacker uses, improving
his ability of counter-attacking him.

In this section, we describe such sophisticated couter-
measures and malicious usage of browser fingerprinting from
the viewpoint of both security engineers and malicious attack-
ers.

A. Browser Exploit Kits

Malware propagation via browsers is done through browsers
exploit kits. This is a piece of server side software that
fingerprints client browsers in order to deliver malware. Users
are attracted to such malicious servers through advertisement
systems or compromised websites. For instance, users present-
ing a Firefox user agent receive an specific exploit based on its
version. These exploits are written in JavaScript for browser
exploits, or in plugin specific languages (VBScript, ActiveX,
Java, Flash . . .) for plugin specific exploits.

Browser exploit kits mainly use User Agent to naively
fingerprinting browsers. Browser exploit kits rely on browser
specific capabilities (DOM Tree, VBScript execution . . .). At
the time of writing, only specific JavaScript engine behaviors

9

[8] are used as an advanced browser fingerprinting mechanism,
but very few studies are available on the subject. Browser
exploit kits will implement more and more advanced browser
fingerprinting mechanisms. Studying them improve our under-
standing of these future issues for malware fighters.

B. Defense Using Client Side Honeypots
A client side honeypot is a browser like application suited

to collect browser exploits and malware samples when visiting
an website suspected to host a browser exploit kit [9]. Two
family of honeypot exists, low interaction, and high interaction
honeypot clients (or honey-clients).

Low interaction ones like honeyc [10] are made of spoofed
browser User Agent and just follow links provided by exploit
kits and collects any executable they find. These pieces of
malware are then automatically submitted to malware analysis
platforms like Anubis [11]. By spoofing various popular user
agents and iterating connections on exploit kit URL, a single
honey-client can collect a subsequent amount of browser
exploits. However, if the browser exploit kit uses advanced
browser fingerprinting, such low interactions honey-client fail
to identify malicious website and to collect malware.

To overcome this problem, high interaction honey-clients
combine are made of instrumented browsers running into
virtual machines like phoneyc [12]. “High-interaction” means
that the honey-client can respond to all kind of fingerprinting
challenges sent by the browser exploit kit (such as JavaScript
execution). This approach is very heavyweight. By knowing
browser fingerprints summarizing high interaction fingerprint-
ing challenges, low interaction client side honeypots are much
easier to build and maintain compared to high interaction
honey-clients.

C. Detection of XSS Proxification
XSS proxification consists of using a cross-site scripting

(XSS) vulnerability on a website to force the victim’s browser
to request web pages on behalf of an attacker and to send
the result back to it. In other words, it turns the victim
browser in a traditional HTTP Proxy. The beef project tun-
neling proxy features implement such an attack4. Detection
of XSS proxification with all kinds of techniques based on
TCP network shape, HTTP headers (incl. user-agent) and IP
addresses is vain, since the infected browser itself does the
request. However, browser fingerprinting can be used to detect
XSS proxification since the browser engine of the attacker is
likely to be different from the infected engine.

D. Detection of Disguised Crawlers
Malicious crawlers tend to use user-agents strings of stan-

dard client browsers. On the one hand, they don’t have to de-
clare themselves, on the other hand, this allows them to access
resources that are restricted to robots and crawlers. Detecting
disguised crawlers is especially important to ban clients that
are eating all resources up to all kinds of deny-of-service. We
think that techniques based on browser fingerprinting may be
used to detect whether a client is a bot or not.

4https://github.com/beefproject/beef/wiki/Tunneling-Proxy

X. RELATED WORK

A. Passive OS Fingerprinting (pOf)

In this paper, Lippmann et al. show how OS fingerprinting
could be a major advantage in Intrusion Detection Systems:
the use of the surface of attack of an OS permits to dismiss an
alert when a vulnerability cannot be exploited for the identified
OS [13]. We can exploit our works in the same way. The
objectives of the paper are to demonstrate 1) how pOf is used
to determine accurately OS by analyzing TCP/IP packet 2) the
evaluation of pOf tools and 3) the assessment of a new clas-
sifier using data mining and pattern classification techniques.
The main difference between pOf and active fingerprinting
is that pOf does not send frames to the targeted host but
instead analyses headers of packets exchanged during normal
traffic. Thus, pOf is less accurate than active OS fingerprinting.
Different classifier techniques are presented and evaluated: k-
nearest neighbor (KNN), binary tree, Multi-Layer Perceptrons
(MLP) and Support Vector Machine (SVM). The confidence in
a technique depends on the number of fields analyzed during
pOf.

B. Passive Fingerprinting of User Agent from Network Flow
Logs

Yen et al. use machine learning to passively fingerprint
browsers based on their network behavior [5]. The number of
TCP connections launched, number of requests and frequency,
all these parameters are dependent of the browser implemen-
tation and provide a Fingerprint that can be automatically
built out of Bayesian belief networks. The main advantage
of this technique is that it only needs coarse traffic summaries
to identify the browser family. They use two techniques to
classify browser: per-browser or generic classifiers with a
maximum difference in precision of 15%. Our technique is
more accurate since it can fingerprint browser versions

C. Fingerprinting using Browser Scripting Environment

Fioravanti proposes usage of various JavaScript features and
specific API elements to determine the browser family [14].
But these elements collected from JavaScript can be altered
by the usage of a specific plugin (like user-agent switcher in
Firefox) or by overwriting the tests results with the correct
values. The main difference of our approach is that it uses
HTML parser specificities, much harder to spoof because it
requires the same database of quirks than the fingerprinting
database, and modification in the parsing engine itself to
implement the behavior.

D. Panopticlick: Browser Uniqueness Fingerprint

In this paper, Eckersley et al. collect bits of information
from various browser properties (user agent string, screen
resolution, installed fonts and plug-ins) to fingerprint the user
browser [3]. These pieces of information are collected through
Java, Flash, and JavaScript. Using all these properties a user
can sometimes be uniquely identified. Compared to our work,
the differences are important. First, uniquely identifying a
browser instance does not necessarily imply knowing the

10

browser type and version for attacks or counter-measures.
Second, Panopticlick uses Java, Flash, and JavaScript, which
is a stronger assumption on the client browsers than ours (we
only rely on HTML). However, we think that it would be an
interesting area of future work to combine our approach with
Java, Flash, or JavaScript fingerprinting mechanisms.

E. Fingerprinting Information in JavaScript Implementation

Mowery et al. use measures from 39 performance tests to
generate a signature in the form of a 39 dimension vector
representing test timing results [4]. They have a browser family
detection rate of 98.2% in the conditions of the experiment.
But when dealing with subversions of given browsers, the
precision drops to 79.8% for major version identification. The
most interesting contribution is the underlying architecture
fingerprinting capability.

XI. CONCLUSION

In this paper, we have presented an approach to fingerprint-
ing web browsers based on XSS vectors. This approach is
able to perfectly fingerprint 78% of our browser dataset. To
fingerprint only the browser family, the recognition ratio is
98% with only six XSS vectors to be executed. We are now
working on extending our browser signature database using
Amazon’s Mechanical Turk. We also plan to mix different
browser fingerprinting techniques (JavaScript, network traffic,
etc.) to achieve even higher recognition rates.

REFERENCES

[1] R. Adhami and P. Meenen, “Fingerprinting for security,” Potentials,
IEEE, vol. 20, no. 3, pp. 33–38, 2001.

[2] L. Greenwald and T. Thomas, “Toward undetected operating system fin-
gerprinting,” in Proceedings of the first USENIX workshop on Offensive
Technologies. USENIX Association, 2007, pp. 1–10.

[3] P. Eckersley, “How unique is your web browser?” in Privacy Enhancing
Technologies. Springer, 2010, pp. 1–18.

[4] K. Mowery, D. Bogenreif, S. Yilek, and H. Shacham, “Fingerprinting
information in javascript implementations,” in Proceedings of Web,
vol. 2, 2011.

[5] T. Yen, X. Huang, F. Monrose, and M. Reiter, “Browser fingerprinting
from coarse traffic summaries: Techniques and implications,” Detection
of Intrusions and Malware, and Vulnerability Assessment, pp. 157–175,
2009.

[6] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. Witten, “The weka data mining software: an update,” ACM SIGKDD
Explorations Newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[7] J. Quinlan, C4. 5: programs for machine learning. Morgan kaufmann,
1993.

[8] M. Egele, P. Wurzinger, C. Kruegel, and E. Kirda, “Defending browsers
against drive-by downloads: Mitigating heap-spraying code injection
attacks,” Detection of Intrusions and Malware, and Vulnerability As-
sessment, pp. 88–106, 2009.

[9] N. Provos, “A virtual honeypot framework,” in Proceedings of the 13th
USENIX security symposium, vol. 132, 2004.

[10] C. Seifert, I. Welch, P. Komisarczuk et al., “Honeyc-the low-interaction
client honeypot,” Proceedings of the 2007 NZCSRCS, Waikato Univer-
sity, Hamilton, New Zealand, 2007.

[11] U. Bayer, A. Moser, C. Kruegel, and E. Kirda, “Dynamic analysis of
malicious code,” Journal in Computer Virology, vol. 2, no. 1, pp. 67–77,
2006.

[12] J. Nazario, “Phoneyc: a virtual client honeypot,” in Proceedings of the
2nd USENIX conference on Large-scale exploits and emergent threats:
botnets, spyware, worms, and more. USENIX Association, 2009, pp.
6–6.

[13] R. Lippmann, D. Fried, K. Piwowarski, and W. Streilein, “Passive
operating system identification from tcp/ip packet headers,” in Workshop
on Data Mining for Computer Security, 2003, p. 40.

[14] M. Fioravanti, “Client fingerprinting via analysis of browser scripting
environment,” in SANS Information Security Reading Room, 2010.

11

Fig. 3: Analysis of the relation between browser birth date and modified Hamminng distance.

Fig. 4: Analysis of the relation between browser birth date and modified Hamminng distance for the Opera family

12

TABLE VIII: Distance analysis using Modified Hamming Distance (first part)

Browser Nearest Neighbor (MHD) MHD MDF Fsize MDD
#89 - Origin Browser #28 - Safari 5.1.5/MacOSX 10.7.3 3 - 1 129.0
#25 - fbx v6 #8 - Safari 5.1.5 7 - 1 127.5
#27 - Rekonq Linux #40 - Safari 5.0.6 15 - 1 131.0
#11 - Konqueror 4.7.4/KHTML #46 - Chrome 3.0.182.2 52 - 1 88.5
#5 - Firefox 11.0/Win7 #39 - Firefox 11.0 0 0,5 15 67.5
#9 - Firefox 10.0/Ubuntu/Linaro #39 - Firefox 11.0 0 0,5 15 67.5
#16 - Mozilla Firefox 11.0 Ubuntu #39 - Firefox 11.0 0 0,5 15 67.5
#21 - Firefox 10 #39 - Firefox 11.0 0 0,5 15 62.5
#39 - Firefox 11.0 #59 - Mozilla Firefox 9.0 0 0,5 15 67.5
#51 - Mozilla Firefox 8.0 #39 - Firefox 11.0 0 0,5 15 67.5
#59 - Mozilla Firefox 9.0 #39 - Firefox 11.0 0 0,5 15 67.5
#60 - Mozilla Firefox 10.0 #39 - Firefox 11.0 0 0,5 15 67.5
#4 - Firefox 8.0.1 #88 - Firefox 11.0 linux 0 1 15 68.5
#88 - Firefox 11.0 linux #4 - Firefox 8.0.1 0 1 15 68.5
#62 - Chrome 12.0.742.91 #63 - Chrome 13.0.782.99 0 2 19 71.5
#63 - Chrome 13.0.782.99 #62 - Chrome 12.0.742.91 0 2 19 71.5
#58 - Chrome 10.0.648.133 #57 - Chrome 9.0.597.94 1 3 19 72.5
#1 - Chrome 18.0 #15 - Chromium 18.0 0 3,5 19 69.5
#15 - Chromium 18.0 #65 - Chrome 16 0 3,5 19 69.5
#64 - Chrome 14.0.814.0 #15 - Chromium 18.0 0 3,5 19 69.5
#65 - Chrome 16 #15 - Chromium 18.0 0 3,5 19 69.5
#70 - Chrome 17.0.963.8 #15 - Chromium 18.0 0 3,5 19 69.5
#75 - Chrome 18 / Win XP 32 #15 - Chromium 18.0 0 3,5 19 69.5
#66 - Chrome 15.0.874.106 #15 - Chromium 18.0 1 3,5 19 69.5
#56 - Chrome 8.0.552.215 #57 - Chrome 9.0.597.94 0 4 19 73.5
#57 - Chrome 9.0.597.94 #56 - Chrome 8.0.552.215 0 4 19 73.5
#83 - Firefox 11.0 #4 - Firefox 8.0.1 4 5 15 70.0
#19 - Firefox 7.0 #39 - Firefox 11.0 5 5 15 70.5
#55 - Chrome 7.0.517.41 #57 - Chrome 9.0.597.94 3 7 19 72.5
#53 - Chrome 6.0.453.1 #57 - Chrome 9.0.597.94 7 7,5 19 72.0
#96 - Chrome Nexus S #15 - Chromium 18.0 6 8,5 19 69.5
#73 - Chrome 18.0 #15 - Chromium 18.0 9 11 19 76.5
#68 - Opera 11.65 Mac OS X 10.7.3 #2 - Opera 11.11 9 14 6 124.0
#107 - IE 9 #3 - IE 9.0 9 17,5 6 69.0
#24 - IE 7.0 #86 - IE 7.0 1 21 6 76.0
#86 - IE 7.0 #24 - IE 7.0 1 21 6 77.0
#2 - Opera 11.11 #7 - Opera 11.52/Win7 3 21 6 136.0
#84 - IE 7.0 #86 - IE 7.0 4 22 6 78.0

13

TABLE IX: Distance analysis using Modified Hamming Distance (second part)

Browser nearest neighbor (MHD) MHD MDF Fsize MDD
#7 - Opera 11.52/Win7 #2 - Opera 11.11 3 24 6 134.0
#18 - Opera 11.62 #68 - Opera 11.65 Mac OS X 10.7.3 14 24 6 133.0
#31 - Firefox 3.0.17 #32 - Firefox 3.0.15 0 25 15 79.5
#32 - Firefox 3.0.15 #31 - Firefox 3.0.17 0 25 15 79.5
#29 - Firefox 3.0.6 #31 - Firefox 3.0.17 2 25 15 81.5
#85 - IE 8.0 #107 - IE 9 23 25,5 6 100.0
#95 - Android 2.3.3 #94 - ANdroid 2.3.1 13 26 15 160.5
#100 - Samsung galaxy ace #105 - Samsung Galaxy S 13 26,5 15 151.0
#104 - LG p970 #106 - Sony Xperia s 11 27 15 142.0
#94 - ANdroid 2.3.1 #95 - Android 2.3.3 13 27 15 154.5
#106 - Sony Xperia s #104 - LG p970 11 27,5 15 152.5
#101 - Samsung galaxy y #100 - Samsung Galaxy Ace 13 29 15 154.5
#105 - Samsung galaxy s #100 - Samsung Galaxy Ace 13 30 15 155.0
#48 - Chrome 4.0.223.11 #52 - Chrome 5.0.307.1 4 31 19 73.5
#52 - Chrome 5.0.307.1 #48 - Chrome 4.0.223.11 4 31 19 75.5
#98 - Samsung galaxy tab #104 - lg p970 15 31 15 157.0
#3 - IE 9.0 #107 - IE 9 9 32,5 6 85.0
#17 - Internet Explorer 9 Win 7 64b #107 - IE 9 15 35 6 80.0
#46 - Chrome 3.0.182.2 #48 - Chrome 4.0.223.11 10 37 19 64.5
#6 - Opera 12/Android 2.3.3 #68 - Opera 11.65 Mac OS X 10.7.3 27 37 6 127.0
#79 - Android 1.5 #80 - Android 1.6 19 39 15 144.0
#80 - Android 1.6 #79 - Android 1.5 19 41,5 15 147.0
#99 - HTC Desire hd #100 - Samsung Galaxy Ace 40 44,5 15 151.5
#82 - Android 2.1 #95 - Android 2.3.3 38 47 15 158.5
#37 - Opera 10.6 #2 - Opera 11.11 41 49 6 127.0
#92 - Safari 3.2.1 #91 - Safari 3.1.2 1 54 11 149.0
#91 - Safari 3.1.2 #92 - Safari 3.2.1 1 56,5 11 148.0
#69 - Safari 4.0.4 #90 - Safari 4.0.5 13 60,5 11 148.5
#81 - Safari 5.0.5 #69 - Safari 4.0.4 20 64,5 11 152.5
#40 - Safari 5.0.6 #8 - Safari 5.1.5 9 65 11 126.0
#90 - Safari 4.0.5 #69 - Safari 4.0.4 13 65,5 11 157.0
#28 - Safari 5.1.5/MacOSX 10.7.3 #89 - Origin Browser 3 68 11 132.0
#8 - Safari 5.1.5 #25 - fbx v6 7 68,5 11 121.5
#87 - Safari iPhone #40 - Safari 5.0.6 25 74 11 138.0
#23 - Safari 5 Windows 7 64b #8 - Safari 5.1.5 19 75 11 119.5
#103 - Android 3.0 #28 - Safari 5.1.5/MacOSX 10.7.3 21 78 15 135.0
#93 - Safari 3.0.4 #92 - Safari 3.2.1 41 81,5 11 181.0
#74 - Samsung GT-S5570 Android #11 - Konqueror 4.7.4/KHTML 116 139 15 137.5
#97 - Google Samsung Nexus #96 - Chrome Nexus S 10 151,5 15 69.5

