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Abstract. The problem of finding and updating shortest paths in dis-
tributed networks is considered crucial in today’s practical applications.
In the recent past, there has been a renewed interest in devising new effi-
cient distance-vector algorithms as an attractive alternative to link-state
solutions for large-scale Ethernet networks, in which scalability and reli-
ability are key issues or the nodes can have limited storage capabilities.
In this paper we present Distributed Computation Pruning (DCP), a new
technique, which can be combined with every distance-vector routing
algorithm based on shortest paths, allowing to reduce the total number
of messages sent by that algorithm and its space occupancy per node. To
check its effectiveness, we combined DCP with DUAL (Diffuse Update
ALgorithm), one of the most popular distance-vector algorithm in the
literature, which is part of CISCO’s widely used EIGRP protocol, and
with the recently introduced LFR (Loop Free Routing) which has been
shown to have good performances on real networks. We give experimental
evidence that these combinations lead to a significant gain both in terms
of number of messages sent and memory requirements per node.

1 Introduction

The problem of computing and updating shortest paths in a distributed
network whose topology dynamically changes over the time is a core
functionality of today’s communication networks. This problem has been
widely studied in the literature, and the solutions found are classified as
distance-vector and link-state.

Distance-vector algorithms require that a node knows the distance
from each of its neighbors to every destination and stores them in a

⋆ Support for the IPv4 Routed/24 Topology Dataset is provided by National Science
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data structure called routing table; a node uses its own routing table to
compute the distance and the next node in the shortest path to each
destination. Most of the known distance-vector solutions (see e.g. [?,?,?])
are based on the classical Distributed Bellman-Ford method (DBF), origi-
nally introduced in the Arpanet [?], which is still used in real networks and
implemented in the RIP protocol [?]. DBF has been shown to converge
to the correct distances if the link weights stabilize and all cycles have
positive lengths [?]. However, the convergence can be very slow (possibly
infinite) due to the well-known looping and count-to-infinity phenomena.

Link-state algorithms, as for example the Open Shortest Path First
(OSPF) protocol widely used in the Internet [?], require that a node
knows the entire network topology, to compute its distance to any desti-
nation, usually running the centralized Dijkstra’s algorithm, thus requir-
ing quadratic space per node. Link-state algorithms are free of looping,
however each node needs to receive and store up-to-date information on
the entire network topology after a change. This is achieved by broad-
casting each change of the network topology to all nodes [?] and by using
a centralized algorithm for dynamic shortest paths as for example that
in [?].

Related works. In the last years, there has been a renewed interest
in devising new efficient light-weight distributed shortest paths solutions
for large-scale Ethernet networks (see, e.g., [?,?,?,?,?,?]), where distance-
vector algorithms seem to be an attractive alternative to link-state solu-
tions when scalability and reliability are key issues or when the memory
power of the nodes of the network is limited. Notwithstanding this in-
creasing interest, the most important distance vector algorithm is still
DUAL (Diffuse Update ALgorithm) [?], which is free of looping and is
part of CISCO’s widely used EIGRP protocol, although it requires a quite
big space occupancy per node. Another distance vector algorithm, named
LFR (Loop Free Routing), has been recently proposed in [?]. Compared
with DUAL, LFR has the same theoretical message complexity but it
uses an amount of data structures per node which is much smaller than
that of DUAL. Moreover, it has been experimentally shown to be very
effective in terms of both messages sent and memory requirements per
node in some real-world networks.

Recently, in [?] a general strategy named DLP (Distributed Leaf
Pruning) has been introduced which can be combined with every distance
vector algorithm with the aim of reducing the number of messages sent by
that algorithm. In particular, DLP is able to avoid any distributed com-
putation involving degree-one nodes. In [?] the effectiveness of DLP has



been confirmed by combining it with DUAL and by running experiments
on real-world and artificial instances.

Results of the paper. In this paper, we provide a new technique,
named Distributed Computation Pruning (DCP), which is a generaliza-
tion of DLP and can be combined with every distance-vector algorithm
with the aim of overcoming some of their main limitations in real-world
networks (high number of messages sent, high space occupancy per node,
low scalability, poor convergence). DCP has been designed to be efficient
mainly in networks following a power-law node degree distribution, which
from now on will be referred as power-law networks. The main idea un-
derlying DCP rely on the fact that a power-law network with n nodes
typically has average node degree much smaller than n and a high number
of nodes with small degree (less than 3). Nodes with small degree often
do not provide any useful information for the distributed computation
of shortest paths, that is there are many topological situations in which
these nodes should neither perform nor be involved in any kind of dis-
tributed computation, as their shortest paths depend on those of higher
degree nodes.

In order to check the effectiveness of DCP, we combined it with
DUAL and LFR by obtaining two new algorithms named DUAL-DCP

and LFR-DCP, respectively. Then, we implemented the two new algo-
rithms in the OMNeT++ simulation environment [?], a network simula-
tor which is widely used in the literature. We also implemented DUAL,
LFR, DUAL-DLP and LFR-DLP, where the last two algorithms are
the combination of DUAL and LFR with DLP [?]. As input to the al-
gorithms, we considered instances of power-law networks similar to those
used in [?] and [?], that is the Internet topologies of the CAIDA IPv4
topology dataset [?] (CAIDA, Cooperative Association for Internet Data
Analysis, is an association which provides data and tools for the analysis
of the Internet infrastructure) and the random topologies generated by
the Barabási-Albert algorithm [?].

The results of our experiments can be summarized as follows: the com-
bination of DUAL and LFR with DCP provides a huge improvement in
the number of messages sent with respect to DUAL and LFR, respec-
tively. In particular, on the CAIDA instances, the number of messages
sent by DUAL-DCP is always between 3% and 16% that of DUAL,
while the number of messages sent by LFR-DCP is always between 10%
and 26% that of LFR. The gain is significant also with respect to DUAL-
DLP and LFR-DLP. In particular, DUAL-DCP sends a number of
messages which is between 11% and 40% that of DUAL-DLP, while



LFR-DCP sends a number of messages which is between 21% and 58%
that of LFR-DLP. We observed also an improvement in the maximum
space occupancy per node of DUAL-DCP and LFR-DCP, and in the
average space occupancy per node of DUAL-DCP. This is due to the
fact that nodes with small degree do not need to store some of the data
structures implemented by DUAL and LFR, respectively. We obtained
similar results also for the Barabási-Albert instances.

2 Preliminaries

We consider a network made of processors linked through communication
channels that exchange data using a message passing model, in which:
each processor can send messages only to its neighbors; messages are
delivered to their destination within a finite delay but they might be
delivered out of order; there is no shared memory among the nodes; the
system is asynchronous, that is, a sender of a message does not wait
for the receiver to be ready to receive the message. We are interested in
the practical case of networks whose topologies dynamically change over
the time due to update operations on the edges (weight increase, weight
decrease, insert, delete).

Graph notation. We represent a network by an undirected weighted
graph G = (V,E,w), where V is a finite set of n nodes, one for each
processor, E is a finite set of m edges, one for each communication chan-
nel, and w is a weight function w : E → R

+ that assigns to each edge
a real value representing the optimization parameter associated to the
corresponding channel. An edge in E that links nodes u, v ∈ V is de-
noted as {u, v}. Given v ∈ V , N(v) denotes the set of neighbors of v,
and deg(v) = |N(v)| denotes the degree of v. The maximum degree of
the nodes in G is denoted by maxdeg. A path P in G between nodes
u and v is denoted as P = {u, ..., v}. The weight of P , denoted as
w(P ) is the sum of the weights of the edges in P . A shortest path be-
tween nodes u and v is a path from u to v with the minimum weight.
The distance d(u, v) from u to v is the weight of a shortest path from
u to v. Given two nodes u, v ∈ V , the via from u to v is the set of
neighbors of u that belong to a shortest path from u to v. Formally:
via(u, v) ≡ {z ∈ N(u) | d(u, v) = w(u, z) + d(z, v)}. Given a time t, we
denote as wt(), dt(), and viat() the edge weight, the distance, and the
via at time t, respectively. We denote a sequence of update operations
on the edges of G by C = (c1, c2, ..., ck). Assuming G0 ≡ G, we denote
as Gi, 0 ≤ i ≤ k, the graph obtained by applying ci to Gi−1. We con-



sider the case that operation ci either increases or decreases the weight
of an existing edge in Gi. The extension to delete and insert operations
is straightforward.

Distance-vector algorithms. Given a graph G = (V,E,w), distance-
vector routing algorithms based on shortest-paths usually share a set of
common features. In detail, a generic node v of G: (i) knows the identity
of every other node of G, the identity of all its neighbors and the weights
of the edges incident to it; (ii) maintains and updates its own routing ta-
ble that has one entry for each s ∈ V , which consists of at least two fields:
D[v, s], the estimated distance between v and s, and VIA[v, s], the neighbor
used to forward data from v to s; (iii) handles edge weight increases and
decreases either by a single procedure (see, e.g., [?]), which we denote as
WeightChange, or separately (see, e.g., [?,?]) by two procedures, which
we denote as WeightIncrease and WeightDecrease; (iv) asks infor-
mation to its neighbors through a message denoted as query, receives
replies by them through a message denoted as reply. If the routing infor-
mation on a node changes, a distance vector algorithm propagates such
a variation as follows:

– if v is performing WeightChange, then it sends to its neighbors a
message, from now on denoted as update; a node that receives this
kind of message executes a procedure named Update;

– if v is performing WeightIncrease or WeightDecrease, then it
sends to its neighbors message increase or decrease, resp.; a node that
receives increase/decrease executes a procedure named Increase/Decrease,
respectively.

Power-Law networks. Power-law networks are very important in prac-
tice and includes many of the currently implemented communication in-
frastructures, like the Internet, the World Wide Web, some social net-
works, and so on [?]. Practical examples of power-law networks are the
Internet topologies of the CAIDA IPv4 topology dataset [?]. The CAIDA
dataset is collected by a globally distributed set of monitors. The moni-
tors collect data by sending probe messages continuously to destination IP
addresses. Destinations are selected randomly from each routed IPv4/24
prefix on the Internet such that a random address in each prefix is probed
approximately every 48 hours. The current prefix list includes approxi-
mately 7.4 million prefixes. For each destination selected, the path from
the source monitor to the destination is collected, in particular, data col-
lected for each path probed includes the set of IP addresses of the hops
which form the path and the Round Trip Times (RTT) of both inter-
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Fig. 1: Power-law node degree distribution of a CAIDA graph with 8000
nodes and 11141 edges

mediate hops and the destination. In Fig. 1 we report the node degree
distributions of a CAIDA network.

3 Dynamic scenarios

In this section, we introduce some preliminary definitions that are useful
to capture the possible dynamic scenarios typical of power-law networks
and we show some properties of shortest paths in these scenarios. Given
an undirected weighted graph G = (V,E,w), we classify the nodes of G
with respect to their degree as follows. A node v ∈ V is:

– central if deg(v) ≥ 3:
– peripheral if deg(v) = 1;
– semiperipheral if deg(v) = 2.

An edge {u, v} of G is:

– central if both u and v are central;
– peripheral if either u or v is peripheral;
– semiperipheral if either u or v is semiperipheral and neither of them

is peripheral.

A path P = {v0, v1, ..., vj−1} in G is:

– central if it is made only of central edges;
– peripheral if it contains exactly one peripheral edge and exactly one

central node; the unique central node of P is called owner of P ;
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Fig. 2: A graph G and its corresponding nodes classification.

– semiperipheral if it is formed only by semiperipheral edges. If v0 and
vj−1 are two distinct central nodes, then they are called semiowners
of P . If v0 ≡ vj−1, then P is a semiperipheral cycle, and v0 ≡ vj−1 is
called the cycleowner of P .

In Fig. 2 we report an example of a graph G and its nodes classifi-
cation. Central nodes are drawn in black while the non-central ones are
drawn in white. The path {u, j, v} is a central path, the path {v, p1, p2, p3}
is a peripheral path whose owner is v, the path {u, sp1, sp2, sp3, v} is
a semiperipheral path whose semiowners are u and v, while the path
{u, c1, c2, c3, c4, u} is a semiperipheral cycle whose cycleowner is u.

The following lemmata introduce some basic relationships between
central and non-central shortest paths of the network.

Lemma 1 (Peripheral shortest paths). Given a graph G = (V,E,w),
let P = {v, p1, ..., pj−1} be a peripheral path of G whose owner is node v,
and let P ′ = {v, p1, ..., pi}, 1 ≤ i ≤ j − 1, be a sub-path of P containing
v. Then, for each x ∈ V \ {p1, ..., pj−1}, d(x, pi) = d(x, v) + w(P ′).

Proof. Let us assume, by contradiction, that d(x, pi) 6= d(x, v) + w(P ′).
Then, two cases may arise: d(x, pi) > d(x, v)+w(P ′) or d(x, pi) < d(x, v)+
w(P ′). In the first case, it follows that d(x, pi) is not a distance, which is a
contradiction. In the second case, it follows that there must exist at least
two different paths with different weights from x to pi, which is again a
contradiction as pi belongs to a peripheral path and P ′ is the shortest
path between v and pi in G. ⊓⊔

Lemma 2 (Semi-peripheral shortest paths). Given a graph G =
(V,E,w), let S = {u, sp1, ..., spj−2, v} be a semiperipheral path of G whose



semiowners are nodes u and v, and let S′ = {u, sp1, ..., spi}, 1 ≤ i ≤
j − 2, and S′′ = {spi, ..., spj−2, v} be two sub-paths of S, containing u

and v, respectively. Then, for each x ∈ V \ {sp1, ..., spj−2}, d(x, spi) =
min{d(x, u) + w(S′), d(x, v) + w(S′′)}.

Proof. By contradiction, assume that d(x, spi) 6= min{d(x, u)+w(S′), d(x, v)+
w(S′′)}. Two cases may occur: d(x, spi) > min{d(x, u) + w(S′), d(x, v) +
w(S′′)} or d(x, spi) < min{d(x, u) + w(S′), d(x, v) + w(S′′)}. In the first
case, it follows that d(x, spi) is not a distance, which is a contradiction.
In the second case, it follows that there must exist a third different path
from x to spi, with different weight, which is a contradiction, as spi is a
semiperipheral node. ⊓⊔

Lemma 3 (Semi-peripheral cycle shortest paths). Given a graph
G = (V,E,w), let C = {u, c1, ..., cj−1, u} be a semiperipheral cycle of
G whose cycleowner is node u, and let C ′ = {u, c1, ..., ci} and C ′′ =
{ci, ..., cj−1, u}, 1 ≤ i ≤ j − 1, be two sub-paths of C. Then, for each
x ∈ V \ {c1, ..., cj−1}, d(x, ci) = min{d(x, u) + w(C ′), d(x, u) + w(C ′′)}.

Proof. The proof is similar to that of Lemma 2 ⊓⊔

Some useful additional relationships can be derived introducing time
instants in the above Lemmata. In particular, by Lemma 1 we know that,
if between the time instants ti and ti+1 the weight of the edge {p1, p2} be-
tween two nodes belonging to a peripheral path P = {v, ..., p1, p2, ..., pj−1}
changes, that is wti(p1, p2) 6= wti+1(p1, p2), then for each x ∈ V that does
not belong to P , the distance from p1 to x does not change, while the
distance from p2 to x changes as follows:

dti+1(p2, x) = dti(p2, x) + wti+1(p1, p2)− wti(p1, p2) (1)

By Lemma 2 we know that, if between the time instants ti and ti+1 the
weight of the edge {sp1, sp2} between two nodes belonging to a semipe-
ripheral path S = {u, ..., sp1, sp2, ..., v} changes, that is wti(sp1, sp2) 6=
wti+1(sp1, sp2), then for each x ∈ V , both the distances from sp1 to x and
from sp2 to x change as follows:

dti+1(sp1, x) = min
z∈N(sp1)

{dti+1(z, x) + wti+1(sp1, z)} (2)

dti+1(sp2, x) = min
z∈N(sp2)

{dti+1(z, x) + wti+1(sp2, z)} (3)

Let us assume that, between ti and ti+1, the weight of the edge
{c1, c2} between two nodes belonging to a semiperipheral cycle C =



{u, ..., c0, c1, c2, c3, ..., u} changes, that is wti(c1, c2) 6= wti+1(c1, c2). If
we denote as C0 = (u, ..., c0, c1), C1 = (c1, c2, ..., u), C2(u, ..., c1, c2) and
C3 = (c2, c3, ..., u) then by Lemma 3, for each x ∈ V , the distances from
c1 to x and from c2 to x change as follows:

dti+1(c1, x) = dti(x, u) + min{
∑

{l,q}∈C0

wti+1(l, q),
∑

{l,q}∈C1

wti+1(l, q)} (4)

dti+1(c2, x) = dti(x, u) + min{
∑

{l,q}∈C2

wti+1(l, q),
∑

{l,q}∈C3

wti+1(l, q)} (5)

If the distance between a generic node x ∈ V and a central node
c changes between the time instants ti and ti+1 (that is, dti+1(x, c) 6=
dti(x, c)), then the following relationships hold:

– by Lemma 1, for each peripheral path P = {c, ..., p, ..., pj−1} with
owner c, and for each p ∈ P :

dti+1(x, p) = dti(x, p) + dti+1(x, c)− dti(x, c), (6)

– by Lemma 2, for each semiperipheral path S = {c, ..., sp, ..., d} with
semiowners c and d and for each sp ∈ S such that c belongs to the
shortest path from sp to x at time ti, if we denote as D = (d, ..., sp)
the sub-path of S from d to sp), then:

dti+1(x, sp) = min{dti+1(x, sp) + dti+1(x, c)− dti(x, c) , dti(x, d) +
∑

{l,q}∈D

wti(l, q)}(7)

– by Lemma 3, for each cyclic path C = {c, c1, ..., c, ..., cj−1, c} with
cycleowner c, and for each c ∈ C:

dti+1(x, c) = dti(x, c) + dti+1(x, c)− dti(x, c), (8)

4 The new technique

Distributed Computation Pruning (DCP) has been designed to be effi-
cient mainly in power-law networks, by forcing the distributed computa-
tion to be carried out only by the central nodes, which are few in prac-
tice. The non-central nodes, which are the great majority in power-law
networks, receive updates about routing information passively from the
respective owners, without starting any kind of distributed computation.
Then, the larger is the set of non-central nodes of the network, the bigger



is the improvement in the pruning of the distributed computation and,
consequently, in the global number of messages sent.

Data structures. Given a generic distance-vector algorithm A, DCP

requires that a generic node of G stores some additional information with
respect to those required by A. In particular, a node v needs to store
and update information about non-central paths of G. To this aim, v
maintains a data structure called ChainPath, denoted as CHPv, which is
an array containing one entry CHPv[s], for each central node s. CHPv[s]
stores the list of all edges, with the corresponding weight, belonging to
the non-central paths containing s.

A central node is obviously not present in any list of CHPv. A pe-
ripheral node is present in exactly one list CHPv[s], where s ∈ V is its
owner. A semi-peripheral node is present in exactly two lists CHPv[v0] and
CHPv[vj−1], if it belongs to a semi-peripheral path (v0 and vj−1 are its
semi-owners), while it is present in a single list CHPv[v0], if it belongs to a
semi-peripheral cycle (v0 is its cycle-owner). The space occupancy over-
head per node due to ChainPath can be quantified using the following
observations:

– the ChainPath contains at most as many entries as the number of
the central nodes;

– the sum of the sizes of all the lists in the ChainPath is twice the
number of non-central edges of G in the worst case;

– the number of non-central edges of G is O(n), as they belong to paths
in which every node has degree at most two.

Hence, the space overhead per node due to CHPv is O(n). Note that,
despite the overhead due to the ChainPath data structure, the use of
DCP can induce a decrease in the space occupancy per node required by
A for the following observations: (i) in most of the cases nodes do not ask
and do not need to store information received from non-central nodes;
(ii) computations which involves the whole network are performed only
with respect to central destinations. In Section 5 we will experimentally
confirm this behavior.

Distributed Computation Pruning. The combination of DCP with a
distance vector algorithmA induces a new algorithm denoted asA-DCP.
The behavior of A-DCP can be summarized as follows. While in a classic
routing algorithm every node performs the same code thus having the
same behavior, in A-DCP central and non-central nodes have different
behaviors. In particular, central nodes detect changes concerning all kind



of edges, while semiperipheral, peripheral and cyclic nodes detect changes
concerning only semiperipheral, peripheral and cyclic edges, respectively.

If the weight of a central edge {u, v} changes, then node u (v, resp.)
performs the procedure provided by A for the distributed computation of
the shortest paths, only with respect to central nodes. During this compu-
tation, if u (v) needs information by its neighbors, it asks only to central
neighbors or, if u (v) is the semiowner of one or more semiperipheral
paths, it asks information also to the other semiowner of each semipe-
ripheral path, by means of a strategy we called Mod-DBF. In detail,
node u (v) sends to each semiperipheral neighbor a queryDBF message,
whose aim is to traverse the semiperipheral path, in order to get infor-
mation by the other semiowner. The queryDBF message contains just
one field, the source object of the computation. A semiperipheral node,
which receives a queryDBF message from one of its two neighbors, sim-
ply performs a store-and-forward step and sends a queryDBF message to
the other neighbor. A central node, which receives a queryDBF message,
simply replies the information that queryDBF is asking for. Once u (v)
has updated its own routing information, it propagates the variation to
all its neighbors through the update, increase or decrease messages of A.
When a generic node x receives an update, increase or decrease message,
it stores the current value of D[x, s] in a temporary variable.

Now, if x is a central node, then it handles the change and updates
its routing information toward s, by using the proper procedure of A
(Update, Increase, or Decrease) and propagates the new informa-
tion to its neighbors. Otherwise, if x is a peripheral, semiperipheral or
cyclic node, it handles the change and updates its routing information
toward s by using Lemmata 1–3, and the data provided by its owner,
semiowner and cycleowner, respectively. At the end, x verifies whether
the routing table entry of s is changed or not and, in the affermative
case, it updates the routing information about the non-central neighbors
of s, if they exist, by implementing Equations 6–8. Note that, node x

uses the data contained in CHP in order to properly update its routing
information towards the non-central nodes of s, if they exist.

If a weight change occurs on a peripheral edge {u, v}, then nodes u

and v both send a p change(u, v, w(u, v)) message to each of their neigh-
bors. When a generic node x receives message p change, it first verifies
whether the update has been already processed or not, by comparing the
new value of w(u, v) with the one stored in its CHP. In the first case the
message is discarded. Otherwise, node x updates its CHP with the updated
value of w(u, v) and its routing information by using Equation 1. Then,



it propagates the change by a flooding algorithm to forward the message
over the network.

If the weight of a semiperipheral edge {u, v} changes, then node u (v
resp.) sends two kind of messages: a sp change(u, v, w(u, v)), to each of
its owners, and a sp update(s, D[u, s]) (sp update(s, D[v, s])) to v (u), for
each s such that VIA[u, s] 6= v (VIA[v, s] 6= u). When a generic node x

receives message sp change, it first verifies whether the update has been
already processed or not, by comparing the new value of w(u, v) with the
one stored in its CHP. In the first case the message is discarded. Otherwise,
node x simply updates its CHP with the updated value of w(u, v). When a
generic node x receives a sp update(s, D[u, s]) message from a neighbor u,
two cases can occur. If x is a central node, it simply performs procedure
update of A. Otherwise, it updates routing information towards s by
using Equations 2–3. Note that, in this case, node x uses the information
contained in CHP in order to verify whether it belongs or not to the same
semiperipheral path of s and to properly update its routing information.

If the weight of a cyclic edge {u, v} changes, nodes u and v both
send a cy update(u, v, w(u, v)) message to each of their neighbors. When
a generic node x receives message cy update, it first verifies whether the
update has been already processed or not, by comparing the new value
of w(u, v) with the one stored in its CHP. In the first case the message
is discarded. Otherwise, node x updates its CHP with the updated value
of w(u, v) and its routing information by using Equations 4–5. Then, it
propagates the change by a flooding algorithm to forward the message
over the network.

5 Experimental analysis

In this section we report the results of our experimental study on DUAL,
LFR, DUAL-DLP, LFR-DLP, DUAL-DCP and LFR-DCP. Our ex-
periments have been performed on a workstation equipped with a Quad-
core 3.60 GHz Intel Xeon X5687 processor, with 12MB of internal cache
and 24 GB of main memory, and consist of simulations within the OM-
NeT++ 4.0p1 environment [?]. The programs have been compiled with
GNU g++ compiler 4.4.3 under Linux (Kernel 2.6.32).

Executed tests. For the experiments we used the power-law networks
of the CAIDA IPv4 topology dataset [?]. We parsed the files provided by
CAIDA to obtain a weighted undirected graph, denoted as GIP , where a
node represents an IP address in the dataset (both source/destination
hosts and intermediate hops), edges represent links among hops and



weights are given by Round Trip Times. As the graph GIP consists of
almost 35000 nodes, we could not use it for the experiments, as the
amount of memory required to store the routing tables of all the nodes is
O(n2 ·maxdeg) for DUAL. Hence, we performed our tests on connected
subgraphs of GIP , with a variable number of nodes and edges, induced
by the settled nodes of a breadth first search starting from a node taken
at random. We denoted a h nodes subgraph of GIP with GIP−h. We gen-
erated a set of different tests, each test consists of a subgraph of GIP

and a set of k edge updates, where k assumes values in {5, 10, . . . , 200}.
An edge update consists of multiplying the weight of a random selected
edge by a percentage value randomly chosen in [50%, 150%]. For each
test configuration (a graph with a fixed value of k) we performed 5 differ-
ent experiments (for a total amount of 200 runs) and we report average
values.

Analysis. We ran simulations on CAIDA instances with different num-
ber of nodes n ∈ {1200, 5000, 8000}. The results of our experiments on
the different instances are similar, hence we report those on the bigger
instances, which has 8000 nodes and 11141 edges.

In particular, in Figures 3(left) and 3(right) we report the number of
messages sent by DUAL, DUAL-DLP and DUAL-DCP and by LFR,
LFR-DLP and LFR-DCP, respectively, onGIP−8000. Notice that,GIP−8000

has average node degree equal to 2.8, a percentage of degree 1 nodes ap-
proximately equal to 38.5%, and a percentage of degree 2 nodes approxi-
mately equal to 33%. The figures show that the combinations of DUAL

and LFR with DCP provide a huge improvement in the global number
of messages sent. The gain is significant also with respect to DUAL-DLP

and LFR-DLP. In the tests of Fig. 3(left) the ratio between the number of
messages sent by DUAL-DCP and DUAL is within 0.03 and 0.16 which
means that DUAL-DCP sends a number of messages which is between
3% and 16% that of DUAL. Similarly, the ratio between the number of
messages sent by DUAL-DCP and DUAL-DLP is within 0.11 and 0.40.
In the tests of Fig. 3(right) the ratio between the number of messages
sent by LFR-DCP and LFR is within 0.10 and 0.26 which means that
the number of messages sent by LFR-DCP is always between 10% and
26% that of LFR. Similarly, the ratio between the number of messages
sent by LFR-DCP and LFR-DLP is within 0.21 and 0.58.

To conclude our analysis, we consider the space occupancy per node of
each algorithm. The results are summarized in Table 1 where we report
the maximum and the average space occupancy per node, in Bytes, of
each algorithm on GIP−8000. We also report the ratio between the space
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Fig. 3: Number of messages sent by DUAL, DUAL-DLP and DUAL-
DCP (left) and by LFR, LFR-DLP and LFR-DCP (right) on GIP−8000.

occupancy per node of the algorithms integrating DLP and DCP and
that of the original algorithms, for each test instance. Note that, since the
space occupancy per node of LFR, LFR-DLP and LFR-DCP depends
on the number of weight change operations, we show median values for
each of these algorithms.

Our experiments show that the use of DCP induces, in most of the
cases, a clear improvement also in the space requirements per node. In par-
ticular, DUAL-DCP (LFR-DCP) requires a maximum space occupancy
per node which is 0.30 (0.72) and 0.29 (0.83) times that of DUAL (LFR)
in GIP−8000 and GBA−8000, respectively. Notice that, the improvement is
more evident in the case of DUAL, as its maximum space occupancy
per node is by far higher than that of LFR. Concerning DUAL, this be-
havior is confirmed also in the average case, where DUAL-DCP requires
0.81 and 0.92 times the average space occupancy per node of DUAL, in
GIP−8000 and GBA−8000, respectively. On the contrary, our data show that
the average space occupancy per node of LFR-DCP is slightly greater
than that of LFR and that the use of DCP induces an overhead in the
average space occupancy per node which is equal to 53% and 77%, in
GIP−8000 and GBA−8000, respectively. This is due to the fact that the av-
erage space occupancy of LFR is quite low by itself and that, in this case,
the space occupancy overhead needed to store the ChainPath is greater
than the space occupancy reduction induced by the use of DCP. As a
final remark, notice that, the use of DCP represents an improvement in
the maximum space occupancy per node also with respect to the use of
DLP (See Table 1).



Graph Algorithm
MAX AVG

Bytes Ratio Bytes Ratio

GIP−8000

DUAL 8 320 000 1 311 410 1
DUAL-DLP 5 161 984 0.62 240 754 0.77
DUAL-DCP 2 517 680 0.30 252 625 0.81

GIP−8000

LFR 549 170 1 192 871 1
LFR-DLP 421 862 0.77 204 675 1.06
LFR-DCP 392 658 0.72 295 930 1.53

Table 1: Space occupancy per node of the implemented algorithms.
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16. S. Ray, R. Guérin, K.-W. Kwong, and R. Sofia. Always acyclic distributed path

computation. IEEE/ACM Trans. on Networking, 18(1):307–319, 2010.



17. E. C. Rosen. The updating protocol of arpanet’s new routing algorithm. Computer
Networks, 4:11–19, 1980.

18. N. Yao, E. Gao, Y. Qin, and H. Zhang. Rd: Reducing message overhead in DUAL.
In Proceedings 1st International Conference on Network Infrastructure and Digital
Content (IC-NIDC09), pages 270–274. IEEE Press, 2009.

19. C. Zhao, Y. Liu, and K. Liu. A more efficient diffusing update algorithm for
loop-free routing. In 5th International Conference on Wireless Communications,
Networking and Mobile Computing (WiCom09), pages 1–4. IEEE Press, 2009.


