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Spectral and condition number estimates of the acoustic single-layer
operator for low-frequency multiple scattering in dilute media*

Xavier Antoinef Bertrand Thierry'

Abstract

The aim of this paper is to develop an analysis of the distribution of the eigenvalues of
the acoustic single-layer potential for various low frequency two-dimensional multiple scattering
problems. The obstacles are supposed to be distant (dilute media). In [26], it is shown that
an approach based on the Gershgorin disks provides limited spectral information. We therefore
introduce an alternative approach by applying the power iteration method to the limit matrix
(associated with the zero order spatial modes) which results in satisfactory estimates. All these
approximations are built for circular cylinders and formally extended to ellipses and rectangles
for linear boundary element methods with non uniform meshes. This study is completed in [7]
by spectral estimates for the case of close obstacles.

1 Introduction

We propose some spectral and condition number estimates of the acoustic single-layer potential for
low frequency two-dimensional multiple scattering configurations. A few studies have already been
developed for acoustic integral operators but for (high frequency) single scattering problems. For
examples, let us mention the circular cylinder case [5, 6, 20, 21], the case of various convex and non
convex single scatterers [9, 11] or also the case of open surfaces and guiding structures [2, 3, 14].
Considering multiple scattering leads to new difficulties due to the presence of interactions between
scatterers [22]. Mathematically, this means that new parameters are involved into the spectral
analysis: the distances between separated obstacles. We focus here on the low frequency case
because the medium and high frequency regimes are still out of reach and first require a better
understanding of the low frequency situation that we investigate. The single-layer potential is
considered as an example but other standard integral operators (mainly the trace of the double-
layer potential and the normal derivative traces of the single- and double-layer potentials) could
also be studied by using a similar strategy. This would lead to the possibility of obtaining spectral
properties for examples of the Combined Field Integral Equation (CFIE) [8, 19] and Brakhage-
Werner integral equation formulations [8, 10], as well as their recent improved versions [5, 6, 16], for
multiple scattering problems. These integral equations are widely used for computational purposes
since they are well-posed at any frequency [15, 23]. Furthermore, for single scattering configurations,
they are known to have a better conditioning than the Electric Field Integral Equation (EFIE) [8]
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or Magnetic Field Integral Equation (MFIE) [8] which may have interior spurious resonances [16].
Let us mention here that deriving spectral properties of an integral equation is a central step
for a better understanding of the convergence behavior of iterative Krylov subspace solvers [24]
which are generally coupled with a Fast Multipole Method [13, 17]. Indeed, the distribution of
the eigenvalues of the integral equation to solve reflects the convergence properties [24, 25| where
eigenvalue clustering is expected. For this reason, analyzing the spectral information of basic
integral operators is important. In particular, it is crucial to understand how the physical (wave
number, geometry) and (boundary element) discretization parameters impacts the convergence
behavior. The reason why we focus our study on the single-layer potential at low frequency is that
it already requires a non trivial and tricky asymptotic analysis. In particular, several regimes must
be analyzed in details. We propose here to examine the case of dilute media which corresponds to
the situation where the distances between the obstacles are larger than a few wavelengths. In [7],
we develop a complete analysis when the obstacles are close (dense media). The intermediate case
corresponding to distances between the obstacles that are of the order of the wavelength appears
to be more delicate. Concerning the numerical solution of multiple scattering problems, let us note
for completeness that other computational solutions can be considered based on purely analytical
or semi-analytical solutions [4, 12, 22] or even with suitable non-reflecting boundary conditions
well-adapted to the geometrical configuration [18].

A first step of our approach consists in a detailed analysis of the eigenvalues distribution of
the acoustic single-layer operator for single scattering in the low frequency regime (section 2). We
investigate the case of a disk since the integral operator can be diagonalized in the Fourier basis. We
obtain asymptotic expressions of the eigenvalues of the operator which are then extended to other
obstacles (elliptical and rectangular cylinders) and to the linear boundary element approximation
of the integral operator. In Section 3, we give the expression of the single-layer operator for multiple
scattering by a collection of circular cylinders. Unlike the single scattering case, the operator is not
diagonal. For this reason, a more complicate asymptotic analysis must be developed. In [26], we
studied the possibility of applying Gershgorin disks theorems to get information on the spectrum
in conjunction with asymptotic expansions for distant obstacles. It unfortunately appears that
this method is quite limited. For this reason, an alternative approach based on the application of
the power iteration method to a small matrix associated with the zero order Fourier modes and
asymptotic expansions is proposed. We show that relatively accurate estimates of the spectrum as
well as condition number of the single-layer operator can be obtained. We extend these estimates
to ellipses and rectangles and to the linear boundary element approach. All these approximate
formulas are validated with various numerical simulations. A conclusion is given in Section 4.

2 Spectral estimates for low frequency single scattering

Let us consider a homogeneous acoustic medium filling the whole space R? and containing a bounded
open set © with boundary I' := Q. The propagation domain Ot = R?\ Q is assumed to be
connected. For a real positive wave number k, we define the single-layer integral operator L by

Lp(x) = / G(x,y)p(y) dT(y). (1)

where the Green’s function G(-,-) is given by: ¥x,y € R, x #y, G(x,y) = i'H(()l)(k:Hx—yH), with

H(()l) the zeroth order Hankel function of the first kind, k > 0 the real and positive wavenumber and



|x|| = (22 +23)Y/2. Tt is well-known (see e.g. Theorem 3.4.1 of [23]) that L defines an isomorphism
from H~Y2(T") to H/?(T') except for the set Fp(Q) of the Dirichlet irregular frequencies, that is
the wave numbers k for which the interior homogeneous Dirichlet problem

(A+KkHw=0 inQ
w =20 on I,

admits non trivial solution. In the sequel, we assume that k & Fp(2). The goal of the paper consists
in obtaining spectral information (eigenvalues and conditioning) of the single-layer potential for
multiple scattering problems. Before this, let us consider the low frequency single scattering case.

2.1 The circular cylinder case

We assume here that €2 is a disk with radius a and centered at the origin O. In this case, the single-
layer operator L can be diagonalized in the Fourier basis associated with the circular cylinder and
results in the diagonal infinite matrix L representation with coefficients Lmn given by [21]
v ~ iTa 1)

m,n € Z, Lin = 0mn 5 —Jm(ka)H}, (ka). (2)
Symbol 6,y is the Kronecker’s delta function, equal to 1 if m = n and 0 otherwise. Functions J,,
and Hq(nl) are the Bessel and first-kind Hankel functions of order m. Thus, for one disk, the single-
layer operator is diagonal with coefficients: pu,, = ]Imm. Furthermore, the operator L is singular if
one of its eigenvalues ji,, is equal to zero, which means that J,,(ka) = 0, for a certain value of m
for ka fixed (let us recall that H,(,%)(x) # 0 for any > 0). This is not the case here since we assume
that k ¢ Fp(Q?) = {k/3Im € N/J,(ka) = 0}. For the finite dimensional approximation, we keep
2N + 1 modes such that the indices m satisfy —N < m < N. We denote by L = (L) -~N<mn<n
the diagonal matrix of size (2N + 1) x (2N + 1) which approximates the single-layer operator. Its
coefficients are

V—N<mn<N, Lpn=Lnm= 5mn”; T (ka) HY (ka).

The eigenvalues p,,, m = —N, ..., N, of the diagonal matrix L are explictly given by

fim = L = ”mJ (ka)HV(ka),  m=—N,...,N. (3)

Let us remark that, following [1, (9.1.5)], we have

VmezZ ¥z #£0, HY (2)=(~1)"HD (@),  J_n(@) = (—1)"Jn(2). (4)
These properties imply that the eigenvalues p.,, of L are double: py, = pi—p, m = —N, ..., N,m # 0,
the eigenvalue po being single.

Since the eigenvalues are given by special functions, the dependence in terms of dimensionless
wave number ka and truncation parameter N is not easy to analyze. To get simpler expressions
we consider low frequency expansions of the eigenvalues. Let us remark that the medium/high
frequency analysis is also possible [5, 6] but its extension to multiple scattering is more tricky.



For this reason, we restrict ourselves to the low frequency regime. For ka — 0, the asymptotic
expansions of J,, and aY give (see relations (9.1.12)-(9.1.13) [1])

—a [ln (k;) + ’y} + i%a +0 ((ka)2 In(ka)) for m =0,
~ 5

o ﬁ + 0 ((ka)?) for m # 0, )
where v = 0.577... is the Euler’s constant. To illustrate and validate this approximation, we
report on Figure 2 the real and imaginary parts of the exact (3) and approximate (5) eigenvalues
by truncating the approximation to N = 20, for ka = 0.2 (a = 1 here). We observe that the
approximation provides close values to the expected ones. Moreover, we remark that the eigenvalue
associated with the mode m = 0 is the only one to get a significant imaginary part since the zero
order mode is the only propagating one at low frequency (this is not the case for a higher frequency).
For larger ka, the considered approximations introduce more errors. Furthermore, we see that the
modulii of the eigenvalues of I tend towards zero when m is large enough. These eigenvalues,
corresponding to evanescent modes, have zero as limit since L is a (pseudodifferential) operator of
order —1, having therefore eigenvalues associated to high order spatial modes going to zero.
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Figure 1: Comparison between the exact (3) and approximate (5) eigenvalues of L, for ka = 0.2
and N = 20.

The condition number cond(L) of L is defined by: cond(L) = ||L| ||[L~!|, for a matrix norm
|| - || associated with a vectorial norm || - || on C?N*1, that is

LX
Li=  sup XD
xeceviygoy [IX]|

If the 2-norm || - ||z is defined by ||X|j2 = /SN __ [ Xon|?, for any vector X = (X _y,..., Xn)T €

C2N+1 we have condy(LL) = ||L||2||[L=Y||2. Since L is diagonal, it is normal and condg(IL) = |pmas]

“ pminl’

where |fmaz| = maxo<m<ny [tm| and |fmin| = minp<m<n |fm|. From the previous low frequency



analysis (5), the eigenvalue with maximal modulus is obtained for m = 0 (propagating mode) and
the one with minimal modulus corresponds to m = N (evanescent mode). Finally, a low frequency
approximation (ka < 1) of the condition number is

conds (L) = {a2 [m (g“) + 7} g (7;@)2}1/2 % (6

for a circular cylinder of radius a with truncation Fourier parameter N.

Remark. A similar analysis can be considered for the sphere to understand the three-dimensional
situation where spherical harmonics can be used to diagonalize the integral operators (see [6] for
the high-frequency single scattering case).

~—

2.2 Link with the boundary element approximation and formal extensions to
other objects

Let us now introduce the boundary element approximation of (1), assuming that the boundary I" is
sufficiently smooth. Let 'y, = U;V:’LIK ; be a polygonal approximation of I by using N}, segments K,
1 < j < Nj. We designate by h; the length of K; and by h the maximal length: h = maxi<;<n, h;.
We choose the boundary element subspace V}, of L2(I';,) with continuous piecewise linear functions
over I',

Vi :={pn € C°(T)/pnlk, €P1,1 < j < Np}. (7)

We define by [Ly] € Mn, n,(C) the matrix associated with the discretization of the single-layer
operator and by [Mp] € My, n, (C) the mass matrix for V.

2.2.1 The circular cylinder

We now relate the spectral Fourier approximation to the boundary element method. Let us assume
that the mesh is uniform with step h. The number of degrees of freedom Ng is then: Np =

Ny ~ 2”7“ The spectral method requires 2NV + 1 modes. Let ,ufnm and Mme be the eigenvalues of

[Mh]_1 [Ly] with smallest and largest modulus, respectively. Formally replacing N by mah~! —1/2
in the estimates fimin and tmaz, we get

a ka _/Ta
fmin(a, h) > a1 =1’ fimaz (K, a) ~ —a [ln <2> + 7] + <7) (8)
We then obtain the following estimate of the spectral condition number (6)
cond(k, a,T'p,) := conda([My] " [Ln]) =~ condapp(k, a, h), (9)

with

1/2
ka 2 Ta\ 2 2rah~! —1
condgpy(k, a, h) = {a2 [ln <2> —i—'y] + (3) } Y (10)

when ka tends towards zero.

To validate (9), we set a = 1 and consider the following test cases. We compare on Figures
2(a) and 2(b) the numerical condition number cond(k, a,I'y) and its estimate condgyy(k, a, h) for a
uniform mesh. In the first case, we let ka varies for N;, = 100. In the second case, the number of



points N, varies for ka = 0.1. In both situations, we see that our estimate is accurate. Moreover,
we clearly observe that, when ka is large enough, we lose some accuracy since the low frequency
approximation is no longer valid. We consider now on Figures 2(c) and 2(d) a non uniform mesh.
To this end, we generate the sequence of segments K; = [x;_1,x;], 1 <j < Ny, with

. 2r 10e,_
Xj—l = a(cos(ej_l),sm(ej_l)), 9]'_ = 7(] -1 -+ lel

), (11)
where ;1 is a random variable of uniform law on [0;1] and xpn, = xo. The computation of
cond(k, a,T'},) is again realized numerically or approximated via formula (10). Here, the choice of
h is more delicate. Indeed, the dependence of the condition number cond(k,a,I',) according to
the geometry I'y, is a priori global and affects pmin(a, k). In the case of a uniform discretization,
we may consider an estimate of fimin(a,-) which is only local by taking condgp,(k,a, hmn) or
condapp (k, @, himaz ), With Rpmin = mini<j<n, h; and hpme, = maxi<j<n, hj, or global by considering
condgpp(k, @, heqy), With heqy = N, 1 Z;V:hl hj. This last choice corresponds to a calculation of the
conditioning based on an equivalent uniform discretization for an average step heqy. For a uniform
discretization, the definitions coincide. We finally remark that the choice of heqy leads to the most
accurate estimates.

2.2.2 Estimates to other geometries

We now consider two other geometries a) an elliptical scatterer of semi-axes a,, alon O—acl> and
G, along O—x;, and b) a rectangular cylinder with side-lengths 2a,, and 2a,, along Oz; and O—azg>
These two objects are centered at the origin.

For the first case, let us recall that the approximation of the eigenvalues with smallest and
largest modulus for P; boundary element are estimated respectively by

a ka Ta

fmin (@, h) ~ mah-1_1' fimaz (K, a) = a [ln <2> +’Y} iy

Then we propose to answer the following two questions: how to handle an equivalent radius, denoted

by aeqv, for an ellipse, and, since the mesh is non uniform, which mesh step i can be chosen. For

the ellipse, we propose the three following equivalent radii for the approximation of the eigenvalue
with largest modulus

1 Qg + P 2 2a$1a$2 3 _V agl + a3262 (12)

Aoy = ————, qv — Aoy =
qv ) eqv
azl +a/a32 \/5

eqv 9

The first approximation consists in considering an equivalent disk with mean radius based on a,
and agz, and the second one with a curvature given by the mean of the curvatures 1/a;, and 1/ag,.
The last radius is based on taking the point (az,,as,)/v/2 of the ellipse and next choosing the
radius of the circle centered at the origin and passing by this point. Concerning the discretization,
we propose three possibilities related to Nmin, hmaee and heqv, for each value agqv, 73 =1,2,3. Let
us fix the following configuration: a,, = 1, az, = 0.25 and N, = 60. We report on Figures
3(a), 3(b) and 3(c) respectively the smallest and largest eigenvalues (with respect to their modulii)
and the condition number vs. k. We remark that the eigenvalue with largest modulus is well

approximated by agqv and the smallest one is not sensitive to this parameter (as expected). The



7007 2000
____cond(k, aT,) 1800} cond(k, a, T,)
6007
+ cond_ (k a h) 1600 . cond,_(k a,h)
14001
g 500 g
€ £ 1200
3 3
f= f=
§ 400 5 1000
g 2 800
Q Q
© 300 ©
600
200 ) 400f
NG
N 200t
100 ] 0 ‘ : ]
-25 -2 -1.5 —1 -05 0 0 05 1 15 2
p (for N =2xa.10 Py p (for N, =2xa.10 Py
(a) Condition number vs. ka, Ny = 100 (b) Condition number vs. Ny, ka = 0.1
(uniform discretization) (uniform discretization)
700 2000
* cond(k, a, T,) cond(k, a,T',)
5, " 1800 "
N *
600 “ condapp(k, a, hmin) 16001 5 condapp(k, a, hmin)
o condapp(k, a, hmax) 14001 _ condapp(k, a, hmax)
5 500 b} d (kah
g  cond, (kah,) £ 4200] + cond (kah,)
3 3
c <
§ 400} § 1000}
2 2 soo0f
Q Q
© 300 o
600
400f
200+
e 200+
100 ] 0 = ]
-25 -2 -15 -1 -05 0 0 05 1 15 2
p (for N =27a.10 Py p (for N =2xa.10 )
(c¢) Condition number vs. ka, N, = 100 (d) Condition number vs. N, ka = 0.1
(non uniform discretization) (non uniform discretization)

Figure 2: Validation of the approximation formulae for the condition number of the single-layer
potential in the circular cylinder case (uniform and non uniform meshes).

choice of the equivalent discretization step is however crucial and the best approximation occurs
for hmin. Further test cases have been realized and always lead to the same conclusion, that is
the approximations of the condition number is satisfactory. We compare on Figure 4 the different
estimates according to the ratio between the different axes. Let us fix N, = 60, £ = 0.2 and
az, =1, and let a,, varies between 0.05 and 1. We can again see that using agqv is the best choice.
Furthermore, Nﬁnm is obtained for h,,;,. We retain this choice of parameters for the estimates of
both the eigenvalues and condition number of the matrix [My]~1[Ly].

For the rectangular cylinder with sidelengths a, and a,,, we choose the following approximation

4 _(1+\/§)\/a%1+a9262 1
eqv "~ 9 \@ . (3)

a,
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Figure 3: Validation of the approximation formulae of the condition number for the single-layer
potential and the ellipse vs. kay, (az; =1, ay, = 0.25 and Ny = 60) (non uniform mesh).

To get this equivalent radius, we consider two ellipses: one with semi-axes a,, and a;, and another
one with semi-axes v/2a,, and v/2a, (along the abscissa and ordinates). In particular, the corners
of the rectangle own to this last ellipse while the middle points of the faces are on the first one.
Next, we consider the ellipse with semi-axes equal to the average of the semi-axes of the two ellipses,
that is with semi-axes (1++v/2)az, /2 and (1++/2)ay, /2. Finally, the disc with the equivalent radius
ag’qv for the previous ellipse is considered leading to (13). We report on Figures 5(a) to 5(c) the
approximation of the largest and smallest approximate eigenvalues and the corresponding condition
number. We take a,, = 1 and a,, = 0.25 and discretize each side by using 50 points, for a total
number of N = 200 points. As we can see, the approximation based on agqv is accurate and the
choice of the minimal parameter is very satisfactory.

As a conclusion, this first study provides some explicit estimates of the eigenvalues with minimal
and maximal modulii as well as condition number estimates of the single-layer potential in the low
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frequency regime and for the circular, the elliptical and rectangular cylinders.

3 Spectral estimates for multiple scattering in dilute media

3.1 The single-layer operator for multiple scattering by disks

We assume now that €2 is the union of M strictly disjoint (no sticky case) circular cylinders €2,
p =1,...,M. The boundary I', of €, is a circle with center O, and radius a,. The explicit
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az, =1 and az, = 0.25, vs. kay, (N} = 200 segments, 50 for each side).

expression of the single-layer potential in the case of several disks has been obtained e.g. in [26] as

L LL2 . LW
- iz,l IE2,2 IEZ,M
L:= ) ) ‘ ) . (14)
AR RN Y

10



The coeflicients of the single-layer potential, for two objects p and ¢, with p,q =1,..., M, for two
Fourier modes m,n € Z, are given by the expressions

1Tay

- 9 Jm(kap)Hr(r%)(kap)‘smn if p=gq,
Lra =< (15)
: i /Gplyg _
TJm(kap)Snm(bpq)Jn(kaq) otherwise.

The quantity Spm(bpq) is given by: Sy (bpg) = H,Sljm(kbpq)ei("_m)aPQ, for pg=1,...,M,p # q
and m,n € Z. Here, the different quantities are defined by

——
b, = 0,0, bpg = ||bpgl|s apg = Angle(Oz1,0,0)).

Let us now consider a finite dimensional projection. To this end, we truncate system (14) by
keeping, for each Fourier series (associated to an object p =1,..., M), 2N, + 1 modes such that:
—N, < m < N,. The resulting truncated matrix is then

Ll’l ]L1,2 o Ll,M

LQ,I ]LQ,Q L LQ,I
L:= ,

LML M2 LMM

where each block P4, of size (2N, +1) x (2N,+1), for p,q =1,..., M, of matrix IL has coefficients
(15): L%, =Lh%,, for —N, <m < N, and —N, <n < N,.

3.2 Asymptotic spectral analysis for a collection of disks

To simplify the analysis, we assume here that: Vp = 1,..., M, a, = a. We again consider the low
frequency regime ka — 0. Unlike the single-scattering case, we do not have access directly to the
eigenvalues of IL for multiple scattering configurations since the matrix is not diagonal. Furthermore,
new parameters are involved in the analysis, essentially kby,, where b, is the distance between the
centers of €2, and §2,. We propose to analyze the effect of these parameters on the condition number
of the single-layer operator. Partial results can be obtained for some regimes, the general case being
out of reach. We analyze here the case of far obstacles (called dilute media in our paper) (see [7] for
close obstacles). In [26], we proved that an approach based on Gershgorin discs does not provide
precise estimates. For this reason, we propose an alternative approach.

Let us first consider the diagonal block PP, for p = 1,..., M which is a diagonal matrix. When
ka — 0, its coefficients LLF,,, for —N < m < N satisfy [26]

T 2 ; _
Lo ]I:o + O ((ka)?In(ka)) if m = .O, (16)
’ L, + O ((ka)?) otherwise,
with L '
R —a[ln(a)—i—v}—i-m if m =0,
Ln={ , 2 2 (17)
. otherwise.
2|m|
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We build the diagonal submatrix (L°)P? which only contains the dominating terms of the asymptotic
expansion obtained in (16). More precisely, the (2N + 1) x (2N + 1) matrix (L°)PP is defined by

Lv 0 0 ... 0
0 0
(LO)PP = Lo (18)
0 o0
0 ... 0 0 Ly

Relation (16) implies that, when ka — 0, the following relation is fulfilled, for p =1,..., M
LP? = (L°)? 4 O ((ka)® In(ka)) . (19)

In other words, each submatrix (IL°)P is an approximation of the diagonal block P of matrix
L. From relation (18), we see that the coefficients of (L°)P? do not depend on the index p (since
ap =a, forallp=1,...,M). Hence, for 1 < p,q < M, we have the equality (L°)PP = (LL°)%4.

We now proceed in a similar way for the off-diagonal block IL?4, with 1 < p,q < M and p # q.
When ka — 0 and kby, — +o00, we have [26]

7 et (kbpg—m/4) ( 1 > (k:a)2
iay) = +0 +0 if (m,n) = (0,0),
LPd = \/g kbpq kbpq v/ kb (20)
" 2)ml+inl ,
0 (%) if (m,n) # (0,0).

Hence, all the coefficients LE;%, of LPY decay (at least) like

ol)

except the term of indices (m,n) = , which decays like

O<k>

Let (IL°)P4 be the submatrix of size (2N + 1) x (2N + 1) defined by

0 0

i(kbpg—/4)
(]LO)P#I — ( 7 with (LO);& =1ia zei (21)

0,0 2 AY4 kbpq

Let us introduce the parameter: b = min, 4—1 . a bpq. By using (20), when ka — 0 and kb — +o00,
the following relation holds, for p#£q¢=1,...,. M, p #q

21— p,q ]{ZCL 1
LP? = (L) +O<\/qu>+0<kbpq)' (22)
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Hence, each block (ILY)P4 is constituted of an approximation of the block P4 of L. Let us introduce
the block matrix L° which contains each submatrix (IL°)P+4

(LO)Ll (LO)LQ . (LO)LM

(L0)2,1 (]LO)2’2 o (LO)Q,M
L = :

(]LO;M’I (]LO;MQ ) (LO):M,M

Let us summarize these results in the next Lemma.

Lemma 1. When ka — 0 and kb — 400, we have

L =L°+ O ((ka)*In(ka)) + O <j%> +0 (;b) : (23)

From now on, we respectively denote by (uh,)1<p<i,—N<m<n and ((Mo)fn)lgng,—NgmgN the
eigenvalues of L and LY. For p = 1,...,M and m = —N,..., N, we assume that: uh, ~ (u°)h,,
which is coherent with (23). To motivate our approach and to understand how the eigenvalues
of IO are distributed, we compare on Figure 6 the eigenvalues of L and L%, for 50 unitary disks
randomly distributed in [0,1000]?, with ka = 0.1, kb > 10 and N = 4. The eigenvalues are
computed numerically with the help of the eig Matlab function. Globally, the approximation of
the eigenvalues (uh,)p=1,. m.m=—n,. n of L by the eigenvalues ((1°)0.)p=1,. mm=—n, . n of LV are
satisfactory.

3.51

0.06

*  Eigenvalues of L % Eigenvalues of L
3L| © Eigenvalues of L° @ 0041 | o Eigenvalues of L°
® ®
® ®
@ 0.02
25 @ e ©® @ i
- . e 4 .0 e o ®
g 2 ® I
Q a L
S ©® ® R S 002
] ® ® ¢ I
£15 e o ° o £ 004t
£ ® e @ e £ 0
= ® e @ ®® = 006  Mmn@dtp,
[ e o ©
o a® ©® o @ ~0.08
®
05 e &
-0
ol @e @ -0.12f
s s s ‘ s ‘ s | s s L s s s L s ‘
0 0.5 1 15 2 2.5 3 3.5 4 005 01 015 02 025 03 035 04 045 05 055
Real part Real part
(a) All the eigenvalues (b) Zoom around the eigenvalues associated with the

modes |m| > 1.
Figure 6: Eigenvalues of the matrices L and LL°, for M = 50 unit disks (ka = 0.1 and kb > 10).

Let us begin by the spectral study of L? by noticing that the matrix is almost diagonal since all
the off-diagonal elements are zero except the ones with indices (m,n) = (0,0) (see (18) and (21)).
This implies that each coefficient (L°)}F,, of the diagonal of L with index m # 0 is an eigenvalue

of L°. Moreover, for p,q =1,..., M and m # 0, we have the following sequence of equalities
(L) = LoD = (L), = (L), .y = Limy)-
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Hence, L,, is an eigenvalue of L with multiplicity 2M, for m = 1,...,N. We fix the following
ordering, forp=1,..., M, m#0and —N <m < N

(Y = Ty = 5 (24)
We know explicitly 2N M eigenvalues of IL°. Therefore, the computation of the M last eigenvalues
((uo)g)pzl,‘_” M can be made by using the smaller matrix built from the zero order modes (as done
later). Let us now come back to the previous example. The approximation of the eigenvalues of
LL by the ones of LV is reasonable for the eigenvalues related to the modes of order m = 0 (Figure
6(a)) and for the higher order modes, |m| > 2 (Figure 6(b)). The approximation of the eigenvalues
(,uzl’)pzl,m, a associated with the first order modes are less accurate. This is probably due to the
coupling between the propagative modes m = 0 and the modes of order m = 1. If the obstacles
would be further, then this coupling can be expected weaker and the approximation better.

We now try to localize the eigenvalues p2 . and pQ .. of LY with smallest and largest modulii,
respectively. To begin, we have the following ordering relations from (16)

O0<Ly<Lyg<..<Lly<Ly. (25)

Since ]/I:m, for m =1,..., N, is an eigenvalue of L.° with multiplicity 2M, we have

0 : T : 0
ol = i (L i 1G]

However, Figure 6 suggests that the M eigenvalues ((u%)h),=1,  ar satisfy the inequality

()3 > L. (26)

When kb, — +o00, this relation can be proved [26] by using the Gershgorin disks for the matrix
LY. Indeed, the off-diagonal coefficients (IL°){ tend towards 0 when kbp, — +oo (see Equation
(21)). Practically, this relation seems to be satisfied even when kb, is not large enough to apply
the approach based on the Gershgorin disks [26]. We therefore assume in the sequel that relation
(26) holds. We estimate then 1 by Ly, i.e.

0 =Ly=—. (27)

Since L N is an eigenvalue with multiplicity 2M, then this is also the case for M?nm- This conclusion
confirms our study based on the Gershgorin disks realized in [26].

Now let us focus on the eigenvalue of L.” with largest modulus, denoted by u ... Figure 6
suggests that Y . is an eigenvalue related to the propagative modes with a modulus larger than
the one which would come from the single scattering case. To prove these results and study more
easily the M eigenvalues ((uo)g)p:h“, u, we build the smaller matrix L' related to the modes of
order 0 of L.°. More precisely, L' = (L}o,q)lgp,qSM has size M x M and for all 1 <p,q < M

~ k

2 ) iay/T gilkbpg—/4)
2hbpg

(28)

otherwise.

The eigenvalues of L' are then exactly ((Mo)g)p:17...7 M, as it is proved in the following lemma.
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Lemma 2. The M eigenvalues of L' are exactly the M eigenvalues (uo)g, forp=1,..., M, of the
matriz 1L.°.

Proof. From relations (18) and (21), we can build two permutation matrices P and Q (that we do
not explicit) such that

1
PLOQ = ( - ) , (29)

where the matrix L! is defined by (28) and where the smaller matrix L? := ((L?)P9);<p q<m, of
size 2N M x 2N M, contains the diagonal of . without the modes of order 0. More precisely, for
p=1,...,M, each diagonal block (IL.?)P? has for coefficients, for m = —N,..., N, m # 0,

(L2 = WOV = Ly = (1), (30)

where we used the equality (24). Let us remark now that, since the matrix L.? is diagonal, its
eigenvalues are also the diagonal coefficients, that is, from (30), (u),, for p = 1,..., M, m =
—N, ..., N with m # 0. This implies that the eigenvalues of L' must be (,uo)g, forp=1,...,.M. O

Let is now prove the following result.
Lemma 3. The following inequality holds

NP1 > |Lol. 31
pzrgéj?fM!(u Jol = [Lo| (31)

Proof. The trace tr(IL') of L' writes tr(L') = Z;Vil Lo = MLg. Moreover, it is also equal to the
sum of the eigenvalues L!, leading to MLg = M (1°)h. By using the following inequality

p=1
M
Mf[: — 0 p < < 0\p
VT = >8] < 1 < M s, 166,
p=1 p=1
one finally gets ‘IEO) <maxp—1,. M \(,uo)g|. O

This Lemma leads to the following Proposition.

Proposition 1. The eigenvalue with largest modulus pY,,, of LY is an eigenvalue associated with
the propagative modes m = 0

Woa € {(WOp=1,.... M}. (32)
Furthermore, p2, . fulfills the inequality

| > |Lo)- (33)

|Mmax

Proof. Since |z| > [3(2)] for any complex number z, then, from (16), the following inequality holds
|Lo| > 4. Because Ly, = a/(2m) for m =1,..., N, we have

ILo| > |L1| > |Lg| > ... > [Ly_1] > |Lnl.
From (24), we get |]/I:0| > maxi<p< i 1<m<n |(1°)h|. Next,we apply Lemma 3 to obtain

0P| > | o)
I (7ol = Lol > 1§p§1\n},61u§<m§N|( il

Ay

which directly proves (32) and (33). O
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This Proposition provides the following information. First, the eigenvalue with largest modulus
for the multiple scattering problem p¥  must be found among the eigenvalues of L.V linked to the
propagative modes m = 0. Secondly, ‘u?nax‘ is larger than the modulus of the largest eigenvalue ﬁ:o
for the single scattering case. By using Propostion 1, the term |I/L:0| can be used to estimate } ,u?nax’.
We propose another method leading to a sharper estimate of |u2mz‘.

We do not have some explicit expressions of the M eigenvalues of L'. Let us consider the
example described in Figure 7 which displays the terms (]i«m)ogmg ~ and the eigenvalues of L,
computed numerically. The medium is composed of 50 unitary disks randomly distributed in
[0,1000]2, in such a way that kb > 10 and ka = 0.1, with N = 4. We can observe that the M = 50
eigenvalues ((“O)g)pzl,...,M of L cluster around I/[:()(’: 2.4 4 1.67). This is related to the fact that

the off-diagonal terms
T ei(kbqurr/4)

\/Kbpg

of L' are highly oscﬂlatmg and tend towards 0 when kb,; — +o0o. The eigenvalues are then complex
perturbations of Lo (with a rotation around Lo)

350

*  Eigenvalues of L
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* « ¥ .
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S
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c o] *
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< * * * *
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£ N %
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or@e e
.
0 0.5 1 15 2 25 3 35 4
Real part

Figure 7: Eigenvalues of matrix L for M = 50 unitary disks randomly distributed in [0, 1000)2, for
ka = 0.1, kb > 10 and N = 4. The circles are associated with L,,, for m = 0,..., N and the stars
to the eigenvalues of L.

We propose now to apply the power iteration method to the matrix ! to get an estimate of
|19 0| Let us introduce the uniform norm || - [|oo: VX € CM, ||X||oo = maxp—1,. s | Xp|. The first
iteration leads to choose a normalized vector X and then to compute the matrlx—vector product
Y = L'X. The norm of vector Y is then an estimate of ‘ [L?mm’. Usually, one iteration is not
sufficient to get an accurate approximation while this is the case here. Our choice of initial vector
is X = (1,1,...,1)T. We then have: Y = L'X = (Y1,Ys,...,Yy)!, withforp=1,..., M

iay/me= i/ cikbpg

Y, = Lo+ e
V2 1<q§<M V Kbpg

(34)
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The uniform norm of Y is then an estimate of ‘u?mx‘

[Hinas| > max [Y;. (35)

We now consider a similar situation to the one reported in Figure 7 (50 unit disks randomly
distributed in [0, 1000]2, with ka = 0.1, kb > 10 and N = 4). We report on Figure 8 the coefficients
of Y compared with the eigenvalues of .'. Let us remark that the coefficients Y, cluster around

IEO, like the eigenvalues of L'. We also note that the vector components of Y have a physical

interpretation. Indeed, Lo represents the trace on the boundary I, of the Green’s function %H él)(~)
centered at Oy, (up to a multiplicative constant). Furthermore, each term

-eikbpq aﬁe—iﬂ/4
ke VZ

is the trace on I', of the far field Green’s function centered at Oy (up to a multiplicative constant).

*  Eigenvalues of L
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o~ x 4 ¥ *5 0
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0.5¢ o xR o o
o o
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o
05 o] .
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Figure 8: Comparison between the power iteration method (one iteration) and the eigenvalues of
the matrix L' for M = 50 unit disks, for £ = 0.1 and b > 100.

The estimate (35) of ‘,u%mm‘ provides an approximation of the eigenvalue with largest modulus
|ftmaz| of L. Replacing Lo and Y), by their respective expressions in (35) one gets

ka T T ekbpa
maz| = -1 5 L~ iy e/ .
|ttmaz| ap_nllax [n(2>+’y}+z2+z\/ge E o (36)

S 1<q#p<M

Let us remark that if we use the bound

- [m(?) —I—’y} +ig’+\/§ >

1<g#p<M

eikbpg
/kbpg

we have the estimate obtained by the Gershgorin disks approach [26] which is not satisfactory
as shown in Figure 9. As a consequence, we consider (36). Figure 9 compares |fma.| with the

|Mma:r’ <a

I
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estimates obtained by the iterated power method (with one iteration), the approximation IEO of the
eigenvalue with largest modulus for the single scattering case and the Gershgorin disks approach.
The eigenvalue |fimqe| is numerically computed by the eig Matlab function. The test case consists
in launching 100 configurations for 50 unit disks randomly placed in [0,1000]2. Here, we take
kb > 10 and ka = 0.1. We observe that the power iteration method (in this example) provides an
over estimate of |fmae| Which is sharper than the maximal eigenvalue ]]I/:()\ of the single scattering
problem. The average relative error is 19%. Finally, the estimate based on the Gershgorin disks is
clearly not satisfactory.

Iu

|
max

_ _ _ Power iteration estimates of lu__ |
9r max

Gershgorin discs estimates of l”maxl

L

6r " o Nt | h
nton i Vi~ 1 v \
N ,\“r\v \’/\/y [ \/\ ~ U*,\ ok oa Ay
[ Vo JEERVARURRR LA AN V
5r1 oy v \ R D

A .
A AN A g AN A

N
\y T
Vi

Modulus of the eigenvalues
~

. . . . )
0 20 40 60 80 100
Number of the configuration

Figure 9: Comparison between |fmqz|, the power iteration method (one iteration), Lo and the
estimate based on the Gershgorin disks, for 100 configurations made of M = 50 unit disks randomly
distributed in [0, 1000]?, with k = 0.1, N = 4 and b > 100.

We assume now that the matrix is almost normal and that the quantity

"Zmaz " ( 37)

estimates the condition number condz(LL). Replacing |fimin| and |fimaz| by their respective approx-
imation (27) and (36) in (37) leads to the approximate condition number condgp, (L)

k . ikbpg

condgp(L) = 2N max |—(In (50 ) 44| +is iy /o™ ST S (39)
Y 2 2 2 kb
1<q#p<M pq

One example of conditioning is reported in Figure 10(a), for 100 configurations made of 50 unit
disks randomly placed in [0,1000]%, with kb > 10 and ka = 0.1. The obtained estimate leads to a
relative error equal to 7% which is relatively acceptable for such a difficult problem.

3.3 Link with the boundary element approximation and formal extensions to
other objects

For any p = 1,..., M, we denote by I',; = Uj-\f:p’lth,j. a polygonal approximation of the smooth
curve I'y, using N, j, segments K, ;, 1 < j < N, . We designate by hy, ; the length of K, ; and by
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Relative error on the condition number
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Figure 10: Comparison between the exact and approximate condition numbers of L, for 100 config-
urations with M = 50 randomly distributed unit disks in [0,1000]* (k = 0.1, N =4 and b > 100).

h the largest length h = max;<p<ps (maxi<j< Npn hp,j) - We choose the boundary element subspace
Vi € L3(T'y,) as Vj, = {ph € ¢°(I',) such that prli,; €P1, with1<p<Mand 1< < Np,h}.
We then have to estimate the eigenvalues of []\4h]71 [Lp], where Nigp = 21]7”:1 Ny, is the to-
tal number of segments, [Ly] € Mn,, , N,.,(C) is the single-layer potential matrix and [M}] €
MN, o1 1 Neor.n (C) is the mass matrix for linear boundary elements. In the sequel, we denote by ,uﬁu-n
and p  the eigenvalue with smallest and largest modulus of the matrix [Mj] ™! [L], respectively.

3.3.1 The circular cylinder

To link the spectral Fourier approximation to the boundary element method, we begin by consider-
ing circular cylinders with radius a. The circles I'y, are uniformly meshed by Nj, = N, ;, segments of
length h, for p =1,..., M. The number of degrees of freedom Ng of the boundary element method
to discretize €1, is Np = Nj, ~ %T“ This must be compared with the 2N + 1 modes used for the
spectral Fourier method. By formally substituting N by mah~! — 1/2 in the estimates (27) and
(36) respectively of fimin and |fmaz|, one gets pl =~ p®? (a,h) and |k, | ~ |u2P (a, k)|, when
ka tends towards zero and kb towards infinity, with

_a
2mah~—1 —1’

ka o il cikbpg
app — - - N i /4
|uoPP (a, k)| = a max |- [ln( 5 ) —i—’y] +z2 + 4/ 5¢ E —

=1,...,
P 1<qzpent V Kbog

Hgin (@, h) =

(39)

We then obtain the following spectral condition number estimate (38)

cond(k, a,Tp,) := conds([My] " [L4]) ~ condapp(k, a, h),
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with

app
Mmaz(aa h)
Condapp(k, a, h) = I_W‘
. 40)
ka T T e**bra (
= -1_q _ - i A —im/4 )
(2wah )p:r{?i(M In 5 +v| + i5 + 5¢ E -

1<q#p<M

We validate the approximation (40) on Figure 11 by considering the previous geometrical param-
eters (M = 50 unit disks randomly placed in [0,1000]%, kb > 10, ka = 0.1). Each obstacle is
meshed with N, = 50 segments. For 100 configurations, we compute the eigenvalues of the ma-
trix [My] " [Ly] with smallest and largest modulii as well as its condition number. From Figures
11(a)-11(b), we observe that one gets a satisfactory mean relative error on u” . equal to 2.5%.
Figure 11(c) shows that the estimate of |u? | is of the same order as |u,.|. The relative er-
ror is much more important and equal to about 19% in average. However, the estimate obtained
for the condition number is relatively accurate, with a mean relative error equal to 7% (Figures

11(e)-11(f)).

3.3.2 Extensions to other geometries

Like for single scattering case (Section 2.2), we try to formally extend our estimates to elliptical and
rectangular cylinders. To this end, we have to replace the radius a and the mesh step h respectively
by an equivalent radius aeqv and an equivalent mesh step heqy in the eigenvalues estimates.

For the ellipse, we proposed the following three equivalent radii

2 2
1 Gz + Gy 9 2ab 3 \az, +az,

aeqv = T? aeqv = mv aeqv = \/i
Concerning the equivalent mesh size heqy, the smallest discretization step provided the best estimate
of Mffnm. We then set heqv = minj<p<ys minlgjgNh,p hyp.;. To get an estimate of the eigenvalues ,ufmn
and |u |, we formally replace a by an equivalent radius agqv, for j = 1,2 or 3, and the mesh size
h by heqv, into (39). This substitution is also considered in the expression (40) of condgy,(a, h, k)
to estimate the condition number of [Mj] ' [Ly]. We validate and compare these estimates for
different equivalent radius by considering M = 50 ellipses with semi-axes a,, = 1 and az, = 0.25
randomly distributed in [0,1000]2. We take k = 0.1 and b > 100, where b represents the smallest
distance between the centers of two ellipses. For 100 configurations, we numerically compare on
Figure 12 the eigenvalues of the matrix [Mj] " [Ly] with their estimates as well as the exact and
estimated condition numbers. The numerical simulations show that the equivalent radius agqv gives
inaccurate estimates of |fmqz|.- For clarity, we only consider the results for aéqv and ag’qv. Let us
begin by studying the estimate of u” . reported on Figures 12(a)-12(b). The relative errors are
of the same order (19%) for the two equivalent radii aéqv and ag’qv. This is more important than
for the circular case. This can be explained by the fact that the eigenvalue with smallest modulus
strongly depends on the minimal mesh size. For an ellipse (and most particularly if it is thin),
the mesh step can be locally small most particularly when the curvature is strong. An accurate
estimate of u” . is then more difficult to obtain. Concerning the modulus of u?,,., we observe on

Figures 12(c)-12(d) that the two estimates are relatively correct. We can notice that the radius aly,
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Figure 11: Comparison of the estimates (39) and (40) of the modulus of the eigenvalues with
smallest and largest modulii as well as condition number of the matrix [Mp] ™" [Lp]. The obstacles
are circular cylinders discretized by using N = 50 segments. For each of the 100 configurations,
M = 50 unitary disks are randomly distributed in [0, 1000]2, with k = 0.1 and b > 100.
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leads to a better estimate than ag’qv unlike the single scattering case. More precisely, the relative
error on |l .| is about 9% in average for the equivalent radius a;

eqv?
for circular cylinders, and about 22% for the equivalent radius agqv. Finally, we compare on Figures

12(c) and 12(f) the condition number of the matrix [Mj] " [Ly] with its estimate. We have only
reported the results related to aéqv which lead to the best approximation of |u”,,|. The relative
error on the condition number is then about 11%, which is satisfactory.

To end up, we adapt the previous estimates to rectangular cylinders. For one rectangle with

half size lengths a,, and a,, we proposed to take the equivalent radius a_., (13) given by

eqv
s (1T+V2) /a2 +a2,
a’eqv - 9 \@ .

The equivalent step heqyv is always chosen as the smallest mesh size

which is of the same order as

heqv = ) g;lgnM 1§§21]I\}h7p hp,j-

We consider the following numerical example: M = 50 rectangles with half size lengths a,, =1
and ay, = 0.25, randomly distributed in [0,1000]?>. The wave number k is 0.1 and the smallest
distance b between the centers of two rectangles is equal to 100. Each rectangle is meshed with
Nj, = 48 segments (12 segments by side). We numerically compute the condition number of the
matrix [My] ' [Ly] as well as its estimate (40) for 100 configurations (Figure 13). As shown on
Figures 13(a) and 13(b), the estimate of the eigenvalue with smallest modulus is very accurate since
the relative error is about 2%. This is probably due to the fact that the curvature on each side is
equal to zero even if the mesh is globally non uniform (but the mesh step is constant on each side).
Furthermore, the estimate of the modulus of u”, . leads to a relative error of 27%, (Figures 13(c)-
13(d)). This error is larger than for the case of ellipses or disks. Finally, the condition number
estimate is accurate with a relative error equal to 7% (Figures 13(e)-13(f)). Hence, the formal
extension to ellipses and rectangles is satisfactory for computing estimates of the condition number
of the matrix [Mj]~![L] resulting from a linear boundary element discretization of the single-layer
potential in the framework of low-frequency multiple scattering with relatively distant obstacles.

4 Conclusion

In this paper, we have presented some asymptotic spectral and condition number estimates of
the acoustic single-layer potential for low frequency multiple scattering problems. This first study
assumes that the obstacles are far enough (dilute media) to derive the approximate formulas. We
have shown in [26] that an approach based on the Gershgorin disks remains limited. For this reason,
we propose here an alternative approach that provides better estimates. All these approximations
are validated in the case of circular cylinders and formally extended to elliptical and rectangular
cylinders discretized by using linear boundary element methods with non uniform meshes. In [7],
we derive new estimates for the case of close obstacles by using the approach derived here and
new asymptotics. Furthermore, let us note that a similar analysis should be possible for the three-
dimensional case since the two-dimensional strategy can be extended. However, this requires to
write all the technical details which is out of the scope of the paper.
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Figure 12: Comparison of the estimates of the eigenvalues with smallest and largest modulii as
well as condition number of the matrix [Mj] ™! [Ly] for elliptical cylinders with semi-axes az, = 1
and ag, = 0.25. Each ellipse is discretized by using N, = 50 segments. For each of the 100
configurations, M = 50 ellipses are randomly distributed in [0, 1000]?, with & = 0.1 and b > 100.
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Figure 13: Comparison of the estimates of the eigenvalues with smallest and largest modulii as
well as condition number of the matrix [Mj] " [Ly] for rectangular cylinders with half side lengths

= 1 and a,;, = 0.25. Each rectangle is discretized by using Nj = 48 segments. For each of
the 100 configurations, M = 50 rectangular cylinders are randomly distributed in [0, 1000]2, with
k =0.1 and b > 100. 24
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