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Frontier estimation with kernel regressionon high order momentsStéphane Girard(1), Armelle Guillou(2) & Gilles Stup�er(3)
(1) Team Mistis, INRIA Rh�ne-Alpes & LJK, Inovallée, 655, av. de l'Europe,Montbonnot, 38334 Saint-Ismier edex, Frane

(2) Université de Strasbourg & CNRS, IRMA, UMR 7501, 7 rue René Desartes,67084 Strasbourg edex, Frane
(3) Université d'Aix-Marseille, CERGAM, 15-19 allée Claude Forbin,13628 Aix-en-Provene Cedex 1, FraneAbstrat. We present a new method for estimating the frontier of a multidimensionalsample. The estimator is based on a kernel regression on high order moments. It is assumedthat the order of the moments goes to in�nity while the bandwidth of the kernel goes tozero. The onsisteny of the estimator is proved under mild onditions on these two pa-rameters. The asymptoti normality is also established when the onditional distributionfuntion dereases at a polynomial rate to zero in the neighborhood of the frontier. Thegood performane of the estimator is illustrated on some �nite sample situations.AMS Subjet Classi�ations: 62G05, 62G20.Keywords: Frontier estimation, kernel estimation, onsisteny, asymptoti normality.1 IntrodutionLet (X1, Y1), . . . , (Xn, Yn) be n independent opies of a random pair (X, Y ) suh that theirommon density has a support de�ned by S = {(x, y) ∈ Ω× R; 0 ≤ y ≤ g(x)} , where Ω isa ompat subset of Rd. The unknown funtion g is alled the frontier. We address theproblem of estimating g. In Girard and Jaob (2008), an estimator is introdued based uponkernel regression on high power-transformed data. In the partiular ase where Y given

X = x is uniformly distributed it is proved that this estimator is asymptotially Gaussianwith the minimax rate of onvergene for Lipshitz ontinuous frontier funtions. Comparedto the numerous extreme-value based estimators (Gardes (2002), Ge�roy (1964), Girard and1



Jaob (2003a, 2003b, 2004), Girard and Menneteau (2005), Menneteau (2008)), projetionestimators (Jaob and Suquet (1995)), or pieewise polynomial estimators (Korostelev andTsybakov (1993), Korostelev et al. (1995), Härdle et al. (1995)) this estimator does notrequire a partition of the support S. When the onditional distribution of Y given X is notuniform, this estimator is still onvergent (Girard and Jaob (2008), Theorem 1) but su�ersfrom a strong bias on �nite sample situations (Girard and Jaob (2008), Table 1).Under monotoniity assumptions, the frontier an also be interpreted as the endpoint of Ygiven X ≤ x. Spei� estimation tehniques have been developed in this ontext, see forinstane Deprins et al. (1984), Farrell (1957), Gijbels et al. (1999) or Aragon et al. (2005),Cazals et al. (2002), Daouia and Simar (2005) and Daouia et al. (2012) for the de�nition andproperties of robust estimators. Let us mention that all these tehniques apply when thereis no random noise in the data. In the presene of noise, a popular and e�ient tehniqueonsists in using loal maximum likelihood estimators, see for instane the pioneering artileof Aigner et al. (1976) and its semiparametri, kernel-based generalisations by Fan et al.(1996), Kumbhakar et al. (2007) and Simar and Zelenyuk (2011). Reently, Daouia et al.(2010) have shown that the estimation of the endpoint of Y given X ≤ x may be redued tothe estimation of the endpoint of univariate independent and identially distributed randomvariables. This result tends to indiate that the nature of the problem addressed here isdi�erent.In this paper, an estimator based on a kernel regression on high order moments of the variableof interest Y is introdued. More preisely, the estimator is given by
1

ĝn(x)
=

1

apn

[
((a+ 1)pn + 1)

µ̂(a+1)pn
(x)

µ̂(a+1)pn+1(x)
− (pn + 1)

µ̂pn
(x)

µ̂pn+1(x)

] (1)where (pn) is a nonrandom sequene suh that pn → ∞, a > 0 and
µ̂pn

(x) =
1

n

n∑

i=1

Y pn

i Khn
(x −Xi)is a kernel estimator of the onditional moment mpn
(x) = E(Y pn |X = x). Classially, Kis a probability density funtion on R

d, Khn
(u) = h−d

n K(u/hn) and (hn) is a nonrandompositive sequene suh that hn → 0. Note that µ̂pn
(x) is the empirial ounterpart of themoment µpn

(x) = E(Y pn Khn
(x −X)), itself a smoothed version of the onditional moment

mpn
(x), namely

µpn
(x) =

∫

Ω

Khn
(x− t)mpn

(t) f(t) dtwhere f is the probability density funtion of X . From a pratial point of view, the use of asmall window-width hn allows to selet the pairs (Xi, Yi) suh that Xi is lose to x while theuse of the high power pn gives more weight to the Yi lose to g(x). It appears therefore that ourestimator would be sensitive to the presene of noise and espeially of outliers. Nevertheless,2



we notie that our estimator does not neessarily envelop all the data points, due to the fatthat it is a di�erene of ratios of high order empirial moments. This property makes ourestimator more robust than Ge�roy's estimator (1964) or the Free Disposal Hull (Deprinset al., 1984). Moreover, similarly to Girard and Jaob (2008), the kernel regression enablesus to avoid the partitioning of S. Finally, we highlight that, ompared to the estimatorsuggested in the further work of Girard and Jaob (2008), Setion 6, our proposition (1) doesnot require the knowledge of the onditional extreme-value index. Moreover, it bene�ts froman expliit formulation whih is not the ase of estimators de�ned by optimization problems(Girard et al. (2005)) suh as loal polynomial estimators (Hall et al. (1998), Hall and Park(2004), Knight (2001)).The asymptoti properties of the estimator (1) are investigated under two di�erent assump-tions. The �rst one is nonparametri, it is only assumed that
(NP ) Given X = x, Y is positive and has a �nite right endpoint g(x).We shall show in Setion 3 that, under (NP ), the estimator ĝn(x) onverges in probabilityto g(x) without any parametri assumption neither on the distribution of X nor on the dis-tribution of Y given X = x. Remark that, although our estimator ĝn(x) is based on a kernelregression, lassial results do not apply (see for instane Ferraty and Vieu (2005), Theo-rem 6.11) sine the ondition pn → ∞ indues tehnial di�ulties. The seond assumptionis parametri, the umulative distribution funtion of Y given X = x is assumed to be givenby
(P ) F (y|x) = 1− (1 − y/g(x))α(x), ∀ y ∈ [0, g(x)].Here, α(x) is an unknown positive funtion driving the behavior of the distribution tail of

Y given X = x in the neighborhood of its endpoint g(x). If α(x) < 1 then the density of
Y given X = x tends to in�nity as y → g(x) whereas it tends to 0 in the ase α(x) > 1.The intermediate ase α(x) = 1 orresponds to the uniform distribution already investigatedin Girard and Jaob (2008) where the density has a jump at the endpoint. In the generalontext of extreme-value theory (see for instane Embrehts et al. (1997)), the onditionaldistribution of Y given X = x is said to belong to the Weibull max-domain of attrationwith onditional extreme-value index −1/α(x). In Setion 4, the estimator is proved to beasymptotially Gaussian under (P ). As expeted, the asymptoti variane depends on thetail behavior of the onditional distribution of Y given X = x through the quantity α(x).Some simulations are proposed in Setion 5 to illustrate the e�ieny of our estimator andto ompare it with some estimators of the frontier estimation literature, partiularly the one3



of Girard and Jaob (2008). Auxiliary results are postponed to Appendix A and proved inAppendix B.2 Constrution of the estimatorTo motivate the onstrution of our estimator of g(x), let us �rst fous on the parametrisetting (P ). Let x ∈ Ω and onsider the onditional moment
mpn

(x) = pn

∫ ∞

0

tpn−1F (t|x) dt = α(x) gpn(x) B(pn + 1, α(x)) (2)where F = 1− F and B(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt is the Beta funtion. Therefore
mpn

(x)

mpn+1(x)
=

1

g(x)

(
1 +

α(x)

pn + 1

) (3)whih leads to the equation
1

g(x)
=

1

apn

[
((a+ 1)pn + 1)

m(a+1)pn
(x)

m(a+1)pn+1(x)
− (pn + 1)

mpn
(x)

mpn+1(x)

]for all a > 0. On the basis of this result, the estimator of g(x) is built in two steps. First,the onditional moment mpn
(x) is replaed by its smoothed version µpn

(x), and we set
1

Gn(x)
:=

1

apn

[
((a+ 1)pn + 1)

µ(a+1)pn
(x)

µ(a+1)pn+1(x)
− (pn + 1)

µpn
(x)

µpn+1(x)

]
.Seond, µpn

(x) is estimated by the orresponding empirial moment µ̂pn
(x). Plugging µ̂pn

(x)in 1/Gn(x) leads to the expression (1) of the estimator 1/ĝn(x) of 1/g(x). In the sequel, itis assumed that
(K) The kernel K is bounded and its support is inluded in B, the unit ball of Rd.Note that (K) implies that ∀ q ≥ 1,

∫

B

Kq(u) du < ∞. The following regularity assumptionsare introdued:
(A1) The onditional survival funtion F (· |x) of Y given X = x satis�es

∀x ∈ Ω, sup
u∈B

∣∣∣∣∣∣∣∣

∫ 1

0

ypn−1F (g(x− hnu) y|x− hnu) dy

∫ 1

0

ypn−1F (g(x) y|x) dy
− 1

∣∣∣∣∣∣∣∣
→ 0 as n → ∞.

(A2) f is loally Hölder ontinuous with exponent ηf .
(A3) g is loally Hölder ontinuous with exponent ηg.
(A4) α is loally Hölder ontinuous with exponent ηα.Note that assumptions (P ), (A4) and log(pn)h

ηα
n → 0 imply (A1). Finally, for any real-valued funtion γ on R

d, the osillation of γ between two points x and x − hnu, u ∈ B, is4



de�ned by
∆γ

n(x, u) = γ(x− hnu)− γ(x).3 ConsistenyIn this setion, the onsisteny of ĝn(x) is established in the nonparametri ontext (NP ).To this end, the �rst step is to prove that (3) still holds, up to an error term, when mpn
(x)is replaed by µpn

(x).Proposition 1. Let x ∈ Ω suh that f(x) > 0, and assume that (NP ), (K) and (A1 −A3)hold. If pn hηg
n → 0, then

µpn
(x)

µpn+1(x)
=

1

g(x)
(1 + o(1)).This result is a straightforward onsequene of Lemma 1. The seond step onsists in showingthat µpn

(x) an be replaed by its empirial ounterpart µ̂pn
(x). In fat, de�ning for thesake of simpliity

m1, pn
(x) = pn

∫ 1

0

ypn−1F1(y|x) dy (4)where F1(y|x) := F (g(x) y|x), a slightly more general result an be established:Proposition 2. Assume that (NP ), (K) and (A1 − A3) are satis�ed. Let x ∈ Ω suh that
f(x) > 0. If nm1, pn

(x)hd
n → ∞ and pn h

ηg
n → 0 as n → ∞, then

µ̂pn
(x)

µpn
(x)

= 1 + oP(1).Proof. Let, for all 1 ≤ j ≤ n,
Unj =

Y pn

j Khn
(x −Xj)

nµpn
(x)

.The desired result is then tantamount to ∑n
j=1 Unj

P−→ 1 as n → ∞. Let us highlight that,for all n, the (Unj)1≤j≤n are positive independent random variables, and ∑n
j=1 E(Unj) = 1.Aording to Chow and Teiher (1997, Corollary 2 p. 358), it is enough to show that, for all

ε > 0, ∑n
j=1 E(Unj1l{Unj≥ε}) → 0 as n → ∞. Remark that the Unj an be rewritten as

Unj =
Vnj Khn

(x−Xj)

nMpn
(x)where

Vnj =
Y pn

j

max
u∈B

gpn(x− hnu)
and Mpn

(x) =
µpn

(x)

max
u∈B

gpn(x− hnu)
.The (Unj)1≤j≤n being identially distributed, it is equivalent to prove that, for all ε > 0,

1

Mpn
(x)

E(Vn1 Khn
(x−X)1l{Vn1 Khn (x−X)≥εnMpn (x)}) → 0.5



Let then ε > 0 and notie that
Vn1 Khn

(x −X) ≥ εnMpn
(x) ⇔ hd

n Vn1 Khn
(x−X) ≥ εnMpn

(x)hd
n. (5)The left-hand side of the seond inequality is positive and bounded by maxRd K. In view ofLemma 1i), ondition nm1, pn

(x)hd
n → ∞ is equivalent to nhd

n µpn
(x)/gpn(x) → ∞. Besides,

pn h
ηg
n → 0 and (16) in the proof of Lemma 1i) imply that

max
u∈B

gpn(x− hnu)

gpn(x)
→ 1so that nMpn

(x)hd
n → ∞ as n → ∞. As a onsequene, the right-hand side of (5) goes toin�nity, so that
1

Mpn
(x)

E(Vn1 Khn
(x−X)1l{hd

n Vn1 Khn (x−X)≥εnMpn (x)hd
n}
) = 0eventually, and the result is proved.As a onsequene of the two previous results, we have:Theorem 1. Suppose that (NP ), (K) and (A1 − A3) hold. Let x ∈ Ω suh that f(x) > 0.If nm1, (a+1)pn

(x)hd
n → ∞ and pn h

ηg
n → 0, then ĝn(x)

P−→ g(x) as n → ∞.Proof. Note that m1, (a+1)pn
(x) ≤ m1, pn

(x), whih implies nm1, pn
(x)hd

n → ∞. Thus,Lemma 1ii) entails nm1, pn+1(x)h
d
n → ∞ and nm1, (a+1)pn+1(x)h

d
n → ∞ as n → ∞. Wean then apply Proposition 2 to rewrite the frontier estimator as:

1

ĝn(x)
=

1

apn

[
((a+ 1)pn + 1)

µ(a+1)pn
(x)

µ(a+1)pn+1(x)
(1 + oP(1))− (pn + 1)

µpn
(x)

µpn+1(x)
(1 + oP(1))

]
.(6)From Proposition 1, we have

µpn
(x)

µpn+1(x)
→ 1

g(x)
and µ(a+1)pn

(x)

µ(a+1)pn+1(x)
→ 1

g(x)as n → ∞. Replaing in (6), the onlusion follows.4 Asymptoti normalityWe now establish the asymptoti distribution of ĝn(x) under the assumption (P ). The para-metri model enables us to ompute a more preise asymptoti expansion of µpn
(x)/µpn+1(x)than under the nonparametri assumption, see Proposition 1.Proposition 3. Let x ∈ Ω suh that f(x) > 0, and assume that (P ), (K) and (A2 − A4)hold. If pn hηg

n → 0, then
µpn

(x)

µpn+1(x)
=

1

g(x)

[
1 +

α(x)

pn + 1

]
+O

(
hηg
n +

hηα
n

pn

)
.6



Proof. Remark that, retaining notations of Lemma 2, we have
Ln(pn + 1, x, u)

Ln(pn, x, u)
= 1 +

∆g
n(x, u)

g(x)
− ∆α

n(x, u)

pn
+ O

(
h
ηg
n

pn
+

hηα
n

p2n

)uniformly in u ∈ B. Using the expansion of µpn
(x) provided by Lemma 2ii) with q = 1 thenyields

µpn
(x)

µpn+1(x)
=

1

g(x)

[
1 +

α(x)

pn + 1

]

×


1 +

∫

B

Ln(pn, x, u)

[
∆α

n(x, u)

pn
− ∆g

n(x, u)

g(x)

]
K(u) du

∫

B

Ln(pn, x, u)K(u) du
+O

(
h
ηg
n

pn
+

hηα
n

p2n

)

 .To onlude, from Lemma 2i), Ln(pn, x, u) → 1 as n → ∞ uniformly in u ∈ B so that

∫

B

Ln(pn, x, u)

[
∆α

n(x, u)

pn
− ∆g

n(x, u)

g(x)

]
K(u)du

∫

B

Ln(pn, x, u)K(u)du

= O

(
hηg
n +

hηα
n

pn

)whih entails
µpn

(x)

µpn+1(x)
=

1

g(x)

[
1 +

α(x)

pn + 1

]
+O

(
hηg
n +

hηα
n

pn

)and ompletes the proof of Proposition 3.As a straightforward onsequene, we obtain a ontrol of the bias introdued by replaing
mpn

(x) by µpn
(x). If pn hηg

n → 0, then
1

Gn(x)
=

1

g(x)
+ O

(
hηg
n +

hηα
n

pn

)
. (7)Let us now turn to the random term:Theorem 2. Suppose (P ), (K) and (A2 − A4) hold. Let x ∈ Ω suh that f(x) > 0. If

n p
−α(x)
n hd

n → ∞ and pn h
ηg
n → 0 then

vn(x)

(
ĝn(x)

Gn(x)
− 1

)
d−→ N

(
0,

‖K‖22 V (α(x), a)

f(x)

)
, as n → ∞where vn(x) =

√
n p

−α(x)/2+1
n h

d/2
n , ‖K‖22 =

∫

B

K2(x) dx and
V (α(x), a) =

α(x) + 1

a2 Γ(α(x))

[
2−α(x)−2 − 2

(a+ 1)α(x)+1

(a+ 2)α(x)+2
+ 2−α(x)−2(a+ 1)α(x)

]
.Proof. Our goal is to prove that the sequene of random variables

ξn(x) =
g(x)

‖K‖2

√
f(x)

V (α(x), a)
· vn(x)

(
1

ĝn(x)
− 1

Gn(x)

)onverges in distribution to a standard Gaussian random variable. The �rst step onsists touse Lemma 3 in order to linearize ξn(x):
ξn(x) =

[
ζ(1)n (x) +

(
µpn+1(x)

µ̂pn+1(x)
− 1

)
ζ(2)n (x) +

(
1 +

apn
pn + 1

)(
µ(a+1)pn+1(x)

µ̂(a+1)pn+1(x)
− 1

)
ζ(3)n (x)

]

× un, a(x)(1 + o(1)). 7



Now, Proposition 2 yields
ξn(x) = un, a(x)

[
ζ(1)n (x) + oP(ζ

(2)
n (x)) + oP(ζ

(3)
n (x))

]
(1 + o(1))and to onlude the proof, it is su�ient to establish that

un, a(x) ζ
(1)
n (x)

d−→ N (0, 1), (8a)
un, a(x) ζ

(2)
n (x)

d−→ N (0, C2), (8b)
un, a(x) ζ

(3)
n (x)

d−→ N (0, C3), (8)where C2 and C3 are positive onstants. Note that in fat, (8b) and (8) are strongerthan what is neessary, but their proofs are similar to (8a). In all the sequel, we set:
Z

(n, c, j)
k (x) = Y cpn+j

k Khn
(x − Xk), so that µcpn+j(x) = E(Z(n, c, j)(x)). To prove (8a),remark that ζ(1)n (x) an be expanded as the sum of independent and entered random vari-ables: ζ(1)n (x) =

∑n
k=1 S

(1)
n, k(x) with

S
(1)
n, k(x) =

1

n

[
Z

(n, 1, 0)
k (x), Z

(n, 1, 1)
k (x), Z

(n, a+1, 0)
k (x), Z

(n, a+1, 1)
k (x)

]
A(1)

n (x), (9)
A(1)

n (x) =
[
a
(1)
n, 0(x), a

(1)
n, 1(x), a

(1)
n, 2(x), a

(1)
n, 3(x)

]t
,

a
(1)
n, 0(x) = −1,

a
(1)
n, 1(x) =

µpn
(x)

µpn+1(x)
,

a
(1)
n, 2(x) =

(
1 +

apn
pn + 1

)
µpn+1(x)

µ(a+1)pn+1(x)
,

a
(1)
n, 3(x) = −

(
1 +

apn
pn + 1

)
µpn+1(x)µ(a+1)pn

(x)

µ2
(a+1)pn+1(x)

,where At stands for the transposed matrix of A. In order to use Lyapounov's entral limittheorem (see e.g. Billingsley, 1979, p. 312), it remains to prove that
1

[Var(ζ
(1)
n (x))]3/2

n∑

k=1

E|S(1)
n, k(x)|3 → 0 (10)as n → ∞, whih requires to ontrol Var(ζ(1)n (x)) and E|S(1)

n, k(x)|3. The variane an berewritten as
nVar(ζ(1)n (x)) = w(pn, pn)(x) − 2

(
1 +

apn
pn + 1

)
µpn+1(x)

µ(a+1)pn+1(x)
w(pn, (a+ 1)pn)(x)

+

(
1 +

apn
pn + 1

)2 µ2
pn+1(x)

µ2
(a+1)pn+1(x)

w((a+ 1)pn, (a+ 1)pn)(x)where
w(spn + t, upn + v)(x) =

[
−1,

µspn+t(x)

µspn+t+1(x)

]
Mn(s, t, u, v)(x)

[
−1,

µupn+v(x)

µupn+v+1(x)

]tand Mn(s, t, u, v)(x) is the 2× 2 ovariane matrix de�ned by
Mn(s, t, u, v)(x) =


 E(Z(n, s, t)(x)Z(n, u, v)(x)) E(Z(n, s, t)(x)Z(n, u, v+1)(x))

E(Z(n, s, t+1)(x)Z(n, u, v)(x)) E(Z(n, s, t+1)(x)Z(n, u, v+1)(x))


 .8



Sine Lemma 2iii) provides an asymptoti expansion of the matrix Mn(s, t, u, v)(x), it istherefore su�ient to ompute an asymptoti expansion of µspn+t(x)/µspn+t+1(x). UsingProposition 3 and tedious omputations lead to
Var(ζ(1)n (x)) = a2 ‖K‖22 f(x) Γ2(α(x) + 1)V (α(x), a)

1

n

1

hd
n

g2pn(x) p−α(x)−2
n (1 + o(1)). (11)Now, fousing on the third moment, Hölder's inequality yields

n3
E|S(1)

n, 1(x)|3 ≤ 4E|a(1)n, 0(x)Z
(n, 1, 0)
1 (x) + a

(1)
n, 1(x)Z

(n, 1, 1)
1 (x)|3

+ 4E|a(1)n, 2(x)Z
(n, a+1, 0)
1 (x) + a

(1)
n, 3(x)Z

(n, a+1, 1)
1 (x)|3.The next step onsists in applying Lemma 4 to eah term of the right-hand side of thisinequality. To this end, let us onsider the funtions

H
(1)
n, 0(u) = −1,

H
(1)
n, 1(u) = α(x)u,

H
(1)
n, 2(u) =

(
1 +

apn
pn + 1

)
gapn(x)

µpn+1(x)

µ(a+1)pn+1(x)
,

H
(1)
n, 3(u) = −

(
1 +

apn
pn + 1

)
gapn(x)

µpn+1(x)

µ(a+1)pn+1(x)
· α(x)u
a+ 1

,and note that there exist two sequenes of measurable funtions (χn, 1) and (χn, 2) uniformlyonvergent to 0 on [0, 1] suh that
max
u∈B

∣∣∣a(1)n, 0(x) + a
(1)
n, 1(x) g(x − hnu) y

∣∣∣ ≤ |H(1)
n, 0(y)|(1 − y) +

|H(1)
n, 1(y)|+ χn, 1(y)

pn
,

max
u∈B

∣∣∣a(1)n, 2(x) + a
(1)
n, 3(x) g(x − hnu) y

∣∣∣ ≤ 1

gapn(x)

[
|H(1)

n, 2(y)|(1 − y) +
|H(1)

n, 3(y)|+ χn, 2(y)

pn

]
.Sine gapn(x)µpn+1(x)/µ(a+1)pn+1(x) → (a + 1)α(x) as n → ∞, the funtions H

(1)
n, j , j ∈

{0, 1, 2, 3} are bounded on [0, 1], uniformly in n, and thus Lemma 4 entails that
E|S(1)

n, 1(x)|3 = O(n−3 g3pn(x) p−α(x)−3
n h−2d

n ). (12)Combining (11) and (12), onvergene (10) follows from the ondition n p
−α(x)
n hd

n → ∞ andtherefore (8a) holds.Proofs of (8b) and (8) are similar sine ζ
(2)
n and ζ

(3)
n an be rewritten as

ζ(2)n (x) =
1

n

n∑

k=1

[
Z

(n, 1, 0)
k (x), Z

(n, 1, 1)
k (x)

] [
a
(2)
n, 0(x), a

(2)
n, 1(x)

]t

ζ(3)n (x) =
1

n

n∑

k=1

[
Z

(n, a+1, 0)
k (x), Z

(n, a+1, 1)
k (x)

] [
a
(3)
n, 0(x), a

(3)
n, 1(x)

]t

9



with lear de�nitions of the sequenes a(j)n, i(x), i = 0, 1, j = 2, 3. Applying Lemma 4 with
H

(2)
n, 0(u) = −1,

H
(2)
n, 1(u) = α(x)u,

H
(3)
n, 0(u) = gapn(x)

µpn+1(x)

µ(a+1)pn+1(x)
,

H
(3)
n, 1(u) = −gapn(x)

µpn+1(x)

µ(a+1)pn+1(x)
· α(x)u
a+ 1yields E|S(j)

n, 1(x)|3 = O(n−3 g3pn(x) p
−α(x)−3
n h−2d

n ), j = 2, 3. Lyapounov's entral limit the-orem then gives the onvergene. Theorem 2 is therefore established.From the expansion̂
gn(x)− g(x) = Gn(x)

[
ĝn(x)

Gn(x)
− 1

]
+ [Gn(x)− g(x)],the asymptoti normality of ĝn(x) entered on the true funtion g(x) is readily obtained:Theorem 3. Suppose (P ), (K) and (A2 − A4) hold. Let x ∈ Ω suh that f(x) > 0. If

n p
−α(x)
n hd

n → ∞, n p
−α(x)+2
n h

d+2ηg
n → 0 and n p

−α(x)
n hd+2ηα

n → 0, then
vn(x)

(
ĝn(x)

g(x)
− 1

)
d−→ N

(
0,

‖K‖22 V (α(x), a)

f(x)

)
, as n → ∞.Let us note that n p

−α(x)
n hd

n → ∞ and n p
−α(x)+2
n h

d+2ηg
n → 0 imply that pn hηg

n → 0. Besides,if we assume that α has greater regularity than g, namely ηα ≥ ηg, then the hypothesesneessary to apply Theorem 3 an be redued to n p
−α(x)
n hd

n → ∞ and n p
−α(x)+2
n h

d+2ηg
n → 0.Let x ∈ Ω suh that f(x) > 0 and note that the sequenes

hn(x) = εα(x)−1
n n−1/(d+ηgα(x)) and pn(x) = εd+ηg

n nηg/(d+ηgα(x))an be hosen to hek the assumptions of Theorem 3, where (εn) is an arbitrary sequeneof positive real numbers tending to 0 suh that n−δεn → 0 for all δ > 0. With suh hoies,the rate of onvergene vn(x) of the estimator is then nηg/(d+ηgα(x)) up to a εn term. Inthe uniform ase (that is, when α is onstant equal to 1), the rate of onvergene of theestimator is then nηg/(d+ηg), up to the fator εn, whih is also the rate of onvergene forthe Parzen estimator studied in Girard and Jaob (2008), Theorem 2. Let us note that thisrate of onvergene has been shown to be minimax by Härdle et al. (1995) for a partiularlass of densities with a L1 risk. Clearly, the rate of onvergene is a dereasing funtion ofthe dimension d of the ovariate X . This is often referred to as the �urse of dimensionality�e�et for nonparametri estimators. This problem may be overome using semi-parametridimension redution tehniques, see for instane Härdle and Stoker (1989).The asymptoti variane of the estimator also involves the multipliative fator V (α(x), a).The hoie of an �optimal� value for a by minimization of V (α(x), a) is a di�ult task sine10



it depends on the unknown value of α(x). One an observe on Figure 1 that, for α(x) ≤ 2,
V (α(x), ·) is a dereasing funtion and thus large values of a should be preferred.However, both statements above require a preise knowledge of the funtion x 7→ α(x), whihis often unrealisti. In view of these remarks, it may be of interest to estimate α(x). From (3),the following estimator is onsidered:

α̂n(x) = (pn + 1)

[
ĝn(x)

µ̂pn
(x)

µ̂pn+1(x)
− 1

]
,and its weak onsisteny is established under the same assumptions as in Theorem 3.Proposition 4. Under the assumptions of Theorem 3, α̂n(x) = α(x) + OP(pn/vn(x)).Proof. De�ne

αn(x) = (pn + 1)

[
Gn(x)

µpn
(x)

µpn+1(x)
− 1

]and let us fous �rst on the random term
vn(x)

pn
(α̂n(x)−αn(x)) = vn(x)

[
[ĝn(x)−Gn(x)]

µ̂pn
(x)

µ̂pn+1(x)
−Gn(x)

µpn+1(x)

µ̂pn+1(x)
· ζ

(2)
n (x)

µpn+1(x)

]
(1+o(1))with notations of Lemma 3. Reall that, from Proposition 1, µpn

(x)/µpn+1(x) → 1/g(x),from Proposition 2, µpn
(x)/µ̂pn

(x)
P−→ 1 and from (7), Gn(x) → g(x) as n → ∞ so that

vn(x)

pn
(α̂n(x)−αn(x)) = vn(x)

[
(ĝn(x) −Gn(x))

[
1

g(x)
+ oP(1)

]
− g(x)

ζ
(2)
n (x)

µpn+1(x)
(1 + oP(1))

]
.Besides, applying Theorem 2 yields vn(x)(ĝn(x) −Gn(x)) = OP(1). Now,

vn(x)
ζ
(2)
n (x)

µpn+1(x)
=

vn(x)

µpn+1(x)un, a(x)
un, a(x) ζ

(2)
n (x) = OP(1),from (21) and sine un, a(x) ζ

(2)
n (x) is asymptotially Gaussian (see (8b)). As a preliminaryonlusion, we have
vn(x)

pn
(α̂n(x)− αn(x)) = OP(1).Turning to the bias term, (7) and Proposition 3 yield

αn(x) = α(x) + (pn + 1)O

(
hηg
n +

hηα
n

pn

)
= α(x) + o(pn/vn(x)),whih ompletes the proof.Meanwhile, the density funtion f(x) an be estimated with the lassial kernel estimator:

f̂n(x) =
1

n

n∑

i=1

Khn
(x −Xi).Sine Parzen (1962), it is well-known that f̂n(x)
P−→ f(x) when nhd

n → ∞. By plugging
α̂n(x) and f̂n(x) in the asymptoti variane of Theorem 3, lassial arguments thus yield:11



Corollary 1. Under the assumptions of Theorem 3,
vn(x)

√
f̂n(x)

V (α̂n(x), a)

(
ĝn(x)

g(x)
− 1

)
d−→ N

(
0, ‖K‖22

)
, as n → ∞.Pointwise on�dene intervals for the frontier may then be built using this result.5 Numerial experimentsThe behavior of the proposed frontier estimator is investigated on di�erent situations. Inpartiular, we examine the ase d = 1 where X is uniformly distributed on Ω = [0, 1] and thease d = 2 where X = (X1, X2) is uniformly distributed on Ω = [0, 1]2.� Let us �rst fous on the ase d = 1. Three frontiers are onsidered:

g1(x) =





1 + exp
(
−60 (x− 1/4)

2
) if x ∈ [0, 1/3] ,

1 + exp (−5/12) if x ∈ ]1/3, 2/3] ,

1 + 5 exp (−5/12)− 6 exp (−5/12)x if x ∈ ]2/3, 5/6] ,

6x− 4 if x ∈ ]5/6, 1] ,

g2(x) =

(
1

10
+ sin(πx)

)[
11

10
− 1

2
exp

(
−64

(
x− 1

2

)2
)]

,

g3(x) =
5

4
− 2x(1 − x).Note that g1 is ontinuous but not di�erentiable at x = 1/3, x = 2/3 and x = 5/6 while g2and g3 are in�nitely di�erentiable.In the parametri setting (P ), two di�erent models for the funtion α(x) are onsidered: aonstant funtion α1(x) = 1.25 and α2(x) = 1.25 + 0.5| cos(2πx)|.In the nonparametri setting (NP ), the simulated model is given by

F (y|x) = C(x)(1 − y/g3(x))
α2(x) + (1−C(x))(1− y/g3(x))

α2(x)+1/4, ∀ y ∈ [0, g3(x)], (13)with C(x) = c + sin(2πx)/16 and c ∈ {1/8, 3/8, 5/8, 7/8}. Let us highlight that (13) anbe seen as a �ontamination� of the parametri model (P ): the smaller c is, the larger theontamination is.The uniform kernel is hosen:
K(x) =

1

2
1l[−1, 1](x)with assoiated bandwidth h

(m)
n = 2σ̂(X)/n1/(1+α∞) and p

(m)
n = n1/(1+α∞)/

√
log(n), where

n = 500 is the sample size, σ̂(X) is the empirial standard deviation of X and α∞ =

maxΩ α < ∞ sine α is ontinuous and Ω is a ompat subset of R. These sequenes arehosen to hek the hypotheses of Theorem 1. Note that the multipliative onstant σ̂(X) hasbeen suggested by Girard and Jaob (2008), whereas the onstant 2 was empirially hosen.12



An alternative approah would be the seletion of the bandwidth by ross-validation. Härdleand Marron (1985) have shown that this method is asymptotially optimal for the regressionfuntion estimation. Establishing a similar result for the estimation of onditional momentsof high order is an open problem.� In the ase d = 2, we limit ourselves to a unique model
g(x, y) = 1 + 3g1(x)y/20, and α(x, y) = 1.25 + 0.5| cos(2πx) sin(2πy)|,the kernel being

K(x, y) =
1

4
1l[−1, 1]×[−1, 1](x, y),with bandwidth h

(m)
n = 4

√
σ̂(X1) σ̂(X2)/n

1/(2+α∞) and p
(m)
n = n1/(2+α∞)/

√
log(n). Thesample size is �xed to n = 1000.Our estimator is ompared to the two estimators proposed by Girard and Jaob (2008)and Ge�roy (1964). Let us reall that, similarly to ĝn(x), Girard and Jaob's estimator(2008) is based on a kernel regression on high power transformed data. At the opposite,the estimator in Ge�roy (1964) is based on the extreme values of the sample and does notinvolve any smoothing. For Girard and Jaob's estimator, we set h

(gj)
n = 4σ̂(X)/

√
n and

p
(gj)
n =

√
n/ log(n) if d = 1, and h

(gj)
n = 4

√
σ̂(X1) σ̂(X2)/n

1/3 and p
(gj)
n = n1/3/

√
log(n)when d = 2. The L1−errors assoiated to eah estimator are omputed on 500 repliationsof the initial sample of size n and the minimum, maximum and mean L1−errors are reportedin Table 1. Note that for the moment estimator, these results were obtained with a = 15,the onstant a having been hosen after intensive simulations.It appears that, in all the onsidered situations, our moment estimator yields better resultsthan both the estimators of Girard and Jaob (2008) and Ge�roy (1964). For a �xed frontier,all the estimators perform better on the situation α(x) = α1(x) than on the situation α(x) =

α2(x). This behavior is a onsequene of α2(x) > α1(x): as α(x) inreases, the simulatedpoints tend to move away from the frontier g(x). This phenomenon is illustrated in the ase
d = 1 on Figures 2 and 3. On eah of the upper panels the best situation is represented,i.e. the repliation that yields the smallest L1−error for ĝn in Table 1. Similarly, the worstsituation is depited on the lower panels, i.e. the repliation that yields the largest L1−errorfor ĝn in Table 1. In all ases, ĝn is superimposed to the frontier g. Finally, we show onFigure 4 some 95% pointwise on�dene intervals obtained thanks to Corollary 1 for thefrontier g1 with α(x) = α2(x) and a parameter a = 3, in both the best situation (top panel)and the worst situation (bottom panel). These intervals are globally satisfatory.When d = 2, satter plots (g(Xi), ĝ(Xi)), i = 1, . . . , n are represented on Figure 5, ĝ beingeither our moment estimator or Girard and Jaob's estimator. The best and worst situationsare depited for these two estimators. It appears that the points assoiated to the moment13
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(x) and m1, pn

(x) are provided, see (4) for a de�nition.Lemma 1. Suppose that (NP ), (K) and (A1 −A3) hold. Let x ∈ Ω suh that f(x) > 0. If
pn h

ηg
n → 0, theni) µpn
(x) = f(x) gpn(x)m1, pn

(x)(1 + o(1)).ii) m1, pn
(x) = m1, pn+1(x)(1 + o(1)).The next result of this setion is tehnial: it provides preise expansions of the smoothedmoment E(Y pn Kq

hn
(X − x)) when pn → ∞, hn → 0 and for all q ≥ 1. It will be useful forthe proof of our next lemmas and of Theorem 2.Lemma 2. Suppose (P ), (K) and (A2 − A4) hold. For all q ≥ 1, u ∈ B, n ∈ N \ {0} and

x ∈ Ω suh that f(x) > 0, let
Ln(pn, x, u) =

f(x− hnu) Γ(α(x − hnu) + 1)

f(x) Γ(α(x) + 1)
exp

[
pn

∆g
n(x, u)

g(x)
− log(pn)∆

α
n(x, u)

]

Λn(q, pn, x) = hd(q−1)
n

E(Y pn Kq
hn
(X − x))

f(x) gpn(x)
.16



If pn hηg
n → 0, theni) Ln(pn, x, u) → 1 as n → ∞ uniformly in u ∈ B.ii) For all q ≥ 1,
Λn(q, pn, x)

α(x)B(pn + 1, α(x))
=

∫

B

Ln(pn, x, u)

[
1− pn

2

(
∆g

n(x, u)

g(x)

)2
]
Kq(u) du

− 1

pn

∫

B

Ln(pn, x, u)
∆α

n(x, u)

2
[α(x − hnu) + α(x) + 1]Kq(u) du

+ O

(
h
ηg
n

pn
+

hηα
n

p2n

)
.iii) Moreover, there exist δ1, δ2 ∈ R suh that for all q ≥ 1,

Λn(q, pn, x)

Γ(α(x) + 1) p
−α(x)
n

=

∫

B

Ln(pn, x, u)

[
1 +

δ1
pn

− pn
2

(
∆g

n(x, u)

g(x)

)2
]
Kq(u) du

− 1

pn

∫

B

Ln(pn, x, u)
∆α

n(x, u)

2
[α(x − hnu) + α(x) + 1]Kq(u) du

+
δ2
p2n

∫

B

Kq(u) du+ o(p−2
n ).Our next lemma onsists in linearizing

ξn(x) =
g(x)

‖K‖2

√
f(x)

V (α(x), a)
· vn(x)

(
1

ĝn(x)
− 1

Gn(x)

)appearing in Theorem 2.Lemma 3. Suppose (P ), (K), (A2 −A4) hold and let x ∈ Ω suh that f(x) > 0. If pn → ∞then
ξn(x) =

[
ζ(1)n (x) +

(
µpn+1(x)

µ̂pn+1(x)
− 1

)
ζ(2)n (x) +

(
1 +

apn
pn + 1

)(
µ(a+1)pn+1(x)

µ̂(a+1)pn+1(x)
− 1

)
ζ(3)n (x)

]

× un, a(x)(1 + o(1))where νp(x) = µ̂p(x) − µp(x),
ζ(1)n (x) = ζ(2)n (x) +

[
1 +

apn
pn + 1

]
ζ(3)n (x)with ζ(2)n (x) = −νpn

(x) +
µpn

(x)

µpn+1(x)
νpn+1(x),

ζ(3)n (x) =
µpn+1(x)

µ(a+1)pn+1(x)
ν(a+1)pn

(x)− µpn+1(x)µ(a+1)pn
(x)

µ2
(a+1)pn+1(x)

ν(a+1)pn+1(x)and un, a(x) =
1

a‖K‖2 Γ(α(x) + 1)

√
1

f(x)V (α(x), a)

p
α(x)
n vn(x)

gpn(x)
.Finally, the following result provides an asymptoti bound of the third-order moments ap-pearing in the proofs.Lemma 4. Suppose (P ), (K), (A2−A4) are satis�ed and pn h

ηg
n → 0 as n → ∞. Let k ∈ N,

(bn, j)n∈N\{0}, 0≤j≤k ∈ R and x ∈ R
d suh that there exist m ∈ N and sequenes of measurable17



funtions (Hn, j), 0 ≤ j ≤ m, uniformly bounded on [0, 1] with
∀ y ∈ [0, 1] max

u∈B

∣∣∣∣∣∣

k∑

j=0

bn, j g
j(x− hnu) y

j

∣∣∣∣∣∣
≤

m∑

j=0

Hn, j(y)

pjn
(1− y)m−j .Let us onsider

Sn(x) =
1

n

k∑

j=0

bn, j Y
pn+j Khn

(x−Xj).Then E|Sn(x)|3 = O(n−3 g3pn(x) p
−α(x)−3m
n h−2d

n ).Appendix B: Proof of the auxiliary resultsProof of Lemma 1. i) Reall that
µpn

(x) =

∫

B

f(x− hnu) g
pn(x− hnu)m1, pn

(x− hnu)K(u) du.First, (A2) yields
sup
u∈B

∣∣∣∣
f(x− hnu)

f(x)
− 1

∣∣∣∣ = sup
u∈B

∣∣∣∣
∆f

n(x, u)

f(x)

∣∣∣∣ ≤
εf h

ηf
n

f(x)
→ 0. (14)Seond, (A3) entails

pn sup
u∈B

∣∣∣∣
∆g

n(x, u)

g(x)

∣∣∣∣ ≤ pn sup
u∈B

{
εgh

ηg
n ‖u‖ηg

g(x)

}
= O(pnh

ηg
n ) (15)so that the hypothesis pn hηg

n → 0 gives
log

[
gpn(x− hnu)

gpn(x)

]
= pn log

[
1 +

∆g
n(x, u)

g(x)

]
= O(pn h

ηg
n ) → 0 (16)uniformly in u ∈ B as n → ∞. Finally, setting

Ipn
(x) :=

∫ 1

0

ypn−1F1(y|x) dy,one has m1, pn
(x) = pn Ipn

(x), and (A1) yields
sup
u∈B

∣∣∣∣
Ipn

(x− hnu)

Ipn
(x)

− 1

∣∣∣∣→ 0 (17)as n → ∞. Colleting (14), (16) and (17), the dominated onvergene theorem thereforegives i).ii) Pik ε > 0. The integral Ipn
(x) is rewritten as:

Ipn
(x) =

∫ 1

1−ε

ypn−1F1(y|x) dy


1 +

∫ 1−ε

0

ypn−1F1(y|x) dy
∫ 1

1−ε

ypn−1F1(y|x) dy


 ;

18



with
0 ≤

∫ 1−ε

0

ypn−1F1(y|x) dy
∫ 1

1−ε

ypn−1F1(y|x) dy
≤ 1− ε

∫ 1

1−ε

[
y

1− ε

]pn−1

F1(y|x) dy

≤ 1− ε
[
1− ε/2

1− ε

]pn−1 ∫ 1

1−ε/2

F1(y|x) dy
.Beause [1− ε/2

1− ε

]pn−1

→ ∞ as n → ∞, we therefore get:
Ipn

(x) =

∫ 1

1−ε

ypn−1F1(y|x) dy(1 + o(1)).Sine
1 ≤

∫ 1

1−ε

ypn−1F1(y|x) dy
/∫ 1

1−ε

ypnF1(y|x) dy ≤ 1

1− εfor all ε > 0, one has Ipn
(x)/Ipn+1(x) → 1 as n → ∞. Hene, m1, pn

(x)/m1, pn+1(x) → 1 as
n → ∞, whih ompletes the proof of ii).Proof of Lemma 2. i) Let us introdue

Qn(x, u) =
f(x− hnu) Γ(α(x− hnu) + 1)

f(x) Γ(α(x) + 1)
.Sine f and α are ontinuous at x and Γ is ontinuous on (0, ∞), one has Qn(x, u) → 1 as

n → ∞, uniformly in u ∈ B. Moreover, sine h
ηg
n pn → 0, we have

sup
u∈B

log(pn) |∆α
n(x, u)| ≤ εα hηα

n | log pn| = εα

[
hηg
n pn

]ηα/ηg | log pn|
p
ηα/ηg
n

−→ 0.It was already proved that supu∈B pn |∆g
n(x, u)| → 0 as n → ∞, see (15). As a onlusion,

Ln(pn, x, u) → 1 as n → ∞, uniformly in u ∈ B.ii) By de�nition of the Beta funtion,
Λn(q, pn, x)

α(x)B(pn + 1, α(x))
=

∫

B

Qn(x, u)
Γ(pn + 1 + α(x))

Γ(pn + 1 + α(x− hnu))

gpn(x− hnu)

gpn(x)
Kq(u) du. (18)Reall now that for all z > 0, one has

log Γ(z) =

(
z − 1

2

)
log z − z +

log 2π

2
+ 2

∫ ∞

0

arctan(t/z)

e2πt − 1
dt(see Formula 6.1.50 p. 258 in Abramovitz and Stegun, 1965). Using the mean value theorem,simple alulations then yield

Γ(pn + 1 + α(x))

Γ(pn + 1 + α(x − hnu))
= exp(− log(pn)∆

α
n(x, u))

(
1−∆α

n(x, u)

2pn
(1 + α(x− hnu) + α(x))

)

+ O

(
hηα
n

p2n

)
, (19)19



uniformly in u ∈ B. Besides
gpn(x− hnu)

gpn(x)
= exp

[
pn log

(
1 +

∆g
n(x, u)

g(x)

)]

= exp

[
pn

∆g
n(x, u)

g(x)

] [
1− pn

2

(
∆g

n(x, u)

g(x)

)2
]
+O

(
h
ηg
n

pn

) (20)uniformly in u ∈ B. Replaing (19) and (20) in (18) gives the �rst desired expansion.iii) Now, aording to Triomi and Erdélyi (1951), for all κ and ι, there exist two real numbers
δ1(κ, ι) and δ2(κ, ι) suh that

Γ(x+ κ)

Γ(x+ ι)
= xκ−ι

[
1 +

δ1(κ, ι)

x
+

δ2(κ, ι)

x2
+ o

(
1

x2

)]
.Consequently, setting δ1 = δ1(1, α(x) + 1) and δ2 = δ2(1, α(x) + 1), we have

B(pn + 1, α(x)) = Γ(α(x)) p−α(x)
n

[
1 +

δ1
pn

+
δ2
p2n

+ o

(
1

p2n

)]
.Replaing in the expansion ii) and remarking that, from i),

∫

B

Ln(pn, x, u)
δ2
p2n

Kq(u) du =
δ2
p2n

∫

B

Kq(u) du+ o

(
1

p2n

)yields iii).Proof of Lemma 3. Let us �rst remark that, from Lemma 2i) and iii) with q = 1,
µpn+1(x) = f(x) Γ(α(x) + 1) gpn+1(x) p−α(x)

n (1 + o(1)),leading to
µpn+1(x)un, a(x) =

g(x)

a‖K‖2

√
f(x)

V (α(x), a)
· vn(x)(1 + o(1)), (21)and therefore

ξn(x) =
µpn+1(x)un, a(x)

pn + 1
· apn

(
1

ĝn(x)
− 1

Gn(x)

)
(1 + o(1)). (22)Besides,

apn

(
1

ĝn(x)
− 1

Gn(x)

)
= ((a+ 1)pn + 1)

µ̂(a+1)pn
(x)µ(a+1)pn+1(x)− µ(a+1)pn

(x) µ̂(a+1)pn+1(x)

µ̂(a+1)pn+1(x)µ(a+1)pn+1(x)

− (pn + 1)
µ̂pn

(x)µpn+1(x) − µpn
(x) µ̂pn+1(x)

µ̂pn+1(x)µpn+1(x)

=: D(1)
n (x)−D(2)

n (x)with
D(1)

n (x) :=
(a+ 1)pn + 1

µ(a+1)pn+1(x)
· µ(a+1)pn+1(x)

µ̂(a+1)pn+1(x)
·
(
ν(a+1)pn

(x)− µ(a+1)pn
(x)

µ(a+1)pn+1(x)
ν(a+1)pn+1(x)

)

D(2)
n (x) :=

pn + 1

µpn+1(x)
· µpn+1(x)

µ̂pn+1(x)
·
(
νpn

(x)− µpn
(x)

µpn+1(x)
νpn+1(x)

)20



whih leads to
µpn+1(x)

pn + 1
·D(1)

n (x) =

(
1 +

apn
pn + 1

)
µ(a+1)pn+1(x)

µ̂(a+1)pn+1(x)
· ζ(3)n (x)

µpn+1(x)

pn + 1
·D(2)

n (x) = −µpn+1(x)

µ̂pn+1(x)
· ζ(2)n (x).Replaing in (22) onludes the proof of Lemma 3.Proof of Lemma 4. Conditioning on X yields

E|Sn(x)|3 =
1

n3

∫

Rd

E




∣∣∣∣∣∣

k∑

j=0

bn, j Y
pn+j Khn

(x− v)

∣∣∣∣∣∣

3 ∣∣∣X = v


 f(v) dv

=
1

n3h2d
n

∫

B

E




∣∣∣∣∣∣

k∑

j=0

bn, j Y
pn+j

∣∣∣∣∣∣

3 ∣∣∣X = x− hnu


 K3(u) f(x− hnu) du.Now, given {X = x− hnu}, we have Wn(x, u) :=

Y

g(x− hnu)
≤ 1. Setting

cn(x) := (m+ 1)2 sup
[0, 1]

0≤j≤m
n∈N\{0}

|Hn, j |3 ·max
u∈B

g3pn(x− hnu)

g3pn(x)
,whih is a bounded sequene, Hölder's inequality entails, given {X = x− hnu},

∣∣∣∣∣∣

k∑

j=0

bn, j Y
pn+j

∣∣∣∣∣∣

3

= g3pn(x − hnu)

∣∣∣∣∣∣
W pn

n (x, u)

k∑

j=0

bn, j W
j
n(x, u)g

j(x− hnu)

∣∣∣∣∣∣

3

≤ cn(x) g
3pn(x)

m∑

j=0

1

p3jn
W 3pn

n (x, u)(1 −Wn(x, u))
3(m−j).It is therefore su�ient to prove that, for all j ∈ {0, . . . , m}, uniformly in u ∈ B,

E(W 3pn
n (x, u)(1−Wn(x, u))

3(m−j) |X = x− hnu) = O(p−α(x)−(3m−3j)
n ).Beause for all λ, µ ≥ 0, the funtion

(y, ω) 7→ d

dy

[
yλ (1− y)µ

]
1l{y≤Wn(x, u)(ω)}is Lebesgue⊗ P(· |X = x− hnu)−integrable, Fubini's theorem gives

E(W 3pn
n (x, u)(1−Wn(x, u))

3(m−j) |X = x−hnu) =

∫ 1

0

d

dy

[
y3pn (1− y)3(m−j)

]
F 1(y|x−hnu) dysine, given {X = x − hnu}, Wn(x, u) has survival funtion F 1(·|x − hnu). To onlude,notie that if (sn) is a real sequene tending to in�nity suh that sn hηg

n → 0 as n → ∞ and
ℓ ≥ 0, we obtain following (19) and Triomi and Erdélyi (1951)

∫ 1

0

ysn(1 − y)ℓ+α(x−hnu) dy = B(sn + 1, ℓ+ α(x− hnu) + 1) = O(s−α(x)−ℓ−1
n )21



uniformly in u ∈ B. Sine F 1(y|x − hnu) = (1 − y)α(x−hnu), some quik omputations thenshow that
E(W 3pn

n (x, u)(1−Wn(x, u))
3(m−j) |X = x− hnu) = O(p−α(x)−(3m−3j)

n )uniformly in u ∈ B, whih ends the proof of Lemma 4.
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Situation Moment estimator Girard-Jaob estimator Ge�roy estimatorCase d = 1, model (P )

α(x) = α1Frontier g1 0.082 [0.051, 0.117] 0.089 [0.052, 0.135] 0.107 [0.058, 0.168]Frontier g2 0.045 [0.032, 0.070] 0.047 [0.031, 0.078] 0.050 [0.029, 0.089]

α(x) = α2(x)Frontier g1 0.109 [0.073, 0.179] 0.162 [0.093, 0.241] 0.169 [0.087, 0.248]Frontier g2 0.064 [0.042, 0.088] 0.067 [0.037, 0.099] 0.072 [0.041, 0.115]Case d = 1, model (13)
c = 7/8 0.055 [0.032, 0.101] 0.108 [0.070, 0.157] 0.107 [0.067, 0.174]

c = 5/8 0.058 [0.032, 0.101] 0.116 [0.076, 0.161] 0.112 [0.069, 0.154]

c = 3/8 0.063 [0.030, 0.111] 0.127 [0.083, 0.171] 0.122 [0.062, 0.177]

c = 1/8 0.070 [0.037, 0.136] 0.137 [0.086, 0.190] 0.131 [0.085, 0.194]Case d = 2, model (P ) 0.036 [0.024, 0.058] 0.146 [0.105, 0.195] 0.176 [0.124, 0.213]Table 1: Mean L1− errors and [minimum, maximum℄ L1−errors assoiated to the estimatorsin the di�erent situations.
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Figure 1: Graphs of the funtions a 7→ V (α, a). Solid line α = 1.25, dashed line α = 1.75,dashed-dotted line α = 2, dotted line α = 2.25.23
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Figure 2: Case d = 1 and α(x) = α1: the frontier g1 (solid line) and its moment estimate ĝn(dotted line) with a = 15. Top: best situation, bottom: worst situation.24



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.5

1.0

1.5

2.0

2.5

x

y

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.5

1.0

1.5

2.0

2.5

x

y

Figure 3: Case d = 1 and α(x) = α2(x): the frontier g1 (solid line) and its moment estimate
ĝn (dotted line) with a = 15. Top: best situation, bottom: worst situation.25
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Figure 4: Case d = 1 and α(x) = α2(x): the frontier g1 (solid line), its moment estimate
ĝn (dotted line) with a = 3, and 95% pointwise on�dene intervals for g1 obtained viaCorollary 1 (dashed-dotted lines). Top: best situation, bottom: worst situation.26
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Figure 5: Case d = 2: pairs (g(Xi), ĝ(Xi)), i = 1, . . . , n assoiated to Girard-Jaob estimator(+) and to the moment estimator (⋄) with a = 15. The solid line has equation y = x. Top:best situation, bottom: worst situation. 27


