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Abstract

Scientists and engineers generally tackle problems that include multiscale effects
and that are thus difficult to solve numerically. The main difficulty is to capture
both the fine and the coarse scales to get an accurate numerical solution. Indeed,
the computations are generally performed by using numerical schemes based on
grids. But the stability and thus the accuracy of the numerical method depends
on the size of the grid which must be refined drastically in case of very fine
scales. That implies huge computational costs and in particular the limitations
of the memory capacity are often reached. It is thus necessary to use numerical
methods that are able to capture the fine scale effects with computations on
coarse meshes. Operator-based upscaling is one of them and we present a first
attempt to adapt that technique to a Discontinuous Galerkin Method (DGM).
We consider the Laplace problem as a benchmark and we compare the perfor-
mance of the resulting numerical scheme with the classical one using Lagrange
finite elements. The comparison involves both an accuracy analysis and a com-
plexity calculus. This work shows that there is an interest of combining DGM
with upscaling.

Keywords: upscaling, Laplace problem, multiscale methods, Discontinuous
Galerkin, interior penalty

1. Introduction

The wave propagation is widely used in a large variety of scientific fields as
in oil exploration where the issue is to produce images of hydrocarbon stocks
that are hidden and nowadays very difficult to detect. The principle is based on
the fact that the wave equation can be reversed in time, which means that any
arrival time of a reflected wave can be transformed into a spatial measurement
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providing the localization of the corresponding reflector. From a numerical point
of view, the process which is known as the Reverse Time Migration, requires
to solve many wave equations in complex media whose tectonic includes strong
heterogeneities and the contrasts of the physical parameters can thus be very
significant. The quality of the image is obviously related to the accuracy of the
numerical method, which justifies the development of fast and accurate solvers
for large problems. The size of the discrete system is an important issue but it is
not the only one. Indeed, it is necessary to consider real propagation domains,
which means that multiscale problems must be solved. Propagation domains are
mostly wide, while the parameters that characterize the medium vary quickly.
As a consequence, the representation of the parameters should be done on a
fine grid while it should be sufficient to cover the medium with a coarse mesh.
Obviously, it is possible to do computations with a fine mesh whose dimensions
are fixed by the physical parameters. But, in that case, the resulting discrete
system will contain a huge number of discrete unknowns, so that computational
costs of the RTM become prohibitive, knowing that several solutions of the
wave equation are needed. A numerical method capable of considering these
two scales independently is thus of great interest, in particular for numerical
geophysics.

To tackle multiscale problems, different attempts have been proposed in the
literature. They involve upscaling, which consists in defining equivalent param-
eters. There exist many techniques of upscaling that are based on averaging
or renormalizing the parameters [9, 11]. Homogenization can also be applied
[2, 8, 13]. It allows to get an accurate solution computed on the coarse grid with-
out computing the full solution inside the fine mesh. It leads then to constant
equivalent parameters. Now, it is worth noting that homogenization assumes
that the parameters vary into different scales and that the medium is periodic.

In this paper, we focus on an operator-based upscaling method which can be
applied without assuming periodicity of the medium. Operator-based upscaling
methods were first developed for elliptic flow problems (see [4, 3]) and then
extended to hyperbolic problems (see [15, 12, 16]) such as the wave equation.
The operator-based upscaling method is based on the splitting of the solution
into two parts, the so-called rough and refined parts. The rough component is
computed on a coarse grid while the refined component is obtained from compu-
tations on a fine mesh covering each coarse cell. The time computational costs
can then be reduced by making calculations inside each coarse cell independent.
This can be done by enforcing a Dirichlet boundary condition on the boundary
of each coarse cell. By this way, the refined component is computed by solving
local problems while the rough component is obtained classically by solving the
variational problem inside the coarse mesh.

Operator-based upscaling methods were so far developed by using continuous
finite elements. For instance, they have been carried out for wave problems by
using mixed finite elements [15, 12, 16].

Herein, we consider the interest of developing an operator-based upscaling
method using Discontinous Galerkin Finite Element Method (DGFEM). By this
way, we would like to know if it is possible to reduce the computational costs
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even more. DGFEMs perform well in case of heterogeneous media because they
match with hp-adaptivity and parallel computing. Nevertheless, for the same
mesh, they involve more degrees of freedom than continuous FEMs. Hence, it
would be interesting to see if, combined with an operator-based uspcaling, it is
possible to reduce the computational costs.

This study is preliminary to a work dealing with harmonic wave equations
and thus concerns the Laplace operator. We consider the standard Laplace
problem with homogeneous Dirichlet boundary conditions{

−∆u = f in Ω ,
u = 0 on ∂Ω ,

(1)

where Ω is the unit square ]0, 1[×]0, 1[ and the source term f lies in L2(Ω). For
the sake of simplicity, we restrict ourselves to a square domain, but the study
can be extended to any convex polygonal domain.

Since it is known for being both stable and consistant, we are interested in
the Interior Penalty Discontinuous Galerkin Method (IPDGM) [6]. We have
organized the paper in such a way that we first show how to do upscaling
with IPDGM and next we compare the performances of this approach with the
one involving a continuous Finite Element Method (FEM). In Section 2, we
detail the variational framework to perform upscaling with FEM and IPDGM.
The matrices resulting from the upscaling discretization are clarified in Section
3. Section 4 is devoted to detail the upscaling algorithm and a discussion on
its performances. Finally, in Section 5, we compare the performances of the
algorithms using FEM and IPDGM through numerical results.

2. Continuous and discontinuous finite element methods for upscaling

The upscaling method consists in finding a finite element solution in a space
VH,h that is decomposed into the direct sum VH,h = VH ⊕ V̂H,h. The space VH
is defined on a coarse grid of characteristic length H partitioning the domain Ω,
and V̂H,h is defined on a fine grid of characteristic length h which is obtained
by refining the coarse grid. Then, the approximate solution uH,h is obtained

as uH,h = uH + ûH,h, where uH ∈ VH and ûH,h ∈ V̂H,h. In the following,
uH is called the rough component while ûH,h stands for the refined component

representing the small scale effects. The space V̂H,h must be appropriately
defined in such a way that ûH,h can be easily computed as a function of uH . The
linear system involves thus only uH . The small scale effects are then included
inside the modeling afterwards thanks to the relation between ûH,h and uH .

In this section, we present two different choices for the spaces VH and V̂H,h.
The first one is adapted to continuous finite elements and has been proposed
in [4, 3]. The second one involves discontinuous finite elements which we would
like to focus on. Herein, we consider the IPDGM. Once the spaces are intro-
duced, we define the corresponding bilinear forms.
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2.1. Definition of the finite element spaces

Before introducing the finite element spaces, we need to define a partition
of the domain Ω. For the sake of simplicity, we restrict ourselves to regular
cartesian meshes in two dimensions, but our study can be extended without
difficulty to irregular meshes or to three dimensional problems. We fix N,M ∈
N∗, and we define two mesh sizes H = 1/N (the coarse step), and h = H/M
(the fine step). The coordinates of the coarse nodes are defined by XI = IH
(for 0 ≤ I ≤ N) and Y J = JH (for 0 ≤ J ≤ N). Then, we define the coarse
cells KIJ and the coarse mesh TH by

KIJ =]XI−1, XI [×]Y J−1, Y J [ (1 ≤ I, J ≤ N), TH =
{
KIJ

}N

I,J=1
.

We subdivide each coarse cell KIJ with fine cells. We define XI
P = XI +Ph

(for 0 ≤ P ≤M) and Y J
Q = Y J +Qh (for 0 ≤ Q ≤M). We then define the fine

cells KIJ
PQ by

KIJ
PQ =]XI−1

P−1, X
I−1
P [×]Y J−1

Q−1 , Y
J−1
Q [ ,

which defines the submesh T IJ
H,h =

{
KIJ

PQ

}M

P,Q=1
and the global fine mesh, which

is the union of all submeshes:

Th =
N∪

I,J=1

T IJ
H,h . (2)

In figure 1, we represent the mesh TH and its submesh Th.
The set of internal edges of Th is denoted by F i

h with

F i
h =

{
e = ∂K ∩ ∂J

∣∣ K,J ∈ Th
}
,

while the set of external edges of Th is

Fb
h =

{
e = ∂K ∩ ∂Ω

∣∣ K ∈ Th
}
.

The set of all edges of Th is thus

Fh = F i
h ∪ Fb

h . (3)

Now, we introduce the usual discretization spaces VH and Vh involved in the
FEM we apply. Here, we use the same notations for continuous FEM and for
IPDGM. Regarding FEM, the discretization space VH on the coarse grid, called
”rough discretization space”, is defined by

VH =
{
v ∈ C0(Ω̄)

∣∣ ∀K ∈ TH , v|K ∈ Qp(K), and v|∂Ω = 0
}
,

where Qp(K), p ∈ N is the space of polynomials of degree at most p in each
variable on the element K. Concerning IPDGM, VH is defined by

VH =
{
v ∈ L2(Ω)

∣∣ ∀K ∈ TH , v|K ∈ Qp(K)
}
.
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Figure 1: The mesh TH (solid lines) and the submesh Th (dashed lines)

It should be noted that the main difference between the two spaces lies in
the fact that the solution to discontinuous Galerkin problem is only piecewise
continuous. Therefore, it is not in C0(Ω̄) but only in L2(Ω).

Let us introduce Vh, which is built on the full fine grid Th and is defined by

Vh =
{
v ∈ C0(Ω̄)

∣∣ v|K ∈ Qp(K), ∀K ∈ Th
}
,

for FEM and as

Vh =
{
v ∈ L2(Ω)

∣∣ v|K ∈ Qp(K), ∀K ∈ Th
}
,

for IPDGM.
Let us now remark that, since Th is constructed as a refinement of TH ,

VH ⊂ Vh and the sum of the two spaces is not direct. Then, we introduce
a third vector space, V̂H,h, which is specific to the upscaling method. This

space V̂H,h is associated with both meshes TH and Th, and is defined for both
continuous and discontinuous approximations by

V̂H,h =
{
v ∈ Vh

∣∣ ∀K ∈ TH v|∂K = 0
}
. (4)

Then, it is clear that the sum of VH and V̂H,h is direct, provided that p < N2+1,
and we can define the upscaling discretization space

VH,h = VH ⊕ V̂H,h .
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Note that VH ⊂ VH,h ⊂ Vh. The condition v|∂K = 0 in (4) is crucial for the
upscaling method, since it allows for a simple calculation of the refined part
ûH,h of the solution from the knowledge of the rough part uH . We will detail
this property in the next section. The condition p < N2 + 1 ensures that no
element of VH could satisfy the condition v|∂K = 0 on all edges of the coarse
mesh. It is always satified for practical applications, since p is generally smaller
than 10 and N greater than 10.

To describe more precisely the upscaling algorithm, we also need to define
the spaces V̂ IJ

H,h, whose elements v are the restrictions of v ∈ V̂H,h on a coarse

cell KIJ ∈ TH ,
V̂ IJ
H,h =

{
v ∈ V̂H,h

∣∣ Supp v ⊂ KIJ
}
,

and the spaces V IJ
H whose elements v are the restrictions of v ∈ VH onKIJ ∈ TH ,

V IJ
H =

{
v ∈ VH

∣∣ Supp v ⊂ KIJ
}
.

Then, there holds V̂H,h =

N⊕
I,J=1

V̂ IJ
H,h, VH =

N⊕
I,J=1

V IJ
H .

Now, let us focus on the bilinear form associated to the upscaling problem.

2.2. Bilinear forms associated with continuous and discontinuous finite element
methods.

The discretized problem reads: Find uH,h ∈ VH,h such that, ∀v ∈ VH,h,

ah(uH,h, v) =

∫
Ω

f v dx , (5)

where ah is a bilinear form, coercive on VH,h. In the case of continuous finite
elements, we have

ah(u, v) =

∫
Ω

∇u · ∇v dx.

For discontinuous finite element methods there are many kinds of Discon-
tinuous Galerkin formulations, each of them leading to a different definition of
ah. We refer to [6] for a review of these formulations and a detailed study of
their stability and convergence properties. Herein, we have chosen to focus on
IPDGM, which has been proposed by Arnold in [5] and is also known as Sym-
metric Interior Penalty method [7]. It has been shown in [6] that this method is
stable and consistant, which means that the convergence order is optimal, con-
trary to many other DGFEMs. This is the reason why we have chosen to favor
IPDG, but the upscaling method can be applied to any other type of DGFEMs
without difficulty.

We first need to define the notion of ”jump” and ”mean” of a discontinuous
function through an edge. Let e be an internal edge shared by two elements
denoted arbitrarily by K and J : e = ∂K ∩ ∂J ∈ F i

h. We denote by nK the
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unit normal vector to e (see Fig.2), outward to K, and we define the jump of a
scalar function u ∈ Vh and the mean of a vector function v ∈ V 2

h through e by

[[u]]e = uK |e − uJ |e, {{v}}e =
vK |e + vJ |e

2
· nK .

For an external edge e = ∂K ∩ ∂Ω ∈ Fb
h, the jump of u and the mean value of

v are defined by analogy as

[[u]]e = u|e, {{v}}e = v|e · nK .

nK
K

J

e

Figure 2: The elements K and J and the normal vector nK

The interior penalty bilinear form ah is defined for all u, v ∈ VH,h by

ah(u, v) = Bh(u, v)− Ih(u, v)− Ih(v, u) + Jh(u, v), (6)

where

Bh(u, v) =
∑

K∈Th

∫
K

∇u · ∇vdx ,

Ih(u, v) =
∑
e∈Fh

∫
e

[[u]]{{∇v}}ds ,

Jh(u, v) =
∑
e∈Fh

∫
e

α

h
[[u]][[v]]ds ,

and α is a constant (independent of H and h) that can be chosen large enough
to make ah coercive (see [1, 14]) on the space Vh. We define the norm ∥ ∥DG

by [10]

∥u∥2DG =
∑

K∈Th

∥∇u∥20,K +
∑
e∈Fh

h−1∥[[u]]∥20,e.

Here, we denote by ∥ ·∥0,K the norm in L2(K), and by ∥ ·∥0,e the norm in L2(e).
Recall that Th is the global fine mesh (2), and Fh is the set of all edges of Th
(3).

According to the definition of VH,h, this norm is equivalent on the spaces
VH,h and Vh. Hence, since ah is coercive on Vh, ah is coercive on VH,h and the
problem (5) has a unique solution uH,h ∈ VH,h.
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2.3. Upscaling formulation

We seek a discrete solution under the form uH,h = uH + ûH,h in VH,h, where

uH ∈ VH and ûH,h ∈ V̂H,h. The unknown uH,h is solution to the discrete
problem

ah(uH,h, vH,h) = L(vH,h) ∀vH,h ∈ VH,h.

Using the direct decomposition of VH,h = VH ⊕ V̂H,h, we obtain the system of
variational equations{

ah(uH + ûH,h, vH) = L(vH) ∀vH ∈ VH
ah(uH + ûH,h, v̂H,h) = L(v̂H,h) ∀v̂H,h ∈ V̂H,h .

(7)

Thanks to the direct sum V̂H,h =

N⊕
I,J=1

V̂ IJ
H,h, the second equation is then trans-

formed into a collection of subproblems for 1 ≤ I, J ≤ N . Indeed, using that

ûH,h =
N∑

I,J=1

ûIJH,h ,

each ûIJH,h satisfies the problem

ah(û
IJ
H,h, v̂

IJ
H,h) = L(v̂IJH,h)− ah(uH , v̂

IJ
H,h) ∀v̂IJH,h ∈ V̂ IJ

H,h . (8)

Observe now that in (8), uH get involved in the right-hand side and we do
not know its value at this stage. However, thanks to the homogeneous Dirichlet
boundary condition on ∂KIJ which is imposed in the space V IJ

H,h, we can assume

that each subproblem is independent and well-posed on KIJ when uH is a
data. Thus, we can use each subproblem to obtain the expression ûIJH,h(uH)
as a function of uH . Assembling all the solutions, we then obtain a way of
computing ûH,h as a function of uH . At this point, we are able to insert this
expression in the first equation of (7) to get the variational equation

ah(uH + ûH,h(uH), vH) = L(vH) ∀vH ∈ VH , (9)

whose only unknown is uH .
The upscaling algorithm we use is then the following. As a first step, by

solving the subproblems (8) we find the expression of ûH,h which depends on
uH . The second step consists in solving the rough equation (9) in order to
compute uH . The final step consists in computing uH,h from uH thanks to the
expression we obtained at step 1.

The main advantage of this algorithm is that there is no need to compute the
solution on the whole fine grid covering Ω. We just have to solve subproblems
defined on a fine scale, but on small subparts of Ω (the coarse cells Kij) plus a
problem on the whole domain, but defined on a coarse scale.
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3. Properties of the linear systems

In order to describe the shape of the stiffness matrix K resulting from the
upscaling discretization, we have to introduce a basis of VH,h. This basis is

obtained from basis of VH and V̂H,h.
We denote by (ψi)i=1..NH

a basis of VH , NH being the number of degrees

of freedom of the mesh TH . By construction of V̂H,h, it is represented by the

set
(
ϕIJk

)
k=1..Mh

of basis functions related to V̂ IJ
H,h for (I, J) ∈ 1...N2. Here

Mh denotes the number of degrees of freedom of the submesh of KIJ . We will
consider classical Lagrange basis functions, but using other types of basis func-
tions should not impact on the properties of the resulting matrix. Concerning
the global numbering of the nodes of the fine mesh, we choose, without loss of
generality, to number them coarse cells by coarse cells, from bottom to top and
from left to right.

The matrix K is then constructed as the assembling of four blocks. The first
one, denoted by Kcc, corresponds to the interactions between the basis functions
of VH . The second one, denoted by Kff , corresponds to the interactions be-

tween the basis functions of V̂H,h. The two last ones, denoted by Kcf and Kfc,
correspond to the interactions between the basis functions of VH and the basis
functions of V̂H,h. Since the bilinear form ah is symmetric, we have Kcf = KT

fc.

• The coarse matrix Kcc is defined by

(Kcc)i,j = ah(ψi, ψj), 1 ≤ i, j ≤ NH .

It corresponds to the standard stiffness matrix we would obtain by using
a standard FEM applied on the coarse mesh only. It is thus symmetric
positive definite.

• To define the fine matrix Kff , we first introduce the elementary ”fine
stiffness matrix” associated with the coarse cell KIJ ∈ TH :(

KIJ
ff

)
i,j

= ah(ϕ
IJ
i , ϕIJj ), 1 ≤ i, j ≤Mh .

To construct the fine matrix Kff we use the following proposition.

Property 1. The matrix Kff is block diagonal and each block is an ele-
mentary matrix KIJ

ff .

This property follows from the choice of the space V̂ IJ
H,h and in particular

from the condition v|∂K = 0 on the boundary of each coarse cell.

Proof. We just have to prove that the bilinear form ah(ϕ
IJ
i , ϕPQ

j ) vanishes
as soon as (I, J) ̸= (P,Q) (i.e. when we consider the interactions between
two distinct elements KIJ and KPQ).
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The result is obvious for the FEM. Indeed, two functions ϕIJi and ϕPQ
j with

(I, J) ̸= (P,Q) have separated supports since we impose a Dirichlet condi-

tion on the boundary of each coarse cell. Hence we have ah(ϕ
IJ
i , ϕPQ

j ) = 0.
We therefore focus on the IPDGM case.

IfKIJ andKPQ share no common edges, it is clear that ah(ϕ
IJ
i , ϕPQ

j ) = 0.
If they share a common edge e, we have

Bh(ϕ
IJ
i , ϕPQ

j ) = 0 ,

Jh(ϕ
IJ
i , ϕPQ

j ) =
∫
e
[[ϕIJi ]][[ϕPQ

j ]]ds ,

Ih(ϕ
PQ
j , ϕIJi ) =

∫
e
[[ϕPQ

j ]]{{∇ϕIJi }}ds ,

Ih(ϕ
IJ
i , ϕPQ

j ) =
∫
e
[[ϕIJi ]]{{∇ϕPQ

j }}ds .

Since e is an edge of the coarse elements KIJ and KPQ, we have [[ϕIJi ]]e =

[[ϕPQ
j ]]e = 0, thanks to the Dirichlet boundary condition imposed on the

boundary of the coarse cell. Then, we have

Jh(ϕ
IJ
i , ϕPQ

j ) = Ih(ϕ
IJ
i , ϕPQ

j ) = Ih(ϕ
PQ
j , ϕIJi ) = 0 .

We conclude that Kff is block diagonal and its diagonal blocks are KIJ
ff .

We then obtain the full ”fine matrix” by assembling each block :

Kff =
{
KIJ

ff

}
1 ≤ I ≤ N, 1 ≤ J ≤ N .

Moreover, from the properties of the bilinear form ah, we easily check that
each block is symmetric positive definite and thus invertible.

Remark 1. In the case of regular cartesian meshes of homogeneous do-
mains, the matrix KIJ

ff is the same for each coarse cell.

• We use a similar process to define the matrix Kcf . For each cellKIJ ∈ TH ,
we define the submatrix KIJ

cf

(KIJ
cf )k,l =

{
ah(ψk, ϕ

IJ
l )

}
, 1 ≤ k ≤ NH , 1 ≤ I, J ≤ N, 1 ≤ l ≤Mh ,

and we set
Kcf =

{
KIJ

cf

}
1 ≤ I ≤ N, 1 ≤ J ≤ N.

Note that (KIJ
cf )k,l obviously vanishes if the support of the coarse basis

function ψk does not contain the element KIJ .

We can now define the ”full upscaled matrix” K (associated with the upscal-
ing space VH,h) by assembling the different blocks :

K =

(
Kcc Kcf

KT
cf Kff

)
. (10)
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4. Upscaling algorithm

In this section, we first detail the upscaling algorithm to solve the Laplace
problem (5) in the space VH,h = VH ⊕ V̂H,h, using the expression of the stiffness
matrix K. Then, we discuss the performance of the method.

4.1. Upscaling for solving the Laplace problem

In the following, we denote by UH the vector of size NH representing the
decomposition of the rough solution uH in the basis (ψi)i=1..NH

and by ÛH,h the

vector of sizeN2∗Mh representing the decomposition of the refined solution ûH,h

in the basis
(
ϕIJk

)
k = 1..Mh

I, J = 1..N

. The vector UH,h = (UH , ÛH,h)
T corresponds

then to the total solution uH,h. We use a similar decomposition to compute the
source term F = (Fc, Ff )

T. Here,

Fc ={(f, ψi)}i=1..NH ,

Ff ={(f, ϕIJk )} k = 1..Mh

I, J = 1..N

.

Then, the matricial form of the discretized Laplace problem reads

KUH,h = F.

Hence, using the decomposition (10) of the stiffness matrix K, we are led to
solve the block linear system(

Kcc Kcf

KT
cf Kff

)(
UH

ÛH,h

)
=

(
Fc

Ff

)
.

Now, we express ÛH,h(UH) as a function of UH :

ÛH,h = K−1
ff Ff −K−1

ff K
T
cfUH , (11)

and we obtain a linear system where the only unknown is the rough solution
UH :

(Kcc −KcfK−1
ff K

T
cf )UH = Fc −KcfK−1

ff Ff . (12)

Since the matrix Kff is block diagonal (as proved in the previous section),
inverting Kff resumes to invert each KIJ

ff . We thus discern the three steps of
the algorithm:

1. Solving the subproblems in order to obtain the expression (11) of ÛH,h in
terms of UH . This step resumes to invert the submatrices KII

ff .
2. Solving the coarse equation (12) to get UH .
3. Using the value of UH previously computed in (11) in order to get ÛH,h.

Note that it is not necessary to invert the total matrix K. We just have to
invert the matrices KII

ff (which correspond to fine-scale problems on subparts
of Ω) and Kcc (which corresponds to a coarse-scale problem on Ω).

11



4.2. Performance of the method

We discuss here the performance of the algorithm. We can easily give an
asymptotic cost of the method if we consider that most part of computations
consists in inverting matrices. We assume that inverting an l× l matrix requires
O(l3) operations.

We introduce γp as the number of degree of freedom per cell. There holds
γp = (p + 1)2 for the IPDGM and γp = 4/4 + 4(p − 1)/2 + (p − 1)2 = p2 for
the continuous FEM (four nodes shared by four elements, p − 1 nodes shared
by two elements on each edge and (p− 1)2 internal elements).

The algorithm requires to invert each square matrix Kii
ff . There are N

2 ma-

trices Kii
ff and the size of each one is γpM

2. Therefore, solving the subproblems

requires O(γ3pN
2M6) operations. To solve the coarse-scale equations, we need

to invert the matrix Kcc − KcfK−1
ff KT

cf which is of size γpN
2. Thus, solving

the coarse problem represents O(γ3pN
6) operations. The asymptotic cost of the

algorithm is thus of order (N2M6 +N6)γ3p .
We can now compare this result with the standard IPDGM and FEM (with-

out upscaling) on the coarse grid only and on the full fine grid. In the coarse
grid, we need to invert Kcc, therefore the asymptotic cost is O(N6γ3p) opera-
tions. In the full fine grid, we need to invert a matrix of size γpN

2M2. Hence,
the asymptotic cost is O(N6M6γ3p).

To conclude, when studying a very heterogeneous domain (M >> N) the
upscaling algorithm is approximately N4 times less expensive than solving the
full fine scale problem.

5. Numerical experiments

We now present numerical experiments devoted to analyze and to compare
the performance of the upscaling algorithm using FEM and IPDGM. We carry
out two tests in a 2-D square domain of size Ω = 1m× 1m. In the first test, we
consider a source function with slow variations. This test is similar to the one
presented in [16] and illustrates how the approximated solution converges when
the space steps H and h decrease. Then we consider a source function which
presents much more oscillations. This test case illustrates more precisely the
advantages of using upscaling algorithm instead of considering classical FEM or
IPDGM. The two source functions are chosen such that the analytic solution
u of the Laplace problem can be easily computed. Then, we can calculate the
“rough” L2-error Er, between u and the rough solution uH and the “total”
L2-error Et between u and the total solution uH,h as

Er = ∥u− uH∥0 , and Et = ∥u− uH,h∥0 .

In all tests, we use Q1 finite elements. Now, we recall the classical conver-
gence properties of the FEM and IPDGM. When using the usual discretization
space VH , IPDGM with Qp elements converges like Hp+1 in the L2 norm for
the Laplace problem, see [14, 6]. Therefore, we expect to observe a space-
convergence of second order when we refine the coarse mesh TH . Concerning
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the standard FEM, it is well known that the method converges like Hp+1, when
using the usual discretization space VH . We therefore expect once again a second
order convergence.

5.1. The case of a slowly oscillating function

Relying on several numerical tests performed in [16], we consider a source
function f(x, y) = sin(πx) sin(πy). This function was chosen in order to produce
the solution

u(x, y) =
1

2π2
sin(πx) sin(πy) .

First, we fix the number of fine cellsM in each coarse cell and we refine the coarse
mesh. This test enables us to show that the upscaling algorithm ”preserves” the
original convergence properties of the IPDGM and FEM. Then, we investigate
the properties of the algorithm when the fine mesh only is refined. We fix the
number of coarse cells N and we increase the number of fine cells in each coarse
cell.

We thus first consider a N ×N coarse mesh, where N ranges from 10 to 50.
We refine each coarse cell with a fixed number of 5×5 cells. The ”rough errors”
and ”total errors” are presented in Table 1 and the graphs are plotted in Figure
3. We observe a second order convergence for both the rough solution and the
total solution and for both IPDGM and FEM, which is the result we expected.
There is no major difference between the accuracy of the two methods.

IPDGM FEM
H h Er Et Er Et

0.1000 0.0200 2.46×10−4 6.54×10−5 2.08×10−4 6.36×10−5

0.0500 0.0100 6.16×10−5 1.59×10−5 5.20×10−5 1.57×10−5

0.0333 0.0067 2.73×10−5 7.03×10−6 2.31×10−5 6.96×10−6

0.0250 0.0050 1.54×10−5 3.94×10−6 1.30×10−5 3.91×10−6

0.0200 0.0040 9.85×10−6 2.52×10−6 8.33×10−6 2.50×10−6

Table 1: Errors Er and Et as functions of H and h.

Now, we fix the coarse grid to 5× 5 cells and we divide the fine grid step by
2 in each subtest (hence M ranges from 3 to 24). The results are presented in
Tab. 2. We observe that the error on the rough solution remains approximately
constant. It is not surprising since the coarse mesh remains unchanged. Actually
the rough error obtained by FEM is totally independent of the fine mesh. This
is due to the fact that, in the very particular case of Q1-Lagrange elements
with regular meshes in homogeneous media, the matrix Kcf is null. This can
be proved by a direct but tedious calculation of ah(ψk, ϕ

IJ
l ).

Concerning the total solution, we observe that accuracy is improved when
the fine mesh is refined. Yet, this accuracy is less and less significant as h
decreases. This result confirms the observation of [16], where the authors have
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Figure 3: Errors Er and Et as functions of H and h.

shown that there is no second order convergence when only the fine mesh is
refined.

IPDGM FEM
h Er Et Er Et

0.0667 9.84×10−4 3.61×10−4 8.35×10−4 3.50×10−4

0.0333 9.92×10−4 2.79×10−4 8.35×10−4 2.57×10−4

0.0167 9.93×10−4 2.64×10−4 8.35×10−4 2.41×10−4

0.00833 9.93×10−4 2.61×10−4 8.35×10−4 2.37×10−4

Table 2: Errors Er and Et as functions of h. H = 0.2.

5.2. The case of a more rapidly oscillating function

In the next experiment, we chose a source term f (f(x, y) = 2π2[sin(πx) sin(πy)+
8.1 sin(9πx) sin(9πy)]) which produces the following solution

u(x, y) = sin(πx) sin(πy) + 0.1 sin(9πx) sin(9πy) .

This solution is composed of two parts. The first one oscillates slowly with a
large amplitude, while the second part oscillates rapidly with a lower amplitude.
This experiment is devoted to mimic physical problems where the properties of
the media vary rapidly but with a small amplitude around a mean smooth
function.

Hereafter, we consider three test-cases.

a) We fix the number of fine cells in each coarse cell to 5 × 5. We refine a
N×N coarse mesh, where N ranges from 5 to 50. The numerical values of
the errors are presented in Table 3. As shown in the previous experiment,
we observe again a second order convergence for both the rough solution
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IPDGM FEM
H h Er Et Er Et

0.2000 0.0400 3.69×10−1 3.97×10−1 3.71 ×10−1 3.91×10−1

0.1000 0.0200 3.50×10−2 2.62×10−2 7.37 ×10−3 2.26×10−2

0.0500 0.0100 1.01×10−2 4.18×10−3 8.24×10−3 3.47×10−3

0.0333 0.0067 4.46×10−3 1.48×10−3 3.73×10−3 1.31×10−3

0.0250 0.0050 2.50×10−3 7.51×10−4 2.10 ×10−3 6.88×10−4

0.0200 0.0040 1.60×10−3 4.54×10−4 1.35 ×10−3 4.27×10−4

Table 3: Errors Er and Et as functions of H and h.
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Figure 4: Rough solution uH , and total solution uH,h obtained with IPDGM. H = 0.1,
h = 0.02, y = 0.48.

and the total solution. Once again, there is no major difference between
IPDGM and FEM.
b) In the second test, we fix the rough step size to 0.05 and we reduce
the fine grid step of 2 in each subtest. The rough part uH , and the total
solution uH,h obtained by the IPDGM for H = 0.1, h = 0.02, and y = 0.48
are displayed in Figure 4.
As observed in the previous experiment (see subsection 5.1), we see from
Table 4 that the errors are again approximately constants. Therefore, if
the coarse mesh is not refined the convergence cannot be expected. Once
again, there is no variation of the rough error for FEM, due to the fact
that the matrix Kcf is null.
c) In the last experiment, we compute the L2 errors EH between the an-
alytic solution u and the approximated solution uH obtained by the two
methods (FEM and IPDGM) without upscaling. The results are presented
in Tab. 5. Before computing the error, we have projected the approxi-
mated solution on a refined grid of space step h = H/5, in order to obtain
accurate results.
In comparison with standard FEM and IPDGM, we observe that the up-
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IPDGM FEM
H h Er Et Er Et

0.0500 0.0167 9.80×10−3 4.42×10−3 8.24 ×10−3 4.19 ×10−3

0.0500 0.0083 1.01×10−2 4.42×10−3 8.24 ×10−3 3.37×10−3

0.0500 0.0042 1.02×10−2 4.41×10−3 8.24 ×10−3 3.23 ×10−3

0.0500 0.0021 1.02×10−2 4.41×10−3 8.24 ×10−3 3.20 ×10−3

Table 4: Errors Er and Et as functions of h.

H FEM IPDGM
0.2000 3.71 ×10−1 1.87
0.1000 7.37 ×10−3 1.20 ×10−1

0.0500 8.24 ×10−3 4.07 ×10−2

0.0333 3.73 ×10−3 2.00 ×10−2

0.0250 2.10 ×10−3 1.17 ×10−2

0.0200 1.35 ×10−3 7.64 ×10−3

0.0100 3.36 ×10−4 1.97 ×10−3

0.0050 8.39 ×10−4 4.95 ×10−4

Table 5: Errors EH as function of H.

scaling method improves the accuracy of the augmented solution. Com-
pare for instance line H = 0.05 in Tab. 5 with line H = 0.05, h = 0.01
in Tab. 3. The improvement is more significant for IPDGM, where the
total error is ten times smaller than the error obtained with standard
IPDGM. As it was expected, we note that classical FEM and IPDGM are
more accurate on the fine mesh than upscaling (compare for instance line
H = 0.01 in Tab. 5 with line H = 0.05, h = 0.01 in Tab. 3).

In order to emphasize the gain we obtain using upscaling technique, we
present respectively in Tabs. 6 and 7 the computational time of upscaling with
FEM and of classical FEM. Comparing line H = 0.1, h = 0.02 in Tab. 6 with
lines H = 0.1 and H = 0.02 in Tab. 7, we observe that the computational cost of
upscaling technique is five times greater than the cost of the classical technique
on a coarse grid but 60 times smaller than the cost of the classical technique
on a fine grid. The gain is increased when we refine the grid : for H = 0.05,
h = 0.01, the computational cost of upscaling technique is four times greater
than the cost of the classical technique on a coarse grid but 1000 times smaller
than the cost of the classical technique on a fine grid. Finally, for H = 0.025,
h = 0.005, upscaling technique is only 1.5 times more expensive than classical
technique on a coarse grid, while it is 7500 cheaper than classical technique on
a fine grid.
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H h CPU time
0.2000 0.0400 0.008
0.1000 0.0200 0.020
0.0500 0.0100 0.076
0.0333 0.0067 0.212
0.0250 0.0050 0.580
0.0200 0.0040 1.540

Table 6: Computational time for upscaling with
FEM

H CPU Time
0.2000 0.000
0.1000 0.004
0.0500 0.020
0.0333 0.100
0.0250 0.384
0.0200 1.220
0.0100 68.60
0.0050 4380

Table 7: Computational time for
classical FEM

Conclusion

Operator-based uspcaling allows numerical computations on very fine meshes
to be sidestepped and thus contributes well to reduce the computational costs of
finite element methods. It is based on the idea of solving subproblems covered
by a fine grid after the computational domain being divided into independent
subdomains.

By considering the Laplace problem, we have carried out operator-based
uspcaling when using continuous and discontinuous Galerkin finite elements.
The combination of upscaling with discontinuous approximations is new and
our main objective was to see if that can help to reduce the computational
costs and to improve the accuracy of the numerical solution. Since this work is
preliminary to a study on Helmholtz equation, we have chosen to use IPDGM
which is well-known to be stable and consistant for wave problems [10]. Our
main results are the following:

Concerning the asymptotic cost of the upscaling algorithm, it is of order
(N2M6 + N6)γ3p (γp denotes the number of degree of freedom per cell), while
it is of order N6γ3p on the coarse mesh, and N6M6γ3p on the fine mesh without
upscaling.

Regarding numerical experiments with Q1 elements, we have observed a
second order convergence for both IPDGM and FEM when the coarse mesh
is refined whereas a zero order convergence holds for both IPDGM and FEM
when the fine mesh is refined only. Operator-based uspcaling improves the
accuracy of the solution for both approximations. The improvement is more
significant for IPDGM than for FEM, knowing that IPDGM performs better
than FEM without upscaling. Since Discontinuous approximations are known
to be cheaper when using higher order elements, a future work should focus
on the combination of operator-based uspcaling with high order IPDGM and
obviously on extending this work to the Helmholtz equation.
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