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Abstract
Scheduling in computational grids addresses the allocation of computing jobs
to globally distributed compute resources. In a frequently changing resource
environment, scheduling decisions have to be made rapidly. Depending on
both the job properties and the current state of the resources those decisions
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are different. Thus, the performance of grid-scheduling systems highly de-
pends on their adaptivity and flexibility in changing environments. Under these
conditions, methods from knowledge discovery yielded significant success to
augment and substitute conventional grid-scheduling techniques. This paper
presents a survey on approaches to extract, represent, and utilize knowledge
to improve the grid-scheduling performance. It aims to give researchers in-
sight into techniques used for knowledge-supported scheduling in large-scale
distributed computing environments.

The ever-growing need for universally available computing and storage capac-
ity is more and more satisfied by new architectures for networked interaction
between users and providers of computing resources. The basic entity in this
context is a compute site which constitutes an administrative domain that con-
trols the access to one or more parallel computers or cluster installations. A typ-
ical example is an academic data center but also a cloud-computing provider.
Today, research and industry realize grid-computing infrastructures for the co-
ordinated utilization of globally distributed computing resources. Each site has
its own local user community but jobs are migrated among resource providers.
In such environments, submitted computing jobs are no longer bound locally.
Each site has its own local user community but jobs are migrated between re-
source providers.
The cooperation among such resource providers requires advanced schedu-
ling concepts. For this purpose, different architectures with special demands
on information exchange between the resource providers have been devel-
oped. These architectures differ in the way in which each provider participates
in grid-scheduling decisions. Grids are dynamic environments with frequently
changing heterogeneous resources. Their efficient operation requires schedul-
ing decisions that are both situation-dependent and adaptive. Considering the
status of a local system is crucial whenever a decision has to made either to
accept foreign workload or not. Grid-scheduling systems require computational
efficiency to cope with the high throughput that involves the execution of thou-
sands of jobs per minute to be allocated among up to tens of thousands of
processors. Thus, highly complex decision-making procedures are only appli-
cable if they are real-time capable.
Although often neglected in research, grid-scheduling is inherently an online
problem as jobs are submitted over time and neither their precise runtimes nor
future job submission times are known in advance. In the optimal case, user
runtime estimations are available in advance but in practice these estimates
are usually unreliable. As a consequence, grid-scheduling decisions are made
on the basis of partial and uncertain information and the discovery and integra-
tion of the sparse knowledge available is essential.
It is obvious that all these properties make grid-scheduling a very complex
problem and thus hardly manageable. To address this problem, many grid-
scheduling solutions employ complex heuristics and evaluate their performance
with respect to common global objectives such as the average response time
over all jobs or the utilization of the machines. These heuristics often achieve
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good results but they rarely consider past decisions or previous states of the
scheduling process. To overcome this disadvantage and to increase the robust-
ness and performance of grid-scheduling algorithms, more recent approaches
resort to knowledge discovery techniques.
Knowledge discovery is the iterative process of selecting and pre-processing
data, examining data, and interpreting extracted patterns. The goal is the ex-
traction of knowledge to support an efficient decision-making. In the context of
grid-scheduling, the knowledge discovery process results in rules defining the
behavior of grid-schedulers. Such decisions depend on job properties (work-
load), resource configuration, previous computational demands, or other fea-
tures. Metrics quantify the state of resources or the characteristics of jobs.
Especially, methods summarized as computational intelligence are very pow-
erful in this application area.
This survey presents the state-of-the-art in knowledge discovery for grid-sched-
uling and categorizes the different approaches with respect to their type of
models and learning schemes. As both knowledge discovery and grid-compu-
ting in general are comprehensive topics, the paper focuses on those aspects
that are most relevant to their combination. The most relevant and influential
papers on knowledge discovery in the context of grid-scheduling are selected
and introduced on the basis of an extensive review of publications over the past
five years. They are first analyzed with respect to similarities and differences
and discussed afterwards. It appears reasonable to divide this discussion into
grid-scheduling models, knowledge representation, knowledge acquisition, and
knowledge application.
This paper is organized as follows: First, a brief introduction to knowledge
discovery is given and the main concepts of computational intelligence are de-
scribed. In the core of this paper, the most prominent approaches to grid-
scheduling with knowledge discovery are discussed. Four key aspects are
considered: 1) the grid-scheduling model, 2) the knowledge representation
schemes, 3) the knowledge acquisition schemes, and 4) the methods to apply
extracted knowledge to improve future scheduling decisions. In the conclusion,
important future directions of this research field are pointed out.

Knowledge Discovery with Computational Intelligence

Before the application area of grid-scheduling is discussed, some basic principles of
computational intelligence are introduced. Computational intelligence in general com-
prises evolutionary algorithms, neural networks, and fuzzy systems. This introduction
restricts itself to evolutionary algorithms and evolutionary fuzzy systems, since they
assume a major role for knowledge discovery in grid-computing.
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Suggested reading

R. C. Eberhart and Y. Shi, Computational Intelligence: Concepts to Implementations1:
They describe the integration of various natural and engineering disciplines to estab-
lish computational intelligence. The book further rests on a foundation of evolution-
ary computation but has also an emphasis on practical applications and computational
tools.
H.–P. Schwefel, Evolution and Optimum Seeking2: A fundamental book about evolu-
tionary algorithms and evolution strategies.
O. Cordón et al., Evolutionary Tuning and Learning of Fuzzy Knowledge Bases3: The
book summarizes and analyzes the novel field of evolutionary fuzzy systems, paying
special attention to evolutionary algorithms that adapt and learn the knowledge base of
a fuzzy system. It also includes a good general introduction to fuzzy systems.

Evolutionary Algorithms

Evolutionary algorithms are general purpose optimization algorithms that mimic the
natural process of the Darwinian evolution and are most successfully applied to non-
linear, global parameter optimization in high dimensional complex optimization prob-
lems.4 They operate on a population of individuals, which represent solutions to the
optimization problem. Typical representations encode the problem as a real-valued
vector or as binary string. Genetic operators such as mutation (a random change in
genome) and recombination (combining two or more parent individuals’ genomes) are
applied to generate offspring that inherit traits from their individuals. In global selec-
tion the individuals compete against each other to determine the new parents of the next
generation. The evolutionary loop is executed either for a fixed number of generations
or until the best solution surpasses a threshold on the objective function.

Fuzzy Systems

Since their conceptualization in the early 1960ies, fuzzy systems have been widely and
successfully applied to modeling, pattern recognition, data analysis, decision making
and control system design. Fuzzy-systems are capable of decision making under partial
or incomplete knowledge. The knowledge base is composed of a set of linguistic rules
that relate antecedents to consequences. The fuzzy representation offers a number of
advantages: The interpolative nature of fuzzy systems allows the partial and concurrent
activations of rules and gradual transitions between them. The overall decision is easily
synthesized by a set of IF-THEN rules expressed in linguistic terms that reflect the
expert knowledge.
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Evolutionary Fuzzy Systems

Conventional fuzzy systems are designed based on expert knowledge but lack the abil-
ity to learn rules or membership function from data. Neuro fuzzy system combine
the rule based representation with the supervised learning schemes of neural networks.
This enables the refinement or generation of rules from data for situations in which the
experts decisions are imprecise or missing. Evolutionary fuzzy systems are suitable
to tune or even learn a fuzzy system in case there are no direct training examples for
supervised learning. The evolutionary algorithm optimizes rules or membership func-
tions with respect to a global performance indicator, such as the closed loop behavior
in case of a fuzzy controller, or the makespan or flow time of a workload trace in case
of a fuzzy grid-scheduler. Special variants of evolutionary algorithms offer the advan-
tage of multi-objective optimization which allows the simultaneous consideration of
multiple potentially conflicting objectives.

Grid-scheduling Models

Suggested reading

I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing Infrastructure5:
Standard textbook about the grid-computing concept. It covers the past, present, and
future of network infrastructures.
M. Pinedo, Scheduling: Theory, Algorithms, and Systems6: Well established textbook
on basic scheduling problems and their solutions.

Since Smarr and Catlett7 promoted the term meta-computing in 1992, research efforts
focus on the design of architectures for the shared use of globally distributed resources.
Today, the term grid-computing coined by Foster and Kesselman5 is widely used. But
even this term has been interpreted differently and went through a series of metamor-
phoses described by Altmann et al.8. Any interpretation of the term is closely related
to the specific requirements of alternative grid-computing infrastructures. Each com-
munity has its specific requirements on a grid-computing infrastructure. Thus, the
grid-model varies significantly among different research works.
Among the different architectures of a grid (data-grid, utility-grid, etc.) a computa-
tional grid is most widely used. In contrast to usual parallel systems, see Bertsekas
and Tsitsiklis9, it represents a large-scale distributed system based on a merger of re-
gional, national, and global (heterogeneous) computing systems including data centers
and other resources. The participants are connected by a high performance communi-
cation network. It thus permits the aggregation of autonomous resources in a dynamic
and changing environment.
Berman et al.10 give a description of all implemented architectures in form of a tax-
onomy. Beyond computational grids, which are in focus of most knowledge discovery
approaches for grid-scheduling, there exist other models with a strong focus on data-,
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energy-, or collaboration management.11

The models presented in this paper are motivated from real-world installations: The
diversity of today grids is reflected by the manifold of the corresponding grid-models.

Meta-scheduling Models

The most common grid-scheduling model is the meta-scheduling model where multi-
ple distributed local schedulers are aggregated and supervised by a high-level scheduler
instance, the meta-scheduler. Usually, the meta-scheduler also serves as a central recip-
ient of user jobs and is responsible for their delegation to local schedulers. The meta-
scheduler has complete access to the overall grid-state and allocates jobs to the location
that currently provides the optimal conditions for their execution. Some models even
abandon the concept of local schedulers and the meta-scheduler directly accesses the
resources at the underlying computing sites. This global system view makes schedul-
ing relatively easy as all participants are known and controllable. Due to the single
submission and scheduling component, the system runs high risks of a full breakdown
as it includes a single point of failure. Thus, this model is hardly scalable and unreli-
able.
A typical example of such an environment is described by Xhafa et al.12. Their model
assume a central grid-scheduler instance that has exclusive access to all underlying re-
sources. These resources are assumed to be heterogeneous in speeds while their respec-
tive performance is summarized in terms of million instructions per second (MIPS). In
their grid-environment, only sequential jobs are used which are not allowed to be in-
terrupted during execution and they consider an offline scheduling problem where all
jobs are known in advance.
In another meta-scheduling model, the central scheduling component applies a runtime-
prediction algorithm.13 This model requires an open information model such that the
meta-scheduler has access to information on resource states, for example, the number
of queued jobs or number of running jobs. However, the authors address an online
scheduling problem which makes the knowledge discovery even harder as properties
of further job submissions are unknown.
Similarly, Prado et al.14 follow a meta-scheduling approach and represent knowledge
by a fuzzy system on the meta-layer. They assume homogeneous clusters in speed and
other machine attributes and do evaluations with up to 3,000 parallel and sequential
tasks. They also consider the online scheduling problem and apply their fuzzy ap-
proach even for previously unknown job submissions.
Zhou et al.15 strictly stick to the grid-model supported by the common Globus Toolkit 4
(GT4) middleware16 and develop a meta-scheduler model on this setup. They assume
heterogeneous resources with local scheduler instances and choose an implementation
on the basis of the additional services provided by GT4. The meta-scheduler is re-
alized as a central resource broker and serves both as central submission component
and information manager. The scheduler module steers the assignment of jobs to the
different GT4 middleware installations. In another work of Yu et al.17 the same model
assumptions are made.
Finally, Prado et al.18 use a meta-scheduling concept with multiple heterogeneous re-
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source domains considering multiple virtual organizations. The internal organization
of distributed resources is further specialized and adapted to real-world requirements
where research groups may collaborate in virtual organization to share both knowledge
and resources. However, the scheduling still follows the meta-scheduling paradigm as
this component has access to internal information like used nodes or missed deadlines.
The whole system is evaluated by simulations with up to 2,000 jobs from a real work-
load trace considering the online scheduling problem. The related works of Prado et
al.19 assume a similar model and optimize the behavior of a central scheduling compo-
nent.

Decentralized Scheduling Models

The decentralized scheduling architecture20 requires no central coordinator as the grid-
schedulers directly interact and negotiate job allocations with each other. The resource
sites act as a submission interface for their local users or user communities. The lo-
cal resource management layer is supplemented with a grid-scheduling layer that takes
over the task coordination and establishes the communication with other sites. Sub-
mitted jobs are either passed directly to the underlying local scheduling system or are
migrated to other sites. The communication between sites is established via direct
communication, which means that schedulers directly negotiate and exchange jobs.21

This includes mechanisms for finding other sites and algorithms for managing lists of
available exchange partners. If the migration of a job to a certain site is not possi-
ble, the scheduler decides to contact an alternative partner site for the execution of its
job. This type of parallel peer-to-peer job allocation is of major importance as it scales
properly even for very large world-wide grid installations. It is further more reliable
than any meta-scheduling approach. Furthermore, Fölling et al.22 assume a restrictive
information policy as local system states are exclusively accessible at the local sites. In
real-world installations it is observable that critical information are kept classified as
they might give hints about the operation efficiency of systems.
In summary, the advantage of a distributed scheduling architecture is a much higher
fault tolerance. The failure of a grid-level component or an entire site never results
in a complete system breakdown. At most the overall performance of the grid de-
creases. Additionally, this architecture achieves a significantly better scalability for the
same reasons. Large-scale grid-computing is only realizable by decentralized struc-
tures while obeying local autonomy. The disadvantage of decentralized structures orig-
inates precisely in the lack of a global grid-system view that makes scheduling more
complicated. The decision to either accept or reject a foreign workload request highly
depends on the status of the local scheduler and its current workload.

Other Scheduling Models

For completeness, also alternative grid-scheduling models used in the context of knowl-
edge discovery are mentioned. In the work of Zeng et al.23 an agent-based grid-model
without any hierarchy, scheduling roles, or even layers is assumed. They address the
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online scheduling problem with specific job workflows of sequential tasks and homoge-
neous resources. They are more interested in applying alternative knowledge discovery
mechanism instead of investigating specific grid-scheduling models. Other models24,25

assume heterogeneous grid-resources which are specified by cycles per time unit. In
this way, different machine speeds are expressed. They assume further independent
jobs while the processing times are given as total required cycles. Sequential jobs are
scheduled in an open grid-environment without any hierarchies or site specific sched-
ulers. Properties of different grid-scheduling models are summarized in Table 1.

Table 1 Overview: grid-scheduling models.

Model Scheduling Fault Scalability Real-world Application
Design Tolerance Existence Areas

Central easy low low frequent prod. grids
Decentral hard high high rare acad./research
Other easy specific high research specific, P2P

Knowledge Representation Schemes

Suggested reading

D. Ruan (editor), Intelligent Hybrid Systems: Fuzzy Logic, Neural Networks, and
Genetic Algorithms26: Collection of contributed chapters covering basic principles,
methodologies, and applications of fuzzy systems, neural networks, and genetic algo-
rithms.
A. B. Markman, Knowledge Representation27: Overview of types of knowledge rep-
resentation techniques and their use in cognitive models. It is useful for students of
psychology as well as researchers in related disciplines, for example, computer sci-
ence.

There are several requirements for knowledge representation in the context of schedul-
ing decisions: The representation is supposed to capture the current complex state of
a scheduling system in a comprehensive manner but it should restrict the number of
features to describe the state to limit the dimension of the search space in scheduler
optimization. The description must be sufficient to specify scheduling decisions with
respect to the underlying grid-scheduling model. Furthermore, the output decision
must be computable in an efficient way as scheduling often requires many online de-
cisions in a short amount of time. In addition, the knowledge representation should be
extensible or even generalizable. It must be possible to derive scheduling decisions for
foreign states from already known states.
The first and most common kind of knowledge representation is the fuzzy rulebase, that
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is, a set of fuzzy rules. The rule premise defines the local region of the state space to
which the rule applies. The consequent associates a scheduling decision with the states
represented in the premise. To compute the overall output of the fuzzy rulebase, the
membership degree of every rule (real value ∈ [0, 1]) is used as weight for each rule’s
output scheduling decision. Examples for this kind of representation28 are provided in
several publications by Prado et al.14,18,19. As they assume a meta-scheduling model
with a scheduler that schedules incoming jobs on independent computing sites, the au-
thors describe their states as tuple of seven site-specific values. Such features are, for
example, the number of free processing elements or the total lateness of all executed
jobs within a site. Every rule output represents a factor that influences the controller
output. In the inference system, a rulebase calculates the output for every site sepa-
rately. Afterwards the site with the highest output is chosen for allocation. Similar
grid-scheduling approaches15,17 use fuzzy rules which only consist of two state vari-
ables. In those cases, the system state is represented as the processor- and memory
utilization.
Other fuzzy based grid-scheduling algorithms20,21,22 make use of a Takagi-Sugeno-
Kang (TSK)29 controller. Instead of using site-specific metrics which cover a large
number of system states, only two different state values are allowed. As their decen-
tralized grid-model comprises autonomously negotiating sites, the first feature is the
summed resource requests of all queued jobs at the site. It estimates the workload the
site has to process in the near future. The second value expresses a single job’s par-
allelism to indicate the work that is added when accepting the job for execution. The
output of a rule is the decision whether a job should be processed locally or negotiated
for remote execution.
In contrast to these approaches, Abraham et al.25 describe a fuzzy representation with
so-called particles using a direct mapping of jobs to specific resources. This is only pos-
sible since all resources and jobs are known from the beginning in an offline scheduling
problem. They optimize the assignment of jobs to specific resources. In the defuzzy-
fication (that is, calculating the output decision assuming fuzzy input values) the re-
source that gets the highest output decision values is chosen. In contrast to regular
fuzzy systems, they do not apply any superposition of rules.
A similar approach24,12 omits the vague representation as fuzzy sets in favor of using
direct mapping of jobs to resources. A vector of machine indexes is used where each
vector component specifies the machine on which a certain job should be scheduled on.
Although this representation is simple and thus easy to update during the knowledge
discovery process, it lacks the possibility to optimize different permutations of jobs on
a specific machine. This leads to restrictions in the search space of possible scheduling
solutions.
There are two different knowledge representation schemes which are motivated by the
associated learning method: In the first one of Zeng et al.23, the scheduling decisions
are optimized by learning a value function which is typically employed in reinforce-
ment learning. According to the value function, independent job agents identify an
optimal policy for choosing the most beneficial resource agent among the competing
resource agents. In the second more exotic knowledge representation, Li et al.13 store
tuples of job characteristics like the user group, user name, number of requested pro-
cessors, and resulting run- or wait times within a database. The knowledge base is
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extended as new job execution data is collected thus providing more accurate estimates
of future jobs’ runtimes.
Overall, there are many representations with their respective advantages and disad-
vantages but all of them strongly depend on the underlying grid-model, that is, state
description, variables, and calculation of scheduling decisions, see also Table 2. An
offline scheduling model with a priori knowledge about all jobs and resources al-
lows fuzzy mapping of concrete jobs to concrete resources. In contrast, online grid-
scheduling problems with changing resources, unforeseeable workload bursts, or re-
strictions in information policy need state descriptions that characterize all future re-
source states and job characteristics. Knowledge representation and its learning process
are closely coupled. The different knowledge acquisition schemes are presented in the
next section.

Table 2 Overview: pros and cons of different knowledge representations.

Representation Size of Output Update Req. Robust-
Input Space Calculation Procedure Memory ness

Fuzzy system small easy hard small high
Direct mapping large easy easy large very low
Value function small easy hard small low
Database large hard easy very large high

Knowledge Acquisition Schemes

Suggested reading

O. Maimon and L. Rokach, Data Mining and Knowledge Discovery Handbook 30: Pro-
vides comprehensive algorithmic descriptions of data-mining and knowledge discovery
methods, including classic methods plus the extensions and novel methods developed
recently. Especially part IV addressing ”Soft Computing Methods” is strongly recom-
mended.

The knowledge acquisition process is responsible for generating and updating the knowl-
edge representation. The solution space is defined by the state variables of the repre-
sentation. The knowledge acquisition process explores this space searching for rep-
resentation instances that are optimal with respect to a global objective. The learning
performance and the solution quality not only depend on the objective but also on the
optimization algorithm for search space exploration. In some of the aforementioned
publications, perceptions from the scheduling system are stored in a database.13 In
contrast to other approaches, the knowledge discovery is in such cases mere knowl-
edge collection instead of refining knowledge representations.
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Refinements are commonly realized applying methods from evolutionary optimization.
Fölling et al.20,21,22 use an evolutionary learning algorithm to learn the fuzzy rulebase.
In their evolutionary fuzzy system, the shape of the membership functions and rule out-
puts are encoded as parameters. These parameters are evaluated for each individual in
a dedicated simulation of the scheduling system. The objective expresses the achieved
scheduling results.
The method of Xhafa et al.12 is similar to the previous because they also use an ap-
proach from evolutionary computation, namely a genetic algorithm. They employ
specific operators for recombination and mutation targeted to their particular offline
scheduling problem. The authors basically evaluate four different crossover operators.
They further try different rules for the exchange of sequences between two parent indi-
viduals. In addition, their mutation operators either switch single jobs among machines
(mutually exchanging two jobs between two machines) or rebalance jobs between the
machines. In this example, the objective function is a weighted combination of the
two conflicting objectives makespan and flow time, while makespan is treated as main
objective.
The makespan is equivalent to the completion time of the last job in the schedule (as-
suming the schedule starts at time 0). The flow time is defined as the span between the
release time and the completion time of a job. Interchangeably, the term response time
is used in the literature. A particular criteria is the average weighted response time
(AWRT), in which a job’s response time is weighted with its resource consumption,
see Schwiegelshohn31. The wait time is the span between the submission time and the
start time of the job.
Prado et al.19 use the so-called Pittsburgh approach32 to evolutionary fuzzy systems.
Each individual represents a whole rulebase that is updated using crossover and mu-
tation operators similar to the approach of Fölling et al.22. In addition, they present a
concept for evolving rules with a Michigan approach33 where single rules are evalu-
ated with regard of their negative or positive influence on the scheduling performance.
Those different approaches are then combined14 to form a hybrid solution of updating
the weights, that is, the influences of single rules. They use the Michigan approach for
updating single rules and the Pittsburgh approach to update whole rulebases.
Contrary to the previous publications, Abraham et al.25 and Prado et al.18 optimize
knowledge representations using particle swarm optimization. In this kind of opti-
mization technique, the aforementioned individuals are replaced by particles. During
the learning process, particles are neither recombined nor mutated like individuals in
evolutionary algorithms. Each particle represents knowledge independently while they
move through the search space. The movement is determined by a velocity matrix that
has entries for each state representation of a particle. This velocity is comparable to
mutation step-sizes applied in evolutionary optimization. The great advantage of this
approach is that this optimization method is not generation-based anymore. All parti-
cles are simulated independently without any need for synchronization. This allows an
easy parallelization and hence more evaluations per time unit are possible.
The approach of Farzi24 is very similar to the previously described particle swarm con-
cept. The approach employs fishes as swarm members that encode allocations of jobs
to resources. The algorithm mimics the natural behavior of fishes in a swarm-oriented
learning algorithm. Fishes are chasing for food that represents the objective in terms of
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a combination of makespan and flow time. The fishes swim towards regions of higher
food concentrations that are detected by swarm neighbors. Simultaneously, they spread
across the near search space to guarantee divergence among solutions.
In another solution23, a temporal difference reinforcement learning approach is used
to optimize the value function that predicts the estimated reward of choosing a specific
action in a certain situation. Different from other works, the knowledge is updated
during the evaluation process. Every single chosen scheduling decision is evaluated
and rewards or penalties are assigned afterwards. Hence, each evaluation influences
the optimal value function directly. Nevertheless, this learning approach is an offline
approach as the same workload is used in each iteration. The relevance, advantages,
and disadvantages of the presented approaches are listed in Table 3.

It is important to distinguish the online/offline properties in the two domains knowledge
acquisition and grid-scheduling. In offline grid-scheduling problems, all job properties
are known from the beginning while in online problems future job submissions are not
known in advance. In practice, all grid-scheduling problems are online problems but
many offline problems are studied for algorithm development. For knowledge acqui-
sition, offline learned knowledge might be applied to online grid-scheduling problems
but only an online learning (or adjustment) approach is able to flexibly react to chang-
ing environments. To the best of our knowledge, there is no such online knowledge
acquisition approach for grid-scheduling available yet.

Table 3 Overview: pros, cons, and occurrence of knowledge acquisition schemes
for grid-scheduling.

Method Real-world Method’s Learning Online
Existence Complexity Speed Adaption

EFS (Pittsburgh) frequent low slow hard
EFS (Michigan) rare high slow hard
Particle swarm rare medium fast (parallel) possible
RL very rare medium slow possible

EFS = Evolutionary fuzzy system
RL = Reinforcement learning

Advantages of Knowledge Application

Suggested reading

J. Blazewicz et al., Handbook on Scheduling: From Theory to Applications34: Al-
though not related to grid-scheduling, this well established textbook introduced schedul-
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ing with special emphasize on practical applications. The last chapter (computer inte-
grated production scheduling) gives examples of knowledge-based scheduling.

This section discusses how the acquired knowledge is utilized for decision making in
the grid-scheduling process. Research mainly focuses on two different subjects: On the
one hand, knowledge is used to design or improve grid-scheduling algorithms directly
related to well-defined performance criteria. On the other hand, the interesting prob-
lem of grid-scheduling is rather used as benchmark problem while improving learning
strategies is the main goal, see Table 4.

Designing Grid-scheduling Strategies

For assessing the schedule quality, it becomes necessary to refer to specific objective
functions. Common examples are simple functions such as makespan or the sum of
completion times35. In addition, practical objective functions are often hard to formu-
late, because they are meant to express a complex problem view36. Objectives might
even change over time if knowledge about the maximum achievable solution quality
becomes available.37 However, to show the advantages of knowledge usage in grid-
scheduling, simple objectives are mainly used.
Zeng et al.23 minimize the makespan during the knowledge acquisition phase and mea-
sure the performance of the applied learning algorithm considering the convergence
speed and makespan. They evaluate the robustness of their derived scheduling strategy
on unforeseen events like machine unavailability or breakdowns. Also Xhafa et al.12

aim to minimize the makespan or the sum of response times in their approach. The
derived knowledge base is used to plan or reschedule job allocations periodically while
the objective functions are always obeyed.
Other developments also take the specific job attributes into account: Li et al.13 use
the estimates of response times and runtimes to make better decisions at the meta-
scheduling level. The derived knowledge is then used to choose the most appropriate
execution site in the grid. For a new job, its similarity to other jobs in the database is
determined and the closest match is used to estimate the wait time or runtime of the
new job. The accuracy of the algorithm is evaluated with real workload traces.
The work of Fölling et al.20 comprises both a scheduling objective related knowledge
learning phase and a subsequent application phase. During the learning phase on real
workload data, the scheduling objective (AWRT) is optimized and corresponding rules
are extracted for the knowledge base. Dynamically, they derive rules to steer the work-
load distribution among grid-sites. After the learning phase, the rulebase is applied to
new data from the workload traces to show that the derived knowledge is applicable for
other workloads. In a later publication22, the authors show the robustness in changing
grid-environments. Setups with previously unknown partners are evaluated to show the
robust interaction between the autonomous sites.
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Table 4 Overview: different grid-scheduling design concepts.

Concept Objective Knowledge used Sched. Used
for Probl. Traces

Zeng et al.23 makespan workflow negotiation online synth.
Xhafa et al.11 makespan/RT single domain offline synth.

grid-scheduling
Li et al.13 prediction predicting RT and WT online real

failure in local scheduling
Fölling et al.22 AWRT job negotiation online real
Prado et al.18 makespan meta-scheduling online real
Prado et al.14,19 AWRT meta-scheduling online real
Farzi24 makespan/RT single domain offline synth.

grid-scheduling
Abraham et al.25 makespan/RT single domain offline synth.

grid-scheduling

RT = total response time
WT = wait time
AWRT = average weighted response time

Using Grid-scheduling as a Test Problem

While all above described works have a scheduling related point of view, the follow-
ing works turn to the learning technique itself, see Table 5. Prado et al.14 also aim
to minimize the AWRT of all jobs but they additionally investigate the performances
achievable by two differently learned fuzzy systems. They compare the Michigan and
Pittsburgh approach for evolutionary fuzzy rule learning and show that their hybrid
approach yields superior learning result. For this investigation, they focus on a fast
convergence of the learning approach instead of deriving very robust rulebases.
In another publication18, they focus on convergence speed and show by experiments
that swarm-optimization outperforms genetic algorithms. In a follow-up investiga-
tion19, the same authors vary the number of involved sites as well as the number of
overall available resources.
Similar to the previously discussed approach, Fölling et al.21 also try to improve the
learning technique itself. They define a problem specific adaptation of the learning by
dividing the overall problem into multiple subproblems. They adapt a co-evolutionary
algorithm for the learning of fuzzy rules and they show that it achieves nearly the same
results while reducing the learning time significantly.
In other approaches, Farzi24 and Abraham et al.25 learn knowledge in the grid-scheduling
context using techniques from computational intelligence, like special genetic algo-
rithms and simulated annealing, to optimize both makespan and response times.
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Table 5 Overview: aspects of learning technique improvements.

Aspect Farzi24 Fölling et al.21 Prado et al.14,18,19

Abraham et al.25

Fuzzy system — operators for comp. Michigan and
Pitts. approach Pitts. approaches

Learning alg. PSO and co-evolutionary hybrid approaches
AFSA algorithm

Objective convergence speed learning convergence speed
to known optimum parallelization

PSO = Particle swarm optimization
AFSA = Artificial fish swarm algorithm (similar to PSO)

Conclusion

The subject of scheduling in computational grids has been approached from
the viewpoint of knowledge discovery. It has been shown how grid-scheduling
benefits from utilization of domain knowledge acquired from historical data of
the grid. The approaches differ in terms of the learning methodology, the rep-
resentation of the acquired knowledge and the way in which the knowledge
improves the scheduling decisions in dynamic environments. It became obvi-
ous that grid-scheduling comprises many areas: The diversity of computational
grids reflects itself in the manifold of scheduling problems and approaches
to their solution. Recent developments have been presented in a structured
way while their specific contributions to the area of knowledge discovery and
decision learning have been pointed out. The conceivable grid-models have
been distinguished and analyzed. It became apparent that scheduling in the
fully decentralized model is more challenging but therefore perfectly suitable
for knowledge usage. State-of-the-art knowledge representation are described
and the concepts for knowledge acquisition in recent grid-scheduling architec-
tures are reviewed. Hybrid methods from computational intelligence success-
fully combine fuzzy representations with randomized, heuristic global search
methods. Learning in frequently changing environments is difficult and grid-
scheduling constitutes an inherent online problem with a partial horizon. Inte-
grating knowledge gathered from past observations into the decision making
is a means to improve scheduler performance. Experience with knowledge
based grid scheduling shows that it is possible to transform and extrapolate
existing knowledge to novel environments and workload scenarios. Even in a
challenging application domain like grid-scheduling good decisions are made.
As knowledge discovery obviously supports future grid-scheduling develop-
ments, some further directions are conceivable. The first possible improve-
ment is related to the grid-model itself which is still a bleeding-edge technology
in which technological drifts occur frequently. Since the approaches and de-
velopments in the past decade already cover diverse architectures, it is likely
that future distributed computing architecture such as cloud-computing utilize
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similar techniques for knowledge acquisition. Current state of the art knowl-
edge discovery techniques are equipped with an internal or external learning
technique. As such, learning normally occurs in episodes or generations which
assume a static or quasi-static environment. In the application phase, the ac-
quired knowledge is helpful to make decisions in a changing environment. It is
strongly desired to overcome this drawback and to head for the online learn-
ing of knowledge. As all grid-systems are online systems, the learning should
be capable to adapt to changes in an online manner. Imagine a scheduler
that starts with an initial heuristic, which is then gradually improved by learning
from the experience of past decisions. In such a setup, knowledge discov-
ery becomes much more practically feasible and relevant as real-world grid-
installations are equipped with a zero-configuration scheduler. This scheduler
automatically adapts to the changing environment while simultaneously obey-
ing the user preferences and constraints. As the overall grid is far too complex
to be entirely monitored and controlled by human experts, the techniques for
knowledge discovery and utilization discussed in this paper may play an impor-
tant role in the development of next generation computing infrastructures.
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