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The Impact of Human-Robot Interfaces on the
Learning of Visual Objects

Pierre Rouanet, Pierre-Yves Oudeyer, Fabien Danieau and David Filliat

Abstract—This paper studies the impact of interfaces allowing
non-expert users to efficiently and intuitively teach a robot to
recognize new visual objects. We present challenges that need
to be addressed for real-world deployment of robots capable
of learning new visual ¡objects in interaction with everyday
users. We argue that in addition to robust machine learning and
computer vision methods, well-designed interfaces are crucial for
learning efficiency. In particular, we argue that interfaces can be
key in helping non-expert users to collect good learning examples
and thus improve the performance of the overall learning system.

Then, we present four alternative human-robot interfaces:
three are based on the use of a mediating artifact (smartphone,
wiimote, wiimote and laser), and one is based on natural
human gestures (with a Wizard-of-Oz recognition system). These
interfaces mainly vary in the kind of feedback provided to the
user, allowing him to understand more or less easily what the
robot is perceiving, and thus guide his way of providing training
examples differently.

We then evaluate the impact of these interfaces, in terms of
learning efficiency, usability and user’s experience, through a real
world and large scale user study. In this experiment, we asked
participants to teach a robot twelve different new visual objects in
the context of a robotic game. This game happens in a home-like
environment and was designed to motivate and engage users in
an interaction where using the system was meaningful. We then
discuss results that show significant differences among interfaces.
In particular, we show that interfaces such as the smartphone
interface allows non-expert users to intuitively provide much
better training examples to the robot, almost as good as expert
users who are trained for this task and aware of the different
visual perception and machine learning issues. We also show
that artifact-mediated teaching is significantly more efficient for
robot learning, and equally good in terms of usability and user’s
experience, than teaching thanks to a gesture-based human-like
interaction.

Index Terms—Human-robot interaction, user interfaces, robot
learning, object visual recognition, user study, personal robotics.

I. INTRODUCTION

A. One challenge of personal robotics: learning from non-
expert humans

Personal robotics has been drawing an increasing amount
of interest recently, both from an economic and a scientific
point of view. Many indicators seem to show that the arrival
of this kind of robot in our everyday homes will be one
of the major events of the 21st century [1]. In particular,
they are predicted to play a key role in our aging society
and especially in applications such as domestic services, tele-
surveillance or entertainment [2]. Yet, many challenges still
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need to be addressed before allowing personal robots to
operate in our homes. They include a diverse set of ques-
tions related to perception, navigation, manipulation, learning,
human-robot interaction, usability and acceptability. In this
paper, we are more particularly interested in the transverse
challenge: providing the robot with the ability to adapt itself
to its environment through learning by interaction with non-
expert users. This is a key feature for the development of
personal robotics. Indeed, unlike industrial robotics where the
environment is very structured and known in advance, personal
robots will have to operate in uncontrolled, unknown and/or
changing environments. More importantly, they will have to
interact with humans who may potentially have very diverse
expectations and preferences. Thus, the robot should have the
capacity to learn from non-expert humans.

Fig. 1. Using a device as a mediator object between the human and the
robot to control the movements of a personal robot allows non-expert users
to teach it how to recognize new visually grounded objects.

B. Studying the role of the interface for social robot teaching
of new visual objects

Techniques allowing robots to learn from interaction with
humans have been widely explored in the literature, includ-
ing approaches such as imitation learning and learning by
demonstration (e.g. [3], [4]) or socially guided exploration
(e.g. [5]). Having robots learn from humans requires both the
development of machine learning algorithms (e.g. to encode
and generalize new capacities) and the elaboration of intuitive
and robust human-robot interaction techniques. While those

http://flowers.inria.fr/


2

two challenges are crucial, a large part of the work done
in social learning focuses on the first problem [4][6][7]. Yet,
the interaction mechanisms are known to play a key role in
human teaching (e.g. [8]). Thomaz and Breazeal have shown
the importance of understanding the human teacher/robotic
student relationship in developing learning algorithms suited
for social learning [5]. Calinon and Billard have proposed
the development of learning by demonstration systems which
take into account the interaction scenario [9]. Mechanisms
such as joint attention have also been identified as crucial in
social learning for both humans and robots teaching [10][11].
Furthermore, the importance of the role of interfaces and
interaction becomes paramount when it comes to deploying
robot learning systems outside the laboratory, where they shall
be used by non-expert humans users.

In this paper, we focus on this latter issue and study the
impact of human-robot interfaces allowing non-expert users
to efficiently and intuitively teach a robot to recognize new
visual objects. This is a case-study task bound to be needed in
many future personal robotics applications. We present an in-
tegrated system which combines machine learning techniques,
computer vision techniques, and various alternative human-
robot interfaces. The goal of the whole system is to allow
a non-expert humans to show new visual objects to a robot
(for which it does not already have a model and thus cannot
segment easily) and associate a name so that it can be used as a
training example allowing the robot to recognize these objects
later (see figure 2). A strong constraint is that the system
should be efficient and usable by non-expert users which will
provide only very few training examples per object class. It is
important to notice that by “visual objects” we are not only
referring to actual physical objects (e.g. a ball) but to any
region of an image having specific visual features. This very
generic definition also includes more abstract objects such as
a painting, stairwell or even an open door which should also
be recognized by a personal robot.

As we will explain, a key challenge is that non-expert users
typically have a wrong a priori understanding of what the
robot sees or does not see, which can easily lead them to
provide low quality training examples (e.g. examples where
the objects they want to show to the robot is not even on the
image perceived by its camera). We argue that the design of
interfaces can be key in helping non-expert users to collect
good learning examples and thus improve the performance of
the overall learning system.

After detailing the related work in II, we present in sec-
tion III four alternative human-robot interfaces: three are based
on the use of a mediating artifact (smartphone, wiimote,
wiimote and laser) and one is based on natural human gestures
(with a Wizard-of-Oz recognition system). These interfaces
mainly vary in the kind of feedback provided to the users,
permitting them to understand more or less easily what the
robot is perceiving, and thus guide their way of providing
training examples differently. As a consequence, as we will
show, interfaces that provide the right kind of feedback can
allow at the same time the human to understand what the
robot is seeing at any given moment, and vice versa the
robot can infer efficiently what the human is trying to show

to him. This form of synchronization of what each other is
looking at, and made possible by particular kinds of user
interfaces, is an elementary form of joint attention1 which has
been shown to be crucial in the the field of developmental
robotics for teaching new visual concepts to a robot [11][12].
Our work is thus located at the crossover of three important
research domains: social learning in robotics [4], human-robot
interaction [13] and developmental robotics [14].

Fig. 2. To allow users to designate a particular object to a robot in a cluttered
environment, we need to provide them with a robust and accurate pointing
detection. Otherwise it may lead to restrictive interaction and even to false
learning examples.

We then evaluate and compare in section IV the impact
of these interfaces, in terms of learning efficiency (robot’s
point of view) and usability and user’s experience (user’s
point of view), through a real world and large scale user
study (107 participants). In this study, which took place in a
science museum in Bordeaux, we asked participants to teach
a humanoid robot Nao2 twelve different new visual objects in
the context of a robotic game. This robotic game happened
in a home-like environment and was designed to motivate
and engage users in an interaction where using the integrated
system was meaningful.

We chose to follow a very standard user-centered approach
to design our interfaces based on mediator objects as we
wanted our system to be effectively usable by non-expert
humans in plausible interactions, i.e. outside of the lab, with
a personal robot. With such an approach we first analyzed
the context of use, then conceived the interface and finally
we evaluated it. This cycle was repeated until the specified
requirements were matched. In this paper, we are presenting
the last complete iteration of our development. While some
earlier versions of subparts of our integrated system have
already been presented in [16][17][18][19], they have been

1It is an elementary form of joint attention in the sense that both agents
can infer what the other is looking at and/or perceiving, without an explicit
cognitive model of attention, see [11]

2The Nao robot represents, in our opinion, the current personal affordable
robots well, with a humanoid appearance. Furthermore, we choose to use it as
an autonomous robot, i.e. with only onboard sensors, and not to enhance its
capacities with external devices such as cameras fixed on the ceiling such as
those used in smart environments or ubiquitous robotics approaches [15]. We
argue that the complexity of this kind of installation could prevent their use
in everyday homes in the near future. Second, it is important to note that this
kind of system, while improving the perceptual capacities of the robot will
not fundamentally change the attention problem that we are trying to tackle
here. For instance, a pointing gesture will remain ambiguous in a cluttered
environment even with the use of fixed cameras.
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modified and improved since then and they are here presented
as an integrated system for the first time.

We then discuss results that show significant differences
among interfaces. In particular, we show that interfaces such as
the smartphone interface allows non-expert users to intuitively
provide much better training examples to the robot, almost as
good as expert users who are trained for this task and aware of
the different visual perception and machine learning issues. We
also show that artifact-mediated teaching is significantly more
efficient for robot learning while better in terms of usability
than teaching using gesture-based human-like interaction.

Finally, a discussion of the main results and of our design
choices is presented in the section VI.

II. RELATED WORK

The classification and recognition of new visual objects have
been studied intensely from visual perception and machine
learning perspectives. Many approaches, such as the bags of
visual words we are using in this paper, have been recently
developed [20][21][22]. Those learning systems are highly
efficient when trained with a large database of good labeled
examples (see PASCAL VOC for instance [23]). Yet, to solve
this problem in a real human-robot interaction scenario: i.e.
outside of the laboratory, with non-expert users in a realistic
use scenario, one needs to tackle a crucial issue not addressed
in the machine learning and computer vision literature: how
to collect good training examples through relatively few but
intuitive interactions with non-expert users? And, how to
collect examples by using current social robots which typically
have limited sensors and, in particular, a strongly constrained
visual apparatus? Those questions are addressed in this article.

The questions of drawing a robot’s attention, pointing
toward objects and realizing various forms of joint attention to
teach the name of new objects have also been widely studied.
For instance, they are closely related to research done in
robot language acquisition and in particular the construction of
visually grounded lexicons [24][25][26]. Yet, in this literature
most authors are focusing on the perception and machine
learning questions. In particular, as they try to model human
language acquisition, they choose to directly transpose the
human-like interactions to human-robot interactions to allow
humans to show new associations between visual objects and
their names. For instance, Kaplan developed a complete social
framework based on human-like interactions such as pointing
gestures and speech recognition to allow users to teach words
associated with objects to an AIBO robot [27]. Scasselati
used pointing gestures and gaze tracking to draw a robot’s
attention [28]. In this work, he used a fixed upper-torso and
thus constrained the interaction. Pointing gestures have also
been used to guide a robot companion [29][30].

Unfortunately, existing associated techniques for gesture,
gaze and speech recognition and interpretation are not robust
enough in uncontrolled environments (due to noise, lighting or
occlusion) and most social robots have a body whose shape
and perceptual apparatus is not compatible with these modes
of interaction (low quality and noisy sensor, small angle of
view, small height...). Thus, these a priori intuitive systems

have to be used by expert users in the sense that they have
to understand the limitations of the robot in order to behave
according to a very restrictive protocol which will allow the
interaction to work. One way to circumvent this problem is
to have a very controlled setup. For instance, Roy presented
a framework that allows a robotic system to acquire visually
grounded words [31]. Here, users have to place objects in front
of the robot and then describe them. We argue that this kind
of experiment cannot be directly transposed into a real world
application in personal and social robotics with non-expert
users.

Yet, as personal robotics is predicted to become common-
place in our home environments in the 21st century, it is really
important that even non-expert users can robustly designate
objects to their social robot in an uncontrolled environment.
We should provide interfaces which are intuitive in order to
avoid misunderstanding or frustration during interaction but
also to help users collect good learning examples. Indeed, in
a cluttered environment, non-robust pointing may lead to the
designation of the wrong object and thus completely incorrect
learning examples which will decrease the performance of
the whole learning system. In their work, Kaplan and Steels
identified the lack of robustness in the interface as a major
limitation of their system and they showed that the lack of
robustness of the interface often leads to a number of bad
learning examples [32].

Another widely used way to tackle this pointing and joint
attention problem is to allow users to directly wave objects in
front of the camera of the robot [33][34]. Thus, we can ask
the robot to always focus its attention on the moving objects.
Furthermore, it also allows the separation of the object from
the background by subtraction of the motionless part of the
scene. However, with this technique, users can only show to
the robot small and light objects which can be easily carried
as they will have to be waved in front of the robot. Thus, we
can not show objects such as a table, a plug or a painting on a
wall. Moreover, for the elderly or the disabled waving objects
could be really tiring or even impossible.

We argue that one way to help achieve some of the abilities
described above intuitively and robustly without facing the
problems encountered when waving objects, is to develop
simple artifacts that will serve as mediators between the human
and the robot to enable intuitive communication. Interfaces
based on mediator objects have already widely been used in
the domain of human-robot interaction and especially to draw
a robot’s attention toward an object. For instance, Kemp et al.
used a laser pointer to easily and robustly designate objects
to a robot in order to ask it to fetch them [35]. Here, they
used the laser pointer as a point-and-click interface. They
showed that inexperienced participants managed to correctly
designate objects to a robot. Furthermore, thanks to the laser
spot light, the human can also accurately know what he is
pointing at. Yanco et al. used an interface based on an input
device (touch screen or joystick) to select objects which will
be grasped by a wheelchair mounted robotic arm [36]. In their
work the user can directly monitor the object selection on the
screen of the device. As in our system, they can both draw the
robot’s attention toward objects and so realize joint attention
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between the human and the robot. However, their robot is able
to automatically grasp the object from a detected 3D spot in
a framework that requires an image segmentation algorithm
and/or a priori object knowledge. If objects are not known
beforehand these are still difficult problems.

Other mediator object based interfaces have been developed
recently. For instance, Fong et al. used a PDA for remote
driving [37], and Kaymaz et al. used it to tele-operate a
mobile robot [38]. Sakamoto et al. showed how they can
control a house cleaning robot through sketches on a Tablet
PC [39]. Ishii et al. proposed a laser pointer-based interface
where users can draw stroke gestures using the laser to specify
various commands such as path definition or object selection
with lasso gestures [15]. However, in their work they used
calibrated ceiling-mounted cameras and vision-based ID tags
to circumvent object recognition issues. Yet, to our knowledge,
nobody has used this kind of interface for interactions that
involve robot teaching, such as teaching new words for new
visual objects.

III. OUTLINE OF THE SYSTEM

As explained above, we present here an integrated system
to allow non-expert users to teach a personal robot how
to recognize new visually grounded objects in real world
conditions. In particular, this means that our system should
allow a user to draw the robot’s attention toward an object
present in its surrounding and then collect a learning example
of it. The robot could thus recognize and search for an already
taught object later on. In this version of the system, labels are
automatically associated with images. We will describe in the
section VI, a more advanced version of our system which
allows users to associate new acoustic words to the visual
objects.

This system has to deal with visual perception, machine
learning and interaction challenges. The visual perception and
machine learning parts of our system are based on a version
of the advanced bags of visual words technique [21]. These
computer vision and machine learning algorithms have been
chosen because, to us, they represent robust and standard
tools often used as a baseline to compare with more recent
techniques. Furthermore, we are here focusing on the four dif-
ferent interfaces notably developed to tackle the pointing and
attention challenges. Three interfaces are based on mediator
objects while the last one is based on arm and hand gestures
with Wizard-of-Oz recognition.

Our system was embedded in the Nao robot designed by
the company Aldebaran Robotics3. The robot was only used
here to collect the learning examples (i.e. take the pictures)
and store them. The actual learning was performed offline
on a computer. We have already explained why we chose
this particular robot and used it as an autonomous robot. The
implication of this choice will be discussed later.

A. Visual perception

We adopted the popular bags of visual words approach [20]
to process images in our system. This method was developed

3http://www.aldebaran-robotics.com/

for image categorization and object recognition and relies on
a representation of images as a set of unordered elementary
visual features (the words) taken from a dictionary (or code
book). The term “bag of words” refers to text document
classification techniques that inspired this approach where doc-
uments are considered to be an unordered sets of words. In its
basic implementation that we use here, a classifier predicting
the object identity is based on the occurrence frequencies
of the visual words in an image, thus ignoring any global
image structure. There are several extensions which introduce
some global geometry in order to improve performance (e.g.
[40]), but these extensions were not necessary to implement
in order to demonstrate the interest of the interfaces which is
the subject of this paper. Several applications also exist for
robotics, notably for navigation (e.g. [41], [42]).

The words used in image processing are based on auto-
matically detected local image features. The feature detectors
used are usually invariant to image rotation, scale and partially
to affine deformation so as to be able to recognize objects
under varying point of view. Among the many existing feature
detectors, we chose SURF [43] for its performance and rea-
sonable processing cost. For each detected feature, a descriptor
is computed that encode the local image appearance. A dictio-
nary is created by clustering a large set of feature descriptor
extracted from images representative of the environment. In
our implementation, we use a hierarchical k-means algorithm
to create a tree-structured dictionary that enable fast word
look up [44]. The size of the dictionary was set to 212 in
our experiments.

This model has interesting characteristics for our applica-
tion: the use of feature sets make it robust to partial object
occlusions and the feature space quantization brings robustness
to image noise which is linked to object position, camera noise
or varying illumination.

B. Machine learning

For our application, the classifier designed for object recog-
nition should be trained incrementally, i.e. it should be able
to process new examples and learn new objects without the
need to reprocess all the previous data. To achieve that, we
use a generative method in which training entails updating a
statistical model of objects, and classifying involves evaluating
the likelihood of each object given a new image.

More specifically, we use a voting method based on visual
words occurrences for each object. The recorded statistics
during learning (according to the learning method described
later) are the number of occurrences Owo of each visual
word w of the dictionary in the training examples of each
object o. For object detection in a new image, we extract all
the visual words from this image and make each word w vote
for all objects o for which Owo 6= 0. The vote is performed
using the term frequency–inverted document frequency (tf–idf)
weighting [20] in order to penalize the more common visual
words. The recognized object is the one with the best vote.

Estimating the statistics Owo requires the labeling of exam-
ples with their associated object name. The quality of object
recognition is obviously strongly influenced by the number and

http://www.aldebaran-robotics.com/
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quality of training images [45]. In computer vision, creating
good image datasets is therefore an important aspect, to which
a large amount of time is devoted, but this time is not
available when interactive learning takes place with a robot
for new objects as performed in our work. Moreover, precisely
selecting relevant training images is also not always possible,
depending on the interface used to control the robot. As will be
described later, we will use two methods for labeling based on
the information given by the user: labeling the whole image or
labeling only an image area (given by the user) that represents
the entire object. Then we will show the influence of these
methods on final object recognition.

C. Human-robot interaction

In this section, we present the different interfaces developed.
They were chosen to span the variety of mediator interfaces
that one can imagine but also to explore the different kinds of
feedback of what the robot is perceiving that can be provided
to the users. Three of the interfaces are based on mediator
objects such as the iPhone, the Wiimote or the laser pointer.
We chose rather well-known and simple devices so users can
quickly learn how to use them. The fourth interface was added
in order to compare the mediator based interfaces to a human-
like interaction which, as we will demonstrate reveals itself
to be less usable and less efficient than the mediator based
interfaces.

In order to be compared fairly, each of these four interfaces
has to provide the users with the exact same following abilities:

• driving the robot
• drawing its attention toward a direction or a specific

object
• defining the object area inside the image (only the iPhone

and Wiimote laser interfaces provide this ability; for the
two other interfaces the whole image was taken into
account in the evaluation)

The mediator objects were not used to trigger the capture
of a new learning example. Instead, when users think that the
robot sees the object they want to teach they had to directly
touch its head. We chose to force this physical interaction
with the robot in order to increase the feeling of collaboration.
Yet, the different mediator objects could easily be adapted to
directly trigger the capture.

It is important to notice that all the interfaces were based
on the exact same sensorimotor capacities and functionalities
of the Nao robot. As argued before, the Nao sensorimotor
apparatus represents well the present form of existing social
robots to us. We also voluntarily choose not to enhance its
capacities by using a ceiling or a wide range camera although
it may have improved the usability of our interfaces. Indeed,
as discussed in detail in section VI, such improvement would
not have solved the fundamental attention problems that we
are trying to tackle here.

In the next sections, we will describe each interface in detail
and emphasize their specificities. We chose to focus on three
interfaces, which seemed the most interesting to us, but other
mediator objects or interaction metaphors could have been
imagined in this context (e.g. using a pico projector to display

the field of view of the robot could have helped knowing what
the robot could see).

D. iPhone interface

The first interface is based on an Apple iPhone used as a
mediator object between the human and the robot4. We chose
this device because it allows the display of information on the
screen to the user and also allows interaction through intuitive
and standard gestures. In addition, the multi-touch capacity
provides numerous possibilities. Due to the large success of the
iPhone we can take advantage of a familiar interface, allowing
ease of use.

Fig. 4. We display the video stream of the camera of the robot on the screen.
This allows accurate monitoring of what the robot is seeing.

In this system, the screen of the handheld device displays
a continuous video stream of the robot’s camera. It accurately
shows what the robot is looking at, which can be monitored
by the user which resolves the ambiguity of what the robot is
really seeing (see figure 4). However, the user’s attention is
split into direct and indirect monitoring of the robot which may
lead to the increase of the user’s cognitive workload. Finally,
having visual feedback seems to entertain the user while the
robot is moving as shown in pilot studies [16].

When the human wants to draw the robot’s attention toward
an object, which is not in its field of view, the user can
sketch on the screen to make it move to an appropriate
position: vertical strokes for forward/backward movements and
horizontal strokes for right/left turns. Elementary heuristics are
used to recognize these straight touch gestures. The moves of
the robot are continuous until the user re-touches the screen
in order to stop it. Pointing on a particular point on the screen
makes the robot look at the corresponding spot (see figure 5).
This is a very convenient way of drawing the robot’s attention
toward a specific object.

Fig. 5. Drawing attention toward an object: the user first sketches directions
to position the robot such that the object is in its field of view (left), and if
he wants to center the robot’s sight on a specific spot the user can just tap
on the screen (right).

As explained above, when the user wants to show an object
in order to teach a name for it, he can first make sure that

4http://youtu.be/vrMsaIj2SDM

http://youtu.be/vrMsaIj2SDM
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(a) draw the attention toward an object (b) trigger the capture (c) encircle the area of the object (d) the new learning example

Fig. 3. To make the robot collect a new learning example, users have to first draw the robot’s attention toward the object they want to teach through simple
gestures. Once the robot sees the object, they touch the head of the robot to trigger the capture. Then, they directly encircle the area of the image that
represents the object on the screen. The selected area is then used as the new learning example.

the object is in the field of view of the robot by monitoring
whether the object is displayed on the screen or not. Once
he is certain that the robot sees the object, he touches the
head of the robot to ask it to take a picture. Then, the system
asks the user to sketch a circle around this object directly
on the touch screen (as shown on figure 6). Circling is a
really intuitive gesture because users directly “select” what
they want to draw attention to. This gesture is particularly
well-suited to touch-screen based interactions. For instance,
Schmalstieg et al. used the circling metaphor to select objects
in a virtual world [46]. Hachet et al. used 2D circle inputs for
easy 3D camera positioning [47]. As for the straight strokes,
heuristics are used here to recognize circular touch gestures
based on the shape of the stroke and the distance between the
first and the last point of the gesture. Circling is crucial to
the robot since it provides a rough visual segmentation of the
object which is otherwise a very hard task in unconstrained
environments. With the stroke and the background image, we
can extract the selected area and define it as our object’s image.
Classical computer graphics algorithms are used to compute
this area (Bresenham line drawing and flood fill). The complete
sequence of actions needed to provide a new learning example
is summarized in the figure 3.

Fig. 6. Once the user asks the robot to take a picture of a new object, he can
directly encircle it and thus providing a useful rough object segmentation.

E. Wiimote interface

The second interface is based on a Wiimote device (see
figure 7)5. The users can press one of the buttons of the arrows
to move the robot. We use the very common flying vehicle
metaphor: if we want to make the robot move forward, we
keep the up arrow pressed and as soon as the button is released
the robot will stop. This technique permits easy driving of
the robot or the ability to draw it’s attention toward a general

5http://youtu.be/vrMsaIj2SDM

direction. To aim the head of the robot, users have to orient the
Wiimote: i.e. we directly map the values of the accelerometers
to the pan/tilt values of the robot’s head. Thus, users can
always focus their attention on the robot.

Fig. 7. Users can move the robot by using the directional cross or directly
orienting the Wiimote to aim its head. However, the lack of feedback makes
it very difficult to estimate whether the robot really sees the object the user
wants to teach.

However, this interface does not provide any feedback about
what the robot is perceiving. In particular, users can not be
sure whether the robot sees an object or not. So, they have
to “guess” what the robot really sees, which can be a very
difficult task as illustrated in the experiments presented below.

F. Wiimote and laser interface

In this third interface, the Wiimote is also used to drive
the robot. However, as shown on figure 8, a laser pointer
is combined with the Wiimote and used to draw the robot’s
attention 6.

The robot is automatically tracking the laser spot and aims
its head in order to keep the spot near the center of its sight. We
chose a laser pointer as the interaction device as this method
to draw someone’s attention is quite common in our every-day
life, in oral presentations for instance, and so is an intuitive
interaction for users. Here, users can draw the robot’s attention
toward a direction by smoothly aiming its head toward the
right direction or they can point to a particular object directly
once inside the robot field of view, by designating it with the
laser pointer.

We automatically detect the laser spot in the images received
from the camera of the robot. We used a very bright laser

6http://youtu.be/vrMsaIj2SDM

http://youtu.be/vrMsaIj2SDM
http://youtu.be/vrMsaIj2SDM
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(a) draw the attention toward an object (b) trigger the capture (c) encircle the area of the object (d) the new learning example

Fig. 9. With this interface users can draw the robot’s attention with a laser pointer toward an object. The laser spot is automatically tracked by the robot.
They can ensure that the robot detects the spot thanks to haptic feedback on the Wiimote. Then, they can touch the head of the robot to trigger the capture
of a new learning example. Finally, they encircle the object with the laser pointer to delimit its area which will be defined as the new learning example.

Fig. 8. Users can drive the robot with a Wiimote and draw its attention toward
an object by pointing it with a laser pointer as the robot is automatically
tracking the laser spot.

pointer with a significant spot size. We chose a green pointer,
because “laser” green is probably a color less present in the
everyday environment and so much more salient.

Unlike Kemp et al. who used an omnidirectional camera
[35], or Ishii et al. who used ceiling-mounted cameras [15],
in our work the field of view of the robot is very limited. So,
drawing the robot’s attention requires that the user correctly
estimates the field of view of the robot. This can be a difficult
task as non-expert humans are often prone to assume that the
robot has a field of view which corresponds to a human one,
while it is not the case most of the time.

We provide different feedback to help users better under-
stand when the robot is detecting the laser spot and thus
correctly estimate the field of view of the robot. First, as the
robot is tracking the laser, users can monitor the movements
of its head so that they have visual feedback. Second, we also
provided haptic feedback by vibrating the Wiimote each time
the laser spot was detected by the robot. With the combination
of these two feedbacks, users know whether the robot was
detecting the laser spot or not and can make sure that the
laser pointer, and thus nearby objects, are in the field of view
of the robot.

The feedback for this interface is more restricted than the
complete feedback that is provided by the iPhone interface
where users can directly monitor what the robot sees. Fur-
thermore, users can not be sure that the robot sees the object
they are designating entirely. They can only be sure that the
robot is detecting the visible spot on a part of the object. For
instance, when it is not possible to center the robot’s head on
the laser spot due to the robot’s physical limit, a part of the
object may be outside of its field of view.

The laser also provides visual feedback to the user. Indeed,

the laser spot allows users to monitor what they are really
pointing at and thus they can adjust their pointing if needed.
This is particularly important in a cluttered environment where
small deviations may lead to pointing to the wrong object
leading to an incorrect learning example.

Once users manage to draw the robot’s attention toward
an object and trigger the capture of a learning example by
touching the head of the robot, they can then encircle the
object directly with the laser pointer (see figure 9 for the whole
sequence). To record the encircling gestures done by the user,
we store the detected points during these movements. Yet,
as the frame rate of the camera is low and as the speed of
the movement may really vary from one person to another,
encircling once was not always enough to compute a reliable
stroke. So, we asked participants to encircle the objects many
times. All the detected points are recorded without keeping
any structure information and stored in a point cloud. It is
then fitted on an ellipsis, as the shape of encircling gestures
tends to be elliptic. Finally, the robot indicates through a head
movement whether it has detected enough points to compute
a reliable ellipsis. The ellipsis is computed as follows [48]:

Based on the implicit equation of an ellipsis we can obtain
the following system:

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0 with A 6= 1

⇒ Bxy + Cy2 +Dx+ Ey + F = −x2

Written in a matrix form:

αX = β with

α =

x1 ∗ y1 y21 x1 y1 1
... ... ... ... ...

xn ∗ yn y2n xn yn 1

β =

−x21...
−x2n


As this system is overdetermined, we try to find the X which
best fits the equation in the sense of the quadratic minimization
problem (least squares):

argmin
X

=
∥∥β − αX∥∥2

which is equivalent to solve the equation:

X̂ = (αTα)−1αTβ

Once the ellipsis has been computed, we can use it to
delimit the boundary of the object and thus roughly segment
the image. In opposition to the iPhone interface where the
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encircling is done on the 2D image, here users encircle directly
on the 3D environment. This could lead to projection issues,
especially when the background is not planar. As we can
see in the examples in figure 10, the projected stroke could
sometimes “cut” the object and thus decrease the quality of
learning examples.

Fig. 10. Encircling with a laser pointer raises difficulties mostly due to the
projection of the laser spot in the plane of the camera.

G. Gestures based interface with WoZ

In this last interface, users can guide the robot by making
hand or arm gestures 7. As we wanted to keep this interface as
intuitive as possible we did not restrict the kinds of gestures
that users can make. However, as gesture recognition is still
a complex task, we used a Wizard-of-Oz framework where
a human was controlling the robot according to different
gestures the magician recognized. We can thus ensure that the
recognition of the different gestures was not a limitation of
this interface. As stated above we did not want to enhance the
robot’s capacities with a ceiling or wide-angle camera as we
wanted to study a human-like interaction between non-expert
users and what we think represent a typical actual personal
robot well. Thus, all the four interfaces are based on the
same robot sensorimotor capacities which allows a comparison
of the different interfaces on a fairer basis. Furthermore, as
explained in the discussion, even if using external sensors
would probably improves the usability of this interface it
would not fundamentally change pointing or attention issues.

Fig. 11. In this mode of interaction, the robot is guided by the hand and arm
gestures made by the user. In order to have a robust recognition, we used a
WOZ framework, where the wizard was only seeing the interaction through
the robot’s viewpoint.

As the Wizard was only seeing interaction through the
robot’s eyes and therefore through a very limited visual
apparatus, most of the gestures made by the users were outside
of the robot’s field of view. As a consequence, and as we

7http://youtu.be/l5GOCqXdgQg

will show in the experiments below, even such a well-known
interface with human-level intelligence may in fact lead to
fragile interactions due to the differences between the robot’s
sensorimotor apparatus and the human’s ones.

Obviously, this interface embeds a strong difference with
the others. Indeed, the Wizard is a human who already has
knowledge and strong biases about what may constitute an
object shown to him, i.e. the object segmentation problem is
here automatically solved by the human. Thus, when the object
was pointed at, the wizard naturally centered the sight of the
robot on it. Yet, on the other hand, in spite of this advantage
when compared to other interfaces that are coupled with an
autonomous robot, this interface does not perform so well as
we will demonstrate.

Although this interface embeds some strong differences with
the other, it still appears very interesting to us, as it first
allows the investigation of a human-like interaction with an
autonomous personal robot with a limited visual apparatus if
we assume a human-level recognition and interpretation of
gestures. Second, it also permits the comparison of our inter-
faces based on mediator objects with a human-like interaction
and showed that because of the particular visual apparatus of
the robot, this interaction may lead to a more restrictive and
thus less satisfying interaction for users.

IV. EXPERIMENTAL EVALUATION WITH NON-EXPERT
USERS

As previously explained, we want here to study the impact
of interfaces on robot learning of new visual objects through
non-expert user teaching and in a real world home-like envi-
ronment. This impact is evaluated along two main dimensions:

• Learning Efficiency: We test the quality of training
examples collected by the robot through human guid-
ance. This quality is evaluated both qualitatively (see
below) and quantitatively through a measure of accuracy
in classification in generalization (i.e. on images not
in the collected dataset). We also want to study more
specifically how encircling can impact the performance
of the learning system.

• Usability and user’s experience: We study below how
intuitive, effortless and entertaining our interfaces are for
non-expert users.

We argue that potential future users of social robots will not
necessary be expert users, in the sense that they should be able
to interact with their social robot without any prior specific
training. Thus, it is crucial that our study is not a laboratory
study but a real world study. In particular, we want to create
a plausible context of interaction and have representative non-
expert participants, in order to preserve the ecological validity
of our results and avoid the classical pitfalls of the evaluation
in the HRI domain [49][50].

However, as those users have probably never interacted with
a social robot before, asking them to show and teach objects to
a robot is still an unusual and artificial task as shown by pilot
studies [16][17][51]. Therefore, we need to embed this task
in a scenario in order to justify it. In particular, we need to
encourage the users to collect high quality learning examples.

http://youtu.be/l5GOCqXdgQg
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Moreover, we want a scenario that can entertain and maintain
the user’s motivation during the whole experiment. Finally, we
want to conduct a large scale study and so we need to design
a formal and reproducible experiment.

A. A Robotic Game Experiment
We argue that one solution to tackle the above mentioned

issues was to design our user study as a robotic game. Games
are well known to be a powerful way of captivating and
engaging users through their storyline. For instance, serious
games have been widely used for education or training,
allowing learners to experience situations that are impossible
or hard to reproduce in the real world [52]. We think that, in
the same way that video games have managed to make novice
users solve complex and unusual tasks by using mechanisms
such as tutorials or briefings, we could design a robotic game
experiment that helps users to better understand and remember
all the steps needed to teaching visual objects to a robot. The
scenario of the game also permits us to justify this artificial
task. Finally, presenting the experiment as a game allows us to
attract a wide and varying panel of participants. Participants
would feel more comfortable participating in a game than a
scientific experiment.

Thus, we created a game scenario to try to match all of
the above. The users were told the following story: a robot,
which has come from another planet, has been sent to Earth in
order to better understand what seems to be a popular human
habit: “playing football”. Indeed, from their remote home,
the robots have just picked up partial information about this
practice and so they want to investigate further. Therefore, one
robot was sent to the living room of a football fan to gather
more clues. As the robot was damaged during its journey, it
could no longer fulfill its mission alone. So, you will need to
help it! The user was asked to help the robot to collect clues
(i.e. collect learning examples of four different objects related
to football). Every time the robot collected a new example, a
false and funny interpretation of what the object can be used
for was given by the robot.

B. Experimental setup
1) Game Environment: We recreated a typical 10m2 living

room located next to the café of a science museum in Bor-
deaux, France. We arranged furniture such as tables or chairs
and many other various everyday objects (newspaper, plush
toys, posters, etc...) in order to make it look inhabited. Among
these various objects, 12 were directly related to football (see
figure 12). Those objects were the possible clues the robot
needed to collect. They were chosen because they fit well
within the scenario but also because they were textured and big
enough so they could be robustly recognized by classical visual
recognition algorithms (if provided with good quality learning
examples). Other usual objects were added to the scene to
make the environment cluttered (see figure 13).

The design of the game environment had three main pur-
poses:

• Reproduce a daily life area to provide participants with a
stressless environment and to reduce the feeling of being
evaluated.

Fig. 12. For the experiment, we used 12 textured objects directly related to
football: beer, ball, gloves, coke, a poster of Zidane, a jersey of Beckham, a
poster of a stadium, a jersey of the Bordeaux team, shoes, a gamepad, a video
game and magazines. Each participants had to teach four randomly chosen
objects to the robot to help it better understand football.

• Conduct the experiment in a realistic environment, so
users have to navigate the robot through a cluttered area
and to collect real world learning examples (lighting
conditions, complex background, ...).

• Immerse users in the scenario.
The global structure of the room remains unchanged during

the whole experiment in order to get a constant test environ-
ment. Nevertheless, the small objects were randomly arranged
every five experiments. Indeed, in a real home, while big
objects such as furniture will not move, most of the small
objects will often be moved and thus must be recognized in
spite of their background.

Fig. 13. The real world environment designed to reproduce a typical living
room. Many objects were added in the scene in order to make the environment
cluttered.

2) Robot: As stated previously, we used the Nao for our
experiment. To make it more lively, we developed some basic
behaviors such as yawning or scratching its head if the robot
was idled for a long time. We also used different colors for
its eyes to express simple emotions or to provide feedback to
the users (see figure 14). Moreover, we added organic sounds
to express the robot’s mood.

3) Game Interface: As explained above, the design of our
robotic game was inspired from a classic video game. We used
a large screen as the game interface to display information to
users such as cutscene video explaining the story.

This interface was also used to recreate a tutorial where
participants learn one ability at a time: walking straight,
turning, aiming the head of the robot and collecting a learning



10

Fig. 14. Behaviors, such as “happy” (on the left) or scratching its head (on
the right), were designed to make the robot look more lively and help the
users better understand its behavior.

example. For each step, a short video explained how to realize
the task with the interface they were using. After the video,
the user was asked to effectively complete the task. Once they
succeed, they could move on to the next stage. These videos
were also a way to make users know the robot better. The
final objective of the tutorial was to first collect a learning
example which, in fact, was a picture of the user’s face. The
whole tutorial lasted about five minutes on average. After the
tutorial, the real mission was explained to the participants via
another video similar to the one in figure 15. Thus, the game
interface allowed us to present the whole experiment (both
tutorial and mission parts) in one single game.

Fig. 15. The story of the game was told through video displayed on our
game interface. This display was also used to provide users with step-by-step
instructions of the tutorial.

Furthermore, it also allowed us to conduct each test in the
same way. Indeed, all participants received the exact same
information and instructions through the game interface.

C. Experimental Protocol

The experiment took place from June to November 2010
and 107 persons participated in it. Most of them (74) were
recruited at Cap Sciences 8, a science museum in Bordeaux,
most of which where visitors. We expected to find, in general,
non-expert participants within the public; although, it might
have introduced a bias as science museum visitors are probably
more receptive to technology. The others (33) were recruited
on the campus of Bordeaux University of Technology. We
expected to find here participants with a significant techno-
logical background and a knowledge of classical interfaces
but without any particular robotic knowledge.

Seventy-seven participants were male and 30 were female.
The participants were aged between 10 and 76 (M=26.3,
STD=14.8). Among the 107 participants: 32 used the iPhone
interface, 27 the Wiimote interface, 33 the Wiimote-laser
interface and 15 the gestures interface.

8http://www.cap-sciences.net/

Each participants was asked to follow the following proto-
col, generated from the result of several pilot studies:

1) Fill in a consent form
2) Fill in a pre-questionnaire
3) Experimentation (robotic game)

• Tutorial

a) Wake up the robot by touching its head
b) Make it move forward
c) Make it turn left and right
d) Turn its head left, right, up and down
e) Make it watch your face (or a ball for the laser

interface)
f) Enable the photo mode by touching its head

• Mission

a) Draw the robot’s attention toward one randomly
chosen object among the 12 other possible ob-
jects

b) Take a picture of it

The steps from a) to b) were repeated 4 times

4) Fill in a post questionnaire

The whole experiment (including the questionnaires) lasted
between 20 to 30 minutes per participant.

D. Measures

During the experiments, we collected the pictures taken by
the robot and analyzed them as described below. Due to the
nature of the game interface the images were automatically la-
beled. Indeed, the participants were asked to show a particular
object indicated by the game interface. We also measured the
time needed to complete the game and also the intermediate
times, i.e. each time a picture was taken.

On top of these measures, we also conducted two question-
naire based surveys inspired by the classical guidelines found
in the HRI literature [49][53]. Before the experiment, we ad-
ministered a demographic survey and a pre-task questionnaire
concerning the participant’s technological profile (computer,
video games and robotic experience) and their attitude toward
robotics. After the game, we conducted a post-task survey
with the following assertions to which agreement had to be
evaluated on a 5 points Likert scale:

• Usability and user’s experience

1) It was easy to learn how to use this interface.
2) It was easy to move the robot.
3) It was easy to make the robot look at an object.
4) It was easy to interact with a robot.
5) The robot was slow to react.
6) Overall, it was pleasant to use this interface.

• Robotic game

1) Completing the game was easy.
2) The game was entertaining.
3) I felt like cooperating with the robot.
4) I picture myself playing other robotic games in the

future.

http://www.cap-sciences.net/
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V. RESULTS

A. Qualitative analysis of the images

We first manually sorted the collected pictures, i.e. the visual
training examples corresponding to a new object, into three
categories: 1) images where the object was entirely seen, 2)
images where the object was only partially present, 3) images
where the object was not present at all. The objects were
defined as “partially visible” as soon as a part was missing.
We here considered the object corresponding to the label
obtained thanks to the game interface. The figure 16 depicts
these results. We performed a one-way ANOVA where the
independent variable was the interface used and the depen-
dent variable was the number of object corresponding to the
“entirely visible” condition. We found a statistical difference
between the four interfaces (F3,103 = 13.7, p < 0.001). In
particular, we can observe that without providing any feedback
about what the robot sees to the users (the Wiimote and
gestures conditions), the object is entirely visible in only 50%
of the images. The Tukey post-hoc test showed that providing
feedback significantly improves this result (80% for the laser
and 85% for the iPhone). Furthermore, we can discern that the
iPhone interface and in particular its video feedback, prevents
users from collecting incorrect learning examples (i.e. where
the object is not present) in most cases (only 2%).

Fig. 16. This figure shows the partition of the collected images into three
categories: the object is 1) entirely, 2) partially or 3) not at all visible on
the images. We can see that without any feedback (Wiimote or Gesture
interfaces) the object was entirely visible in only 50% of the examples.
Providing feedback significantly improves this result (80% for the laser and
more than 85% for the iPhone).

We also split the images into two subsets:
• big objects: the two posters, the two jerseys and the ball
• small objects: the other objects
As we can see in the figure 17, the differences between

the interfaces are more accentuated for small objects. In
particular, we can see that the lack of feedback led to about a
third of examples being incorrect. While the laser feedback
improves this result (an error rate of only 20%), only the
iPhone interface seems to really prevent users from providing
incorrect learning examples regarding small objects. Finally,
we can also observe that users managed to provide rather
good examples of the big objects across all the interfaces. Yet,
while the objects were almost always entirely visible under
conditions where they used the iPhone and Laser interfaces
(more than 85% of the case), they were only partially visible

Fig. 17. This figure presents similar charts to the figure 16, but here the
collected images were split into two subsets: small and big objects. We can
see that the difference between the interfaces is even more accentuated for
small objects: with the Wiimote and Gesture interfaces participants failing to
provide correct learning examples in about a third of cases.

in about a third of the examples for the Wiimote and Gesture
conditions.

B. Quantitative analysis of the images

We also used the collected images as input training for our
learning system in order to have an effective measure of the
quality of the learning examples and their impact on the overall
performance. As explained above, our learning system is based
on a bags of visual words approach. This technique is based
on a dictionary used to categorize the features extracted from
the images. For our tests we built a dictionary by recording
a five minute sequence using the camera of the Nao (about
1000 images) while it was navigating in the living room of
our lab. We ensured that none of the furniture or the objects
used during the experiments were present during the recording
in order to have a dictionary that was not specific to our
experimental setup.

We used the following protocol for all the tests:
• We randomly chose N input images per object collected

by users who used a specific interface. Thus, we mixed
images taken by several users. As collecting one examples
of five objects already took about 20-30 minutes per par-
ticipant, we could not ask them to collect few examples
of each of the twelve objects. This certainly introduced a
bias that we tried to counterbalance by randomly selecting
images and repeating our tests many times. As shown
on the results below, the variability between users (the
standard deviation) is rather low. In particular, in most
cases the variability among interfaces is larger than the
differences among the users of an interface.

• We trained our learning system with these input images.
• We tested our learning on the test database (see below).
• The test was repeated 50 times by choosing a different set

of N training images each time in order to counterbalance
the randomization effect.

• The final results are the mean recognition rate and vari-
ances of each test.

The test database was built by an expert user who collected
10 examples of each of the objects through the Wizard
interface. The images were taken in the same experimental
setup as the actual experiment. These examples represented
the “best” examples that we could expect as an input. The
database was then split in half: the first part was used as a
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“gold” training input while the other half was used as the test
data. These “gold” examples were to be used in a similar way
as the examples collected with one interface. They were to
provide us with an interesting baseline to determine which
recognition rate our learning system can achieve with such
optimal examples.

Fig. 18. Recognition rate for all the 12 objects: This figure shows the
impact of the interface on the quality of the learning examples and therefore
on the generalization performance of the overall learning system. In particular,
we can see that the iPhone interface allows users to collect significantly higher
quality learning examples than the other interfaces. Furthermore, it allows even
non-expert users to provide the learning system with examples of a quality
close to the “gold” examples provided by an expert user.

As shown in figure 18, we notice first that the examples
collected with the iPhone interface led to a significantly higher
recognition rate than the other three interfaces. In particular,
we notice that only three examples collected with the iPhone
give as good results as eight examples of any other interface.
Furthermore, the iPhone interface seems to allow non-expert
users to achieve results close to the results achieved with the
gold training after eight examples. We can also see that even
with very few good learning examples (such as three or four
iPhone examples) we can achieve a rather high recognition
rate of 12 different objects (about 70% correct recognition).
Then, we can see that the lowest score was obtained with the
Gesture interface. This result can probably be explained by
the lack of usability of this interface (see details in the next
section).

As in the previous section, we also separated the 12 objects
into two categories: big or small. As can be seen in figure 19,
the recognition rate for the big objects is very high (about
90%) for all the mediator interfaces. Furthermore, we can
see that no significant difference was found between these
interfaces. On the other hand, we can see in figure 20 that
for the small objects we obtained significantly higher results
with the iPhone interface than with the three other interfaces.
So, while the interface does not seem to have a very strong
impact on the recognition of the big objects, interfaces such
as the iPhone interface allows users to obtain a significantly
higher recognition rate for small objects, especially with very
few learning examples. Those results are coherent with the
qualitative results presented earlier.

Fig. 19. Recognition rate for the five big objects: We can see that all the
mediator interfaces allow users to collect equally good learning examples. So
for the big objects the interface does not seem to have a strong impact on the
recognition rate.

Fig. 20. Recognition rate for the seven small objects: We can see that
the iPhone interface allows users to provide higher quality learning examples
than the other three interfaces (especially with few learning examples). The
other three interfaces gave approximately equal results.

In the above tests, the whole image was used as an input.
Thus, the encircling feature of the iPhone interface was
not leveraged. We also investigated how encircling impacts
the performance of the overall system. As we can see in
figure 21, encircling with the iPhone allows us to improve
the performance of the system, especially when the system
is trained with very few learning examples. In particular, we
can see that the recognition rate is between 5 and 10% higher
when trained with less than three encircled learning examples.
Yet, we did not find any statistical difference here. Although
the experimental environment was cluttered to reproduce a
plausible environment, the background was still relatively
plain with comparison to many real-world environments where
this result would probably be even more important.

We also studied the impact of encircling with the Laser
interface. However, we did not find any difference between the
two conditions: whole or encircled images. We thus looked in
detail at the images collected with this interface and found
that in many cases the encircling was correct and should
theoretically improve the results. Yet, in many other cases the
laser stroke cut the object and so the encircling actually led to
a decrease in the quality of the learning examples (as shown
on the figure 10).

These results allow us to show that the interface plays an
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Fig. 21. This figure shows the impact of encircling with the iPhone interface
on the recognition rate. As we can see this intuitive gesture allows us to
improve the recognition rate, especially when the system is trained with very
few learning examples.

important role allowing non-expert users to robustly teach
visual objects to a robot. In particular, we showed that the
interface has a strong impact on the quality of the learning
examples gathered by users. Indeed, we first showed that with
simple interfaces such as the Wiimote or the Gesture interfaces
that do not provide any feedback to the users, only 50% of
the learning examples collected by users can be considered
“good”. We also found that encircling improves the recognition
rate. Furthermore, we showed that three examples provided by
the iPhone interface allow us to obtain a higher recognition
rate than eight examples collected with any other interface.
These results are particularly important to us as we state that
real world users would probably want to give very few learning
examples as it could quickly become a tedious task.

We also showed that specifically designed interfaces such
as the Laser and the iPhone interfaces, which provides to
the users a feedback of what the robot perceives allows non-
expert users to ensure that the object they want to teach is
actually visible. While it was expected that providing feedback
to the users will help them to collect “apparently” better
learning examples, it is very interesting to see that only the
examples collected by the iPhone interface led to a very
significant improvement of the overall performance of the
learning system. Indeed, the Laser and the Wiimote interface
gave a rather equal recognition rate. Thus, we can see that
the kind of feedback of what the robot perceives also strongly
influences the quality of the examples. More precisely, we
think that while the Laser interface allows users to know
whether an object is visible or not, it does not provide any
information on how the object is actually perceived by the
robot. For instance, as shown by the examples in figure 22,
many examples were captured either far from the object (so
the object was very small in the picture), or the taught object
was in the background while other uninteresting objects were
in the foreground, etc.

Thus, if one is interested in allowing non-expert users
to teach visual objects to a social robot by providing very
few learning examples, we think that the interface should
really be taken into consideration and specifically designed. In
particular, as naive participants seem to have strong incorrect

Fig. 22. While the feedback provided by the Laser interface allows users to
make sure that the object is visible, it does not help them to realize how the
object is actually perceived by the robot. For instance, we can see that the
video game on the left is almost entirely occluded by the table. In the center
we can see a cluttered foreground in front of the poster of Zidane and finally
in the image on the right we can see that the image of the magazine has been
taken with an almost horizontal point of view.

assumptions about a humanoid’s visual apparatus, we argue
that the design of the interface should help users to better
understand what the robot perceives but should also drive them
to pay attention to the learning examples they are collecting.
For instance, the iPhone interface presents, on the screen of the
device, the learning example that users encircle and provide to
the robot. Thus, the interface naturally forces them to monitor
the quality of the examples they collected.

C. Subjective evaluation of the usability and game experience

Figure 23 presents the answers to the usability question-
naires. We performed a one-way ANOVA where the inde-
pendent variable was the interface used and the dependent
variable was the answer given in the questionnaires. We
found statistical differences for the questions Q1 (F3,103 =
6.35, p < 0.001), Q2 (F3,103 = 2.44, p < 0.05), Q3
(F3,103 = 6.41, p < 0.001) and Q6 (F3,103 = 3.38, p < 0.05).
The Tukey post-hoc tests showed that the iPhone, Wiimote
and Laser interfaces were judged as easier to learn and more
practical to move the robot than the Gesture interface. The
users also stated that it was easier to make the robot look at an
object with the iPhone and Wiimote interfaces. Furthermore,
they also judged that overall the iPhone was significantly more
pleasant to use than the Laser interface. In particular, during
the experiments we observed that the Gesture interfaces led to
some misunderstanding while interacting and so participants
tended to rush through the experiment.

Figure 24 shows the results for the game part of the
questionnaires. The only statistical difference was found for
question Q1. We can see that the participants found the game
easier when using interfaces based on mediator objects rather
than with the gestures interfaces (F3,103 = 5.17, p < 0.005).
The game was judged as entertaining by participants for all
conditions. It is also interesting to note that the gestures
condition seems to improve the feeling of cooperation with
the robot. Similarly, participants seemed to be more willing
to play other robotic games with the gestures interface in the
future than with the other conditions. However, no statistical
difference was found for these results.

It is interesting to note that while the gestures interface
was stated as being less usable than the other three interfaces,
participants judged that the game was as entertaining with
this interface as with the others. To us, this result can be
explained by several factors. First, it is important to notice
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Fig. 23. Usability: Participants found the gestures interface significantly less
intuitive and harder to use than the other interfaces. They also stated that the
iPhone interface was overall more pleasant than the Laser interface.
Q1: It was easy to learn how to use this interface.
Q2: It was easy to move the robot.
Q3: It was easy to make the robot look at an object.
Q4: It was easy to interact with a robot.
Q5: The robot was slow to react.
Q6: Overall, it was pleasant to use this interface.

Fig. 24. Robotic game: Our robotic game was stated as entertaining by
all participants. They found the game significantly harder with the gestures
interfaces but it increased the feeling of cooperation with the robot.
Q1: Completing the game was easy.
Q2: The game was entertaining.
Q3: I felt like cooperating with the robot.
Q4: I picture myself playing other robotic games in the future.

that the participants did not know whether they collected
good learning examples or not; it did not influence the user’s
experience. For instance, users who collected only very bad
learning examples could still think that they had successfully
finished the game. Second, while interfaces such as the iPhone
interface were specifically designed to help users collect good
learning examples, it was probably more complicated than
necessary for the robotic game. Indeed, users had to monitor
the robot, the game interface and the iPhone. Furthermore, it
seemed that the interface should be as transparent as possible
in order to allow users to entirely focus on the game. Finally,
the gestures interfaces seemed to improve the user’s feeling
that the robot was cooperating with them. We think that this
result could be explained by the fact that participants were
closer to the robot and that they were trying different gestures
to see how the robot reacted and so thereby determining
which gestures were better understood. The bias introduce
by the Wizard-of-Oz setup also led to a situation where the

Wizard was adapting its behavior to the participants and thus
was effectively cooperating with him. Although further studies
should be carried out in this direction, our preliminary results
about this seem to show that the gestures interface could be
interesting if one tries to develop a simple robotic game.

As stated above, we also timed the experience. However,
we did not find any significant difference between the different
interfaces. Furthermore, for all the results above, no significant
differences was found between the participants from the sci-
ence museum and the participants from the university campus.
We also studied other sociological differences (age, gender)
without finding any remarkable result.

VI. DISCUSSION AND FUTURE WORK

We have proposed an integrated system based on a combi-
nation of advanced interfaces, visual perception and machine
learning methods that allow non-expert users to teach a robotic
system how to recognize new visual objects. For experimental
convenience, the robotic system was composed of a personal
mobile robot and a remote computer which achieves offline
signal processing and statistical learning. All the signal pro-
cessing and statistical learning algorithms used are fast and
incremental and it is possible to use them online and onboard
a mobile robot [54].

With this system, we have studied the impact of various
interfaces based on mediator objects upon the efficiency of
robot learning. We have shown that a well designed interface,
such as the iPhone, permits the collection of high quality
learning examples by non-expert users in realistic conditions
and outside of the lab. In particular, providing feedback about
what the robot perceives allows non-expert users to collect as
good learning examples as expert users who are familiar with
the robotic and visual recognition issues.

We have also shown that our interfaces based on mediator
objects were judged intuitive and easy to use by participants.
Users stated that they were more intuitive and more efficient
for teaching new visual objects to a robot than a direct
transposition of a human-like interaction based on gestures.
This result can be explained by the misconceptions held
by non-expert users about what the robot perceives visually.
Artefact-based interfaces allow users to understand better what
the robot perceives, and thus guide users into providing good
learning examples.

In this paper, we also investigated how a robotic game
can be used as a framework to conduct real world and
large scale user studies. We argue that such an approach
allows the design of an experimental setup which engages
and motivates users, justifies an a priori artificial task but
also has a specific and reproducible protocol. We have also
explored the concept and realization of the robotic game which
raises interesting questions, especially since robotic games are
a relatively unexplored research area [55][56]. Our preliminary
result seems to show that users were entertained by our games
and were willing to play more robotic games. However, it
seems that the game should be rather simple and the interface
transparent to allow users to focus on the gameplay. Further
studies should be conducted in these directions.
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The experimental setup presented here was designed follow-
ing some particular design choices. As stated previously, we
chose to restrict ourselves to the use of the Nao robot without
enhancing its onboard sensors. In our opinion, this robot was
representative of some particular characteristics which made it
a plausible candidate for the future of personal robotics such as
having a humanoid shape, being relatively low-cost and easy to
integrate in a domestic environment both from a technological
and cultural point of view.

This robot also had some limited sensors which constrained
the interaction, but this limitation is currently difficult to
avoid in robots targeted for everyday use in the home. As
long as robots and humans have different sensorimotor and
cognitive apparatuses, robustness issues during interaction will
be inevitable, especially if one tries to directly transpose
the human-like interaction into the human-robot interaction
domain.

Other approaches such as smart environments or ubiquitous
robotics have also widely been explored in the literature
[57][58]. Using an omnidirectional camera or a set of fixed
camera on the ceiling would have changed some of our results
and in particular it would have probably facilitated the drawing
of attention when using the gestures based interface and thus
improving its usability.

Nevertheless, we argue that the interaction problems such
as interpreting pointing gestures robustly, knowing what the
robot can perceive and making sure that the robot is looking
at the object users are showing would still remain despite
of these possible enhancements. It is interesting to note that
our interfaces could also be combined with external cameras
if they are available. For instance, a touch gesture based
interface or a laser pointer interface have been combined with
ceiling cameras to facilitate drawing a service robot’s attention
[39][15]. Further experiments should be conducted both in this
direction and with other types of robots to evaluate the impact
of the robotic setup on our interfaces and on their perception
by users.

In the system presented in this paper, the visual objects were
automatically labeled, which was made possible by the game
context. More precisely, as we used a predefined set of objects
during our experiments, they could automatically be associated
with a particular symbol provided by the game interface. Such
symbolic labels can be easily and surely compared which then
allows a direct classification of the different visual examples.
This is an important feature as the clustering of the learning
examples permits the construction of a better statistical model
of the visual object and so a better recognition. However,
for more diverse kinds of interaction, we should provide the
ability for the users to directly enter a word that they want
to associate with the object. Pilot studies have shown that
the user would prefer to use vocal words [59]. In future
work, we will thus investigate the use of acoustic words
associated with visual objects without using an “off-the-shelf”
speech recognition system as we argue that they still suffer
from robustness problems when used on single words and in
uncontrolled conditions. We will in particular investigate the
role of the interface for improving the speech recognition, for
instance by displaying the N closest words to the users and

allowing them to choose among those possibilities. We will
also study how the interface could provide the ability for the
humans to incrementally build the complete clusterization of
the different learning examples through intuitive and transpar-
ent interactions and thus circumvent the issues raised by not
using symbolic labels.

Finally, in the experiments described above, we chose to
only perform offline visual classification. Indeed, the experi-
ments were already rather complex and time consuming for
the users and so we decided not to include the search part in
our robotic game to keep the experimental time acceptable
for users facilitating the testing of many users. It will be
interesting to evaluate our integrated system in a complete
scenario including the search of the objects in order to study
the entire interaction, and let users have feedback on the
learning efficiency of the robot. The robot should itself assess
the quality of the learning examples. In such a closed loop
scenario, it will be interesting to investigate how the robot
could provide feedback to the user regarding the quality of
the learning examples collected, or how the robot could use
active learning techniques to ask informative questions to the
user [60].
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VIDEO LINKS

• Description of the interfaces based on mediator objects :
http://youtu.be/vrMsaIj2SDM

• Description of the gestures based interface
http://youtu.be/l5GOCqXdgQg
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