
HAL Id: hal-00758552
https://hal.archives-ouvertes.fr/hal-00758552

Submitted on 28 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

OP: A Novel Programming Model for Integrated Design
and Prototyping of Mixed Objects

Céline Coutrix, Laurence Nigay

To cite this version:
Céline Coutrix, Laurence Nigay. OP: A Novel Programming Model for Integrated Design and Proto-
typing of Mixed Objects. INTERACT 2011 - International Conference on Human-Computer Interac-
tion, Sep 2011, Lisbon, Portugal. pp.54-72, �10.1007/978-3-642-23765-2_5�. �hal-00758552�

https://hal.archives-ouvertes.fr/hal-00758552
https://hal.archives-ouvertes.fr

OP: A Novel Programming Model
for Integrated Design and Prototyping of Mixed Objects

Céline Coutrix, Laurence Nigay

CNRS, Université Joseph Fourier Grenoble 1
Laboratoire d’Informatique de Grenoble LIG UMR 5217, Grenoble, F-38041, France

{Celine.Coutrix, Laurence.Nigay}@imag.fr

Abstract. In the context of mixed systems that seek to smoothly merge physical
and digital worlds, designing and prototyping interaction involves physical and
digital aspects of mixed objects. However, even though mixed objects are
recurrent in the literature, none of the existing prototyping tools explicitly
supports this object level. Moreover, designers have to use distinct tools, on the
one hand, tools for designing ideas and on the other hand tools for prototyping
them: this makes the design process difficult. To help alleviate these two
problems, we present OP (Object Prototyping), a toolkit that provides a new
programming model focusing on mixed objects and allows us to seamlessly go
back and forth from conceptual ideas to functional physical prototypes, making
the iterative design process smooth and integrated. Indeed, OP is explicitly based
on an existing conceptual design model, namely the Mixed Interaction Model
that has been shown to be useful for exploring the design space of mixed objects.
Our user studies show that, despite its threshold, designers and developers using
OP can rapidly prototype functional physical objects as part of a design process
deeply intertwining conceptual design with prototyping activities.

Keywords Prototyping, Toolkit, Mixed Systems, Mixed Objects, Augmented
Reality, Physical User Interfaces, Tangible User Interfaces, Design.

1 Introduction

Mixed interactive systems seek to smoothly merge physical and digital worlds.
Examples include tangible user interfaces, augmented reality, augmented virtuality,
physical interfaces and embodied interfaces. In mixed systems, users interact with
objects existing in both the physical and digital worlds. These objects are depicted in
the literature as augmented objects, physical-digital objects or mixed objects.
Nowadays, designers either work alone or work with developers to design such objects.
In the first case, except if they have coding skills, they cannot produce interactive
mockups. Some tools provide partial contribution towards this problem, like Intuino
[26]. In the second case, they can either provide a description to a developer who will
then develop a prototype (however this significantly slows the design process) or they
can also work together with a developer in designing and prototyping. This latter case
is the work practice that we target in our study. In this context, facilitating the

systematic exploration of design solutions is a very important problem for designer-
developer pairs, as their aim is to generate solutions in the exploration phase [4][16].
In this paper, we introduce OP - Object Prototyping - a toolkit for the prototyping of
such objects involved in mixed systems. OP offers two main benefits for designer-
developer pairs: (1) it offers a new programming model, based on interacting objects
and (2) it provides an integrated design approach, thanks to its strong link with an
interaction model that was proven useful for exploring the design space. These two key
aspects of OP are motivated by the following problems.

First, several studies of mixed systems developed in the literature [25][7][12]
underline that the concept of a mixed object is central and recurrent in the design of
mixed systems. A mixed object can be either used as a tool by the user to complete her
task like the paper button “fill” in the drawing scenario of the seminal Digital Desk
[27], or as the object focus of a task like the drawn house whose roof is to be filled in
the drawing scenario of the Digital Desk. Unless they explicitly focus on objects in
mixed systems, prototyping toolkits would not provide an optimal abstraction level for
better design flexibility. Moreover reuse could be improved, as a mixed object can be
an elementary block reused in different applications, like the pucks of [21], a generic
mixed object.

Second, as the aim of early design is to explore as many ideas as possible [16][4],
researchers and practitioners have proposed: (1) Interaction models, e.g. [14][7][9], in
order to help to systematically explore the design space, (2) Prototyping toolkits, e.g.
[13][11], in order to help materialize design ideas and support active thinking.

The use of both types of tools has been shown as being effective [7][11]. Moreover
conceptual design and prototyping activities are inextricable [16]. Both activities
inform each other: designer-developer pairs are going back and forth from conceptual
ideas to practical realizations. An optimal practice of intertwined conceptual design and
prototyping would be to explore the design space based on a model while prototyping
the design alternatives. However, interaction models and prototyping toolkits are
hardly used together. These two types of tools mainly remain unrelated, making their
simultaneous use difficult. By using either one of these types of tools, designer-
developer pairs therefore end up with either (a) a good covering of the design space,
but cannot experience their design ideas with prototypes, or (b) prototypes that they can
reflect on or show to stakeholders but cannot be sure that they explored the design
space in a satisfactory way and might have forgotten to consider interesting solutions.
As pointed in [2], after the presentation of an interaction model for GUI,
“operationalizing the design of interaction requires appropriate tools and frameworks.”

To help alleviate both of the two above problems in the design of mixed physical-
digital systems, OP is directly based on a conceptual interaction model that focuses on
mixed objects. As OP tightly integrates the widely used Qt [23], the Mixed Interaction
Model and existing hardware tools to offer a structuring of the prototype, it allows
designer-developer pairs to easily go back and forth from ideas to prototypes of a
mixed object.

The remainder of this paper is organized as follows: we begin by recalling the key
elements of the Mixed Interaction Model, that is the background of this work. We then
explain to which extent existing tools address this practice of intertwined conceptual
design and prototyping of mixed objects. We next present the OP prototyping toolkit
and we end by describing experiences of designer-developer pairs using our tool.

2 Background: the Mixed Interaction Model

The Mixed Interaction Model (MIM) is a conceptual design model that focuses on
hybrid physical-digital objects or mixed objects. Some interaction models for GUI [2]
also identified this intermediary level between hardware resources and applications that
is called the object level. The key contribution of MIM is the structuring of a mixed
object: MIM defines building blocks of a mixed object at a higher level of abstraction
than an encapsulation of a piece of hardware. The MIM structuring of a mixed object
has been shown to be useful for exploring the design space of mixed objects in a
systematic way [7].

Fig. 1. A mixed physical-digital object sensitive to light that has been built with OP.

(a) (b)

Fig. 2. (a) Model of a mixed object. (b) Modeling of a simple light sensitive object (Fig.1).

Based on MIM, a mixed object is defined by its physical and digital properties as well
as the link between these two sets of properties. The link between the physical and the
digital parts of an object is defined by linking modalities. The definition of a linking
modality is based on that of an interaction modality [3]: Given that d is a physical
device that acquires or delivers information, and l is an interaction language that
defines a set of well-formed expressions that convey meaning, an interaction modality
is a pair (d,l), such as (camera, computer vision) or (microphone, pseudo natural
language). These two levels of abstraction, device and language, are reused. But as
opposed to interaction modalities used by the user to interact with mixed environments,
the modalities that define the link between physical and digital properties of an object
are of lower abstraction level and therefore called linking modalities. Fig. 2a shows the
two types of linking modalities that compose a mixed object: An input linking modality
(di,li) is responsible for (1) acquiring a subset of physical properties, using a device di
(input device), (2) interpreting these acquired physical data in terms of digital
properties, using a language li (input language). An output linking modality is in
charge of (1) generating data based on the set of digital properties, using a language lo

(output language), (2) translating these generated physical data into perceivable
physical properties thanks to a device do

 (output device).
To illustrate the different parts that compose a mixed object, the modeling of a

simple object, a light sensitive object shown in Fig. 1, is provided in Fig. 2b. It embeds
a light sensor and a LED on its surface. Each time the user sets the object too close to a
light source, the LED blinks once. Then, if the user moves the object far enough from
the light source, the LED blinks once again. Fig. 2b shows the modeling of this object:
The light sensor (input linking device) captures the level of exposure. If this level is
above a threshold (input linking language), then the digital property, is exposed, is
set to true. If the level falls under the threshold, the digital property is set to false. Each
time the state of the digital property changes, an output linking language beep is
activated. This output linking language triggers the LED to blink once.

3 Related Work

The existing toolkits for mixed systems could be analyzed based on their type of
underlying language (compiled vs. interpreted, textual vs. graphical, etc.), their
threshold and ceiling [18], their popularity in use, etc. We take a different viewpoint on
existing tools by analyzing (1) how these tools support the structuring of the prototype
based on a mixed object and (2) to which extent they support a systematic exploration
of the design space by relying on the ability of an interaction model to help designers
create new designs [2].

3.1 The mixed object programming model

Phidgets [22], Arduino (http://arduino.cc/), ARToolKit [1], Intuino [26], BOXES [13],
MaxMSP [17] and PureData (http://puredata.info/) do not imply a code structuring
based on a mixed object in their resulting code. For instance, Fig. 3 shows a Phidgets C
code for the light-sensitive object of Fig. 1 and 2b. Compared with the MIM modeling
of Fig. 2b, the code corresponding to the linking input language is scattered at lines 3,
4, 6, 8 and 10, interwoven with code for input and output devices and the output
language. As a consequence, it is very difficult to localize all the lines of code
corresponding to a particular element of a mixed object (principle of separation of
concerns), as identified in the MIM modeling of Fig. 2b. Arduino has a similar
approach with setup() and loop() functions resulting in a code structured in a different
way. ARToolKit offers a similar loose structuring of the code, resolving difficulties of
programming with camera and computer vision techniques, and not difficulties of
programming with sensors.

Unlike Phidgets, well-known in the research community, MaxMSP is on the
contrary widely used in the art/design community. Like its open-source counterpart
PureData, it is a graphical programming language (example in Fig. 4). However, as
such, it does not necessarily guide the resulting prototype to follow a particular
structure. The patch shown in Fig. 4 is one code out of numerous possibilities for the
light sensitive mixed object (Fig. 1). We designed this solution to be as simple as
possible but also as close as possible to the MIM modeling of Fig. 2b. However we

observe that the portions of the code corresponding to the linking input device (1 in
Fig. 4), the linking input language (2 in Fig. 4) and the linking output device (5 in Fig.
4) are mixed together. Moreover, while some elements of a MIM modeling, like the
ones mentioned above, are composed of boxes (objects: boxes with borders, messages:
boxes without borders) and connectors, others like the linking output language (4 in
Fig. 4) is composed of a single connector, therefore making it difficult to visually
localize the blocks composing the code in regard to a MIM modeling.

#include <phidget21.h>
CPhidgetInterfaceKitHandle Kit;
int OldValue = 0;
int SensorChangeHandler(CPhidgetInterfaceKitHandle h, void *p, int i, int v)
{
 if ((v < 500 && OldValue >= 500) || (v > 500 && OldValue <= 500)
 {CPhidgetInterfaceKit_setOutputState(Kit, 0, 1);}
 else
 {CPhidgetInterfaceKit_setOutputState(Kit, 0, 0);}
 OldValue = v;
 return 0;
}
int main (int argc, char * const argv[]) {
 CPhidgetInterfaceKit_create(&Kit);
 CPhidgetInterfaceKit_set_OnSensorChange_Handler (Kit, SensorChangeHandler, NULL);
 CPhidget_open((CPhidgetHandle)Kit, -1);
 int result;
 const char* err;
 if((result = CPhidget_waitForAttachment((CPhidgetHandle)Kit, 10000)))
 {CPhidget_getErrorDescription(result, &err);
 printf("Problem waiting for attachment: %s\n", err);}
 while (true) {}
}

Fig. 3. Phidgets C code of the light sensitive object presented in Fig. 1 and modeled in Fig. 2b.

Fig. 4. MAX/MSP patch of the light sensitive object presented in Fig. 1 and modeled in Fig. 2b.

(1, 2 and 5) These boxes and
connections are elements that
compose the input device, Threshold
input language and output device: it
starts/stops the transmission
messages from these elements.

(5) These boxes correspond to elements
that compose the output device. They
define the setting of the digital outputs
(state 0 = off, state 1 = on). It is directly
connected to the PhidgetInterfaceKit
elements of the code.

(4) When the value of digital
property (3, absent here) changes, a
message is sent through this
connection, which makes it the
equivalent of the output linking
language.

(1 and 5) These boxes and
connections deal with any Phidget
input device connected to a
PhidgetInterfaceKit: Hardware
device is handled according to its
configuration (Version, Status,
Serial, etc.)

(1) These boxes partially
correspond to the input device: It
provides the values coming out
of the sensor.

(2) These 3 boxes and connections are elements that
compose the Threshold input language: If the value
coming out of the sensor via the PhidgetInterfaceKit
is greater than 100, it sends 1; it sends 0 otherwise.

ICON [8], ICARE [3], OpenInterface [20] and Context toolkit [24] identify the
object level, but at a higher level of abstraction that does not allow its design. Indeed,
with those toolkits, the object is a predefined brick used in the design of an entire
application. Moreover, they mostly focus on interaction from the user to the application
and hardly consider the feedback towards the user.

Papier-mâché [15] and d.tools [11] are the closest to the object programming model.
On the one hand, papier-mâché allows the designer to manipulate the physical part
(called Phob) and the digital part (called noun or verb), but does not use a detailed
definition of the association between those two parts. Moreover, it allows connecting a
physical part to “noun”, equivalent to digital properties, but also to “verb” equivalent to
commands. The command associated with a tool is application-dependant and is at a
higher level of abstraction than the object level. On the other hand, d.tools implies
objects loosely structured according to physically stuck elements rather than conceptual
objects. This approach can possibly combine an object that is a tool with a task object,
as a unique entity. Instead of focusing on the design of mixed objects, it considers the
design of a mixed system as a whole.

We now examine to which extent existing tools support a systematic exploration of
the design space and are related to a conceptual model.

3.2 The systematic exploration as a design approach

Several toolkits have no explicit link to an interaction model. Among those,
Phidgets [22], Arduino, ARToolKit [1], MaxMSP [17], PureData, Context toolkit [24]
and ICON [8] are based on existing developers’ practices and solve technological
problems, not design problems. They either provide textual coding (Phidgets, Arduino,
ARToolKit, Context toolkit) or graphical user interface (GUI) for coding (MaxMSP,
PureData, ICON) but do not promote exploration of alternatives according to an
interaction model. For instance, ARToolKit and Phidgets use callback functions for
hardware resources. As a consequence, coding/development and design practices are
not close enough to allow designers to easily go back and forth from design to
prototyping with these toolkits without restructuring their ideas to fit the programming
model.

BOXES [13], d.tools [11] and Intuino [26] are not based on developers’ practices,
but on non-instrumented design practices. Intuino provides a GUI to better fine-tune
sensors and actuators signals used with Arduino. The tool BOXES provides a direct
link between physical material and an existing GUI. As opposed to BOXES, the toolkit
d.tools provides indirect prototyping of the interaction through state transition
diagrams, where states define an on-screen graphical representation of the connected
tangible object to be prototyped. However, it does not encourage the systematic model-
based exploration of alternatives other than the opportunistic ideas that a designer
might have.

Papier-mâché [15], ICARE [3] and OpenInterface [20] toolkits have an explicit link
to existing interaction models. They support an exploratory design process by
proposing a structuring of the code, to be entered either textually like Papier-mâché or
graphically like ICARE and OpenInterface. For instance, Papier-mâché introduces
associations between physical Phobs and digital elements based on name (object) or
verb (command) and as such the tool can be closely related to Fishkin’s taxonomy of

tangible user interfaces (TUI) [10]. ICARE and OpenInterface are related to a model of
multimodal interaction [3]. However, the conceptual models behind these toolkits are
limited to explore the design space of mixed systems [7]. For instance, the concepts of
name and verb convey respectively the concepts of task object and tool [9] and
correspond to two different types of metaphors that can be applied [10], but leave apart
all the possibilities for linking modalities.

Table 1. Related works summary.

Object level
Underlying
interaction model

No Partial Yes

No Phidgets, Arduino, ARToolKit,
MaxMSP, PureData, Intuino,
BOXES

Context toolkit, ICON,
d.tools

Partial Papier-mâché, ICARE,
OpenInterface

Yes

Table 1 shows a summary of existing toolkits according to our two axes of analysis:

(1) prototyping at the object level and (2) systematic exploration of the design space
based on an interaction model.

In order to both support an object programming model as well as a systematic
exploration of the design space, we introduce the OP toolkit that is based on the Mixed
Interaction Model and capitalizes on these existing tools when possible. By adopting
this approach, our purpose is first not to reduce the technological difficulties
encountered when building mixed objects. As explained previously, there are toolkits
that answer these problems such as computer vision toolkits (ARToolKit, Papier-
Mâché) or hardware toolkits (Phidgets, Arduino). Our toolkit has to be built upon them
and be able to integrate the ones resolving technological challenges. OP consequently
provides lower thresholds than low-level toolkits on top of which OP is built on.
Second the OP toolkit focuses on mixed objects only. OP is not intended as a tool to
build an entire application but only mixed objects that are the focus of the design
process, as opposed to d.tools, ICON, ICARE and OpenInterface. The OP toolkit could
then be included in such tools.

4 OP Toolkit

The OP toolkit offers an extensible library of different types of components based on
the Mixed Interaction Model [7]. The toolkit includes around 8000 lines of code
providing input/output linking device components, input/output linking language
components, composition components for combining devices or languages, as well as
digital property components. By doing so, the OP toolkit provides: (1) Modularity at
the mixed object level in order to make the interface flexible and to make mixed objects
reusable for other interaction contexts; (2) Modularity at the linking modality level –
modules for input and output devices, languages, and compositions – in order to make

mixed objects flexible and to make linking modality components reusable for other
mixed objects; (3) Extensibility in order to make the toolkit itself flexible. The
developer should be able to add new building blocks and extend to new technologies.
In its current version, OP still requires some basic notions of programming for
assembling the various parts of a mixed object and for connecting objects to
applications. Thus, as explained in the introduction section, the target end-users are
designer-developer pairs, developers or designers with some programming skills.

4.1 Building mixed objects

OP currently includes the following components for building mixed objects.

The linking device components are based on three different existing toolkits:
• VideoInputDevice, based on the ARToolKit: It captures the video input. Its

outputs are images from the input video.
• MIDIDevice: This component corresponds to either an input or an output device,

and captures/delivers data from/to Interface-Z MIDI sensors/actuators
(http://www.interface-z.com/).

• PhidgetInterfaceKitDevice: Either an input or an output device, this
component captures/delivers data from/to sensors/actuators plugged to a Phidget
Interface Kit.
Commonly used devices like speakers or screens are directly supported by the

toolkit by linking language components, since computers already support them. So no
device components are provided for these standard devices in the current version.

For linking languages, OP offers 10 components. Components amongst them are:
• IdentityLanguage: This component does not deform the input values coming

from the sensor. A property of the component allows opposing of the output values
to the input values. For example, if a sensor provides values between 0 and 999, the
output values are then from 999 to 0.

• RampLanguage: This component generalizes the IdentityLanguage
component and implements a deformation of the input values according to a ramp
function (see Fig. 5a).

• ThresholdLanguage: This component delivers a boolean value true/false if the
input integer value is above the threshold and false/true otherwise. Properties of the
component are the threshold and a property specifying whether the output value is
true above or below the threshold.

• RepeatLanguage: Either an input or an output language, this component repeats
its inputs several times at specified intervals. Properties are the number of repeats
and the interval between repeats.

• BeepOutputLanguage: This component corresponds to an impulse function that
triggers a beep if used with a sound file or a blink if connected to a LED.

The other five linking language components are documented at
http://iihm.imag.fr/demo/op/. In order to prototype more complex linking languages,
these linking language components can be connected in series. For example, for
making a LED blink twice, we connect a RepeatLanguage to a
BeepOutputLanguage. Moreover for combining linking modalities, we developed

a Complementarity component that can combine data coming either from device
or language components. For example, for combining the data coming from two
accelerometers (Fig. 9g), we use the Complementarity component. This
component draws directly upon ICARE components [3] for fusion of interaction
modalities in multimodal interaction.

For digital properties, OP includes a DigitalProperty component that can
handle any type of digital property, based on the generic type QVariant from Qt [23].

All components, regardless of type, can be connected through the signal/slot
mechanism of Qt [23]: A component output is a signal, and a component input is a slot.
We connect an input to an output thanks to a line of code: connect(Component1,
SIGNAL, Component2, SLOT). OP components have predefined updated
signals emitted each time its output value is modified, and update slots to be
connected to the former signals.

Fig. 5c illustrates the use of the library for prototyping the simple light sensitive object
of Fig. 1. Using OP components described above, the developers/designers can
prototype the object described in Fig. 2b with a few lines of code (Fig. 5c). We use a
light sensor from Phidgets in line 3. We set the properties of this component: its name
is “lightSensor”, its direction is “in”, it is plugged to the first input of the circuit board,
and it is an analogue sensor (on the contrary to switches for example). According to the
modeling of the object (Fig. 2b), we then use in line 6 a threshold component that
outputs true when the value is above 100. Line 7 shows how we declare the
isExposed digital property, with a boolean type. A BeepOutputLanguage is
used in line 9, without any sound file. Finally a LED connected to the first digital
output on the same Phidgets interface kit is declared at line 11. From line 12 to line 19,
we connect these five components together, so that outputs of each component provide
inputs to the following one. Compared to Phidgets (Fig. 3) and MaxMSP (Fig. 4), the
code structure follows the MIM modeling. From this code of a mixed object, it is
therefore easy to make modifications. For example:
• Modification of the output behavior of the object: We can make the LED blink four

times in order to provide insistence instead of bare observability. Fig. 6 shows how
we added a RepeatLanguage component and connected it to the other
components.

• Modification of the manipulation of the object: We can change the Phidgets light
sensor by a pressure sensor from Interface-Z. Fig. 7 shows how we changed the
Phidgets light sensor by an Interface-Z MIDI pressure sensor. In this latter case,
there is no need to reconnect components, because we only changed the type of the
device component, which has no influence on connections.

For fluid design as pointed for the Phidgets or in [16], the toolkit also provides an
optional graphical user interface (GUI) to debug/test the prototyped mixed objects. The
spatial structuring of the GUI is explicitly based on the MIM interaction model. Fig. 5b
shows the graphical tool for the case of the light sensitive object of Fig. 2b. Boxes
represent MIM component types. This interface helps the developer/designer to
observe and control the details of the behavior of the object. To check at runtime the
behavior of the components, developers either act on physical properties (e.g.,

put/move the object close/away to/from a light source) or act on widgets (e.g., move
the sliders of Fig. 5b using the mouse). This graphical utility is also used as a wizard of
oz tool, in the case of non available components. This enables rapid and early
corrections of the prototype.

(a) (b)
int indexOnBoard = 0;
bool isAnalogue = true;
PhidgetInterfaceKitDevice lightSensor("lightSensor", LinkingComponent::IN,
indexOnBoard, isAnalogue);

int threshold = 100;
bool isTrueAbove = true;
ThresholdInputLanguage thresholdIL("thresholdIL", threshold, isTrueAbove);

DigitalProperty isExposed("isExposed", QVariant::Bool);

char* soundFile = "";
BeepOutputLanguage beep("beep", soundFile);

isAnalogue = false;
PhidgetInterfaceKitDevice led("led", LinkingComponent::OUT, indexOnBoard,
isAnalogue);

QObject::connect(&lightSensor, SIGNAL(updated(int, QTime)), &thresholdIL,
SLOT(update(int, QTime)));
QObject::connect(&thresholdIL, SIGNAL(updated(QVariant, QTime)), &isExposed,
SLOT(updateProperty(QVariant)));
QObject::connect(&isExposed, SIGNAL(PropertyUpdated(QVariant)), &beep,
SLOT(update(void)));
QObject::connect(&beep, SIGNAL(updated(bool)), &led, SLOT(UpdateOutput(bool)));

(c)
Fig. 5. (a) Two input linking language components: Identity (dashed line) and Ramp (plain line).
(b) Graphical User Interface. (c) Code with inserted picture of a simple object built using OP.

int repeatsNb = 4;
float interval = 0.5;
RepeatLanguage repeat(“repeat”, LinkingComponent::OUT, repeatsNb, interval);
QObject::connect(&isExposed, SIGNAL(PropertyUpdated(QVariant)),
 &repeat, SLOT(update(QVariant)));
QObject::connect(&repeat, SIGNAL(updated(bool)),
 &beep, SLOT(update(void)));

Fig. 6. Making the LED blink four times by adding a RepeatLanguage component.

int indexOnBoard = 0;
bool isAnalogue = true;
int resolution = 7;
MIDIDevice pressureSensor(“PressureSensor”, LinkingComponent::IN, indexOnBoard,
isAnalogue, resolution);

Fig. 7. Changing the light sensor by a pressure sensor: the first lines of code are modified.

In this section, we explained how we can build mixed objects using OP components.
We now present how we insert such objects into a complete application. We recall that
a mixed object in the context of a complete application is either a tool used by the user
to perform her/his task or the object that is the focus of the task [7].

4.2. Inserting mixed objects into an application

The toolkit provides modularity at the mixed object level so that an object can be
reused and adapted for various interaction contexts or applications. For a mixed object
to communicate with an application, the DigitalProperty component serves as an
interface with the application. The signals and slots of a digital property are connected
to the rest of the application: the value of a digital property can be modified by an
application through a slot and a digital property can communicate with an application
by emitting a signal when its value changes. If the application is written in Qt,
connecting the object to the application is straightforward. We only need to write one
line of code connecting the signal of the DigitalProperty component to the
desired slot of the application. A survey in our lab showed that out of 70 responses, 19
persons are familiar with Qt. Therefore, even if Qt is actually used, it is obviously not
the only solution in use. For an application not written in Qt, developers only need to
define a simple QObject whose slot calls the desired function of the application. This
slot must then be connected to the signal of the mixed object. For example, for
inserting the tool object of Fig. 1 into Google Earth, we build a simple QObject with
the slot presented in Fig. 8.

void KeySimulationInteractionLanguage::update(QVariant pMessage){
 if (pMessage.canConvert(QVariant::Bool)){
 if (pMessage.toBool()){ CGPostKeyboardEvent(‘d’,(CGKeyCode)0x02, true);}
 else {CGPostKeyboardEvent(‘d’, (CGKeyCode)0x02, false);}}}

Fig. 8. Slot written for the simple light sensitive object in order to work in Google Earth for
rotating the earth. CGPostKeyboardEvent is a function from the Apple ApplicationServices
framework that allows simulating keyboard events.

When this slot receives true, it simulates a ‘d’ key press, and when the slot receives
false, it simulates a ‘d’ key release. For this, we use a function from the Apple
ApplicationServices framework that allows simulating keyboard events. Equivalent
exists for the other platforms. Once this update slot is connected to the signal
PropertyUpdated of the isExposed digital property (Fig. 5c), the light sensitive
object allows the user to rotate the earth, each time the object is close to a light source.
As another example, Fig. 9h shows the cardboard music controller that was used as an
illustration of the BOXES toolkit [13], that we rebuilt using OP: the OP cardboard
music controller is connected to the iTunes application (play/pause by pressing the
button) in the same way as described above. In this stage of our work, the link to an

application is done by hand, but as soon as OP is integrated in a UIMS like the one
described in [20], this link will be embedded within the integrated environment.

Fig. 9 shows a variety of objects that have been prototyped using the OP toolkit, as a
demonstration like in [22]. These examples cover a wide range of interaction styles that
can take part in mixed systems, from augmented reality to augmented virtuality and
tangible user interfaces. In the following section we present user studies, including the
evaluation of the mixed object programming model, by detailing the case of one of
these designed objects (Fig. 9a).

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9. A selection of mixed objects built with the OP toolkit: (a) Prototype of the ORBIS
turnable tool with LED. (b) The ORBIS turnable tool in use on a table for rotating the earth in
Google Earth. (c) Prototype of a simple augmented button badge with ARToolKit Marker that
detects the presence of a laptop user. (d) “Octopus” tool with foldable tentacles, micro and
diodes designed for recording audio [7]. (e) Flowerpot prototype that is oriented with a
servomotor according to its most sunny side, thanks to interface-z and Phidgets light sensors. (f)
Tool for shuffling pictures in a slideshow, with accelerometers and a loudspeaker: the user
shakes it three times and hears a sound as a feedback. (g) Prototype of the ORBIS picture viewer.
Pictures are always correctly displayed according to the orientation of the screen: the prototype is
based on combined accelerometers fixed on the back side of the screen. (h) The remote control
for the music player of [13] that we rebuilt with OP and iTunes.

5 Evaluation and use

Evaluating a software tool is a difficult problem as stated in [19]. As a consequence,
the contributions of several software tools like MaxMSP, Arduino, PureData are not
evaluated. Other tools, like Phidgets, do not follow requirements advised in [19] for
evaluation.

For the OP toolkit, its use in different projects (Fig. 9) is one form of empirical
evaluation. Moreover, using OP, it is possible to prototype objects that were developed
with other toolkits, like the cardboard music controller [13] (Fig. 9h). To better assess
the benefits and limitations of OP, we considered its two key contributions
independently. By doing so, the first study aims at evaluating the OP programming

model centered on mixed objects. The second study aims at evaluating the expressive
match of the toolkit in the context of an integrated use with the Mixed Interaction
Model.

5.1 Evaluation of the mixed object programming model

The OP programming model is based on the definition of a mixed object of the Mixed
Interaction Model. This model has shown its benefits for systematic exploration of
design alternatives [7]. Therefore, we will not evaluate in this paper the help that the
model provides to explore the design space. Nevertheless to further evaluate the OP
programming model, we consider the practical problem of designing a physical-digital
object that serves as a tool in an application called ORBIS [6]. Consistent with the
target users of OP, a typical pair of designer-developer collaborated to design and
prototype ORBIS. The system was designed in order to provide new ways to access
and enjoy personal pictures, music and videos. ORBIS is to be used in a private,
personal and mobile context. In the first version of ORBIS, we only considered tasks
related to a list of pictures and Fig. 9g shows a prototype. In this paper, we present the
design of a mixed object (i.e., a tool) for navigating the list of pictures in ORBIS.
Besides prototyping and testing the OP toolkit, our aim was the joint exploration of
design dimensions like appearance and interaction within a systematic approach at the
early stage of the design. Before explaining the design steps using OP and the benefits
of its programming model, we present the resulting designed prototype, a turnable tool
presented in Fig. 9a and modeled in Fig. 10a. For navigating in the list of pictures, the
user rotates the tool. The physical angle updates an angle digital property through a
(potentiometer, identity) linking modality. Another digital property, level, is
materialized through a (beep, LED) linking modality. Within the ORBIS application,
the angle digital property is used to compute the index of the current displayed
picture. When this index is changed by ORBIS, it modifies the level digital property
of the tool as a feedback. Since ORBIS has been developed with Qt, the connection
between the tool and the ORBIS list of pictures is straightforward. We now explain
how the design space has been explored in a systematic way using OP, for obtaining
this prototyped tool.
Physical Properties: The design space of the physical shape of the mixed object
depends on the appearance (e.g., size, color) and interaction (e.g., affordances). For
prototyping the object, we considered the interaction and the appearance in concert, but
we only discuss the interaction here. Amongst others, we designed the shape presented
in Fig. 9a. From this shape, we studied intrinsic affordances: we found that this shape
afforded pressing and turning. Hence we decided that the possible sensed physical
properties are pressure and angle.
Input Linking Modality: Because the shape affords pressing and rotating, we
prototyped the tool with linking devices that sense angle and pressure. Prototypes with
Interface-Z MIDI atmospheric pressure sensor mounted on a balloon and potentiometer
are presented in Fig. 11b and c. Since these devices can be connected to the same plug
of the Interface-Z circuit board, we did not need to modify the OP linking device
component. We experimentally found that pressing was tiring more rapidly than
rotating. This draws attention to the fact that even if the design space allows
exploration of possibilities, prototyping is essential to assessing a design choice.

(b)

(a)

(c)

Fig. 10. Modeling of the ORBIS turnable tool presented in Fig. 9a (a) and prototyping the object
with an input linking modality sensing (b) pressure or (c) rotation.

The design space of the input linking language is restricted by the choice of the
potentiometer and the digital property angle. Yet, we envisioned two possibilities:
the linking language can take the full circle defined by the shape of the physical object
into account. But the gesture for completely rotating the object is not easy to perform.
On the contrary, the linking language can only take a subinterval of the full circle into
account. We prototyped these two design solutions with different linking languages
(Fig. 11): the first solution using an identity language component and the second one
using a ramp language component. Tuning the language component using the provided
OP components only implies 3 lines of code: the component declaration (the code of
Fig. 11a versus the code of Fig. 11b) and the new connection since the name of the
component is changed. The same change in an Arduino code costs more, because the
programming is not at the object level (Fig. 12a). First, it is not as easy to locate the
proper place in the code to insert the equivalent of the input language. Then, one has to
add 11 lines of code including the hand-computed transformation (Fig. 12b). The
abstraction level of OP is a benefit in this design situation.

(a)

(b)

IdentityInputLanguage identity(“identity”, isOpposite, min, max);

int lowerThreshold = 42;
int upperThreshold = 84;
RampInputLanguage ramp(“ramp”, isOpposite, min, lowerThreshold,
upperThreshold, max);

Fig. 11. Prototyping the ORBIS object with an input linking language: (a) identity or (b) ramp.

While testing the two resulting OP prototypes, we noticed that even if the ramp
language enables users to navigate the range in a small and single movement, it was not
easily understood. Hence we chose the identity transformation, even if users have to
make several movements in order to turn the tool from 0 to 360 degrees.
Output Linking Modality: In order to materialize the level digital property that
provides feedback, we designed an output linking modality. We wanted this feedback
to be peripheral since it defines the reaction of the tool, while the user focuses on the
list of pictures. Towards this purpose, a visual or audio beep was considered as
sufficient in comparison with displaying the index of the current picture on top of the
picture. As a corresponding device for the chosen language, we could use a LED or a
loudspeaker. We developed the two solutions (Fig. 13 and Fig. 14 respectively). The
difference between the two pieces of code is that the loudspeaker is a standard device

with no need to be declared as opposed to the LED, which is an OP device component
to be declared and connected to the language component. After testing with both OP
prototypes, we found that a LED was less obtrusive than a loudspeaker and chose the
LED as an output linking device.

(a)

int level; // digital property level
int level_old; // previous value of the property
int angle; // digital property level

void setup() {
 pinMode(13, OUTPUT);
}

void feedback() {
 digitalWrite(13, HIGH); // set de LED on
 delay(1000); // wait for a second
 digitalWrite(13, LOW); // set the LED off
}

void loop() {
 int angle = analogRead(A0); // read the value of "angle" from the sensor

 if (level!=level_old) { // if "level" changed
 feedback();
 }
}

(b)

 int lowerBound = 42; // lower bound of the ramp transformation
 int upperBound = 600; // upper bound of the ramp transformation
 int valueMax = 1023; // maximum value from the sensor

 if (angle < lowerBound) {
 angle = 0;
 } else if (angle > upperBound) {
 angle = valueMax;
 } else {
 int a = valueMax / (upperBound - lowerBound);
 int b = -lowerBound * a;
 angle = a * angle + b;
}

Fig. 12. Prototyping the ORBIS object with Arduino (a) with an identity input linking language
and (b) the lines of code to be added for using a ramp transformation.

Through simple examples taken from our design experience in collaboration with a
product designer, we illustrated the object level of the OP toolkit and its benefit
towards flexibility of the evolving prototypes. Only a few lines of code, easily located,
needed to be changed when ideas evolved. Moreover while collaborating with the
designer, we clearly observed the usefulness of focusing on both physical appearance
and interaction of the object at the same time - such joint activities being possible
thanks to the OP toolkit.

DigitalProperty level(“level”, QVariant::Int);
char* soundFile = “”;
BeepOutputLanguage beep(“beep”, soundFile);
QObject::connect(&level, SIGNAL(PropertyUpdated(QVariant)),
&beep, SLOT(update(void)));
isAnalogue = false;
PhidgetInterfaceKitDevice led(“led”, LinkingComponent::OUT, indexOnBoard,
isAnalogue);
QObject::connect(&beep, SIGNAL(updated(bool)),
 &led, SLOT(UpdateOutput(bool)));

Fig. 13. ORBIS object: Prototyping the output linking modality with a red LED.

DigitalProperty level(“level”, QVariant::Int);
char* soundFile = “./Pop.aiff”;
BeepOutputLanguage beep(“beep”, soundFile);
QObject::connect(&level, SIGNAL(PropertyUpdated(QVariant)), &beep,
SLOT(update(void)));

Fig. 14. ORBIS object: Prototyping the output linking modality with a loudspeaker.

The object level also promotes the reusability of objects: we actually reused the
designed mixed object in another application context. We easily integrated this turnable
object into Google Earth. Fig. 9b shows the prototyped tool in use for rotating the
earth. This was the starting point for exploring design solutions of a tool for Google
Earth. The mixed object must then be adapted and tuned for this new context of use.
This shows the reusability at the mixed object level supported by the toolkit.

5.2 Evaluation of the integrated design approach

Olsen [19] lists 9 possible claims of a user interface system. Three of them aim at
reducing solution viscosity (reducing the effort to explore many possible design
solutions): flexibility (rapid changes), expressive leverage (accomplish more by
expressing less) or expressive match (closeness between the means for expressing
design choices and the problem being solved). As our claim is the expressive match
between the toolkit and an interaction model, thus targeting the reduction of solution
viscosity, we chose to evaluate the toolkit regarding this claim. We therefore applied
Olsen’s framework for evaluation of expressive match:

- Explain the target situations, tasks and users,
- State the importance of the problem,
- Then demonstrate the expressive match (i) by measuring time to create a design or

express a set of choices, or (ii) by challenging subjects to correct a design flaw and by
reporting time, errors, difficulties and/or success rates. In this section, we report the
second method of evaluation (ii).

The study gathered 4 participants who were developers but novices with the OP
toolkit. Pairs of participants were asked to make two different randomly chosen
modifications in the code of the ORBIS turnable tool (Fig. 10a). They first carried out
the modifications of the output linking device of Fig. 13 and 15, followed by the
modifications presented in Fig. 11. Modifications to be done were presented as MIM
descriptions (Fig. 10a) without text. Making them work in pairs enabled them to talk
more naturally. We provided the documentation of the toolkit for this exercise. We
chose to ask them to perform these realistic modifications because we wanted to
evaluate if they could figure out how to make a modification that can occur in real
design settings. Indeed these modifications come from our prior experience with
designers. After completing these two exercises by pairs, we conducted a discussion
altogether about their difficulties as well as the identified benefits and drawbacks of the
toolkit. During all the experiment, the participants were not given any help or
information about the MIM modeling and the toolkit.

We identified one problem: they expected to find a linking device component in OP
for the loudspeaker device (exercise 3 - modifications presented in Fig. 13 and 15).

Indeed, it was unnatural for them to change a parameter in the linking language
component when asked to change the linking device. This illustrates the relevance of
our approach. Even though OP is an improvement towards expressive match between
MIM and a prototyping tool, the toolkit should go even further and literally follow the
MIM outline, bypassing existing software. The Identity language component is one
contribution towards this goal, and we are already working on this identified problem
related to standard devices (e.g., screen and loudspeaker).

Encouraging results also came up: During an exercise, participants had to write
pseudo-code from a MIM modeling or a text description, and then explain an OP code.
One of the participants who was given the MIM modeling of Fig. 2a drew a similar
description for explaining the code in the second exercise. This shows that it can be
straightforward to go back and forth from the interaction model to an OP code.
Moreover after the experiment, one participant said that using OP was even not code
writing for him, showing that he found it very easy working with the pair of tools.
Finally they all suggested a graphical user interface for the toolkit. We actually plan on
providing a tangible interface for OP as a counterbalance to on-screen prototyping.

6 Conclusion

To address the challenge of fluid design of mixed systems, we have presented the OP
toolkit for prototyping mixed objects.

OP introduces the object level in prototyping mixed systems, a level not supported
by existing toolkits. On the one hand, the OP toolkit is built on top of low-level
technological toolkits, but still requires, in its current version, some basic notions of
programming for assembling the parts of a mixed object. Its scope includes the scope
of Phidgets [22] or BOXES [13] amongst others. On the other hand, the OP toolkit
presents a high ceiling by enabling various mixed objects to be connected to
applications. We are currently examining the integration of the OP mixed object library
into User Interface Management Systems (UIMS) like the one described in [20].
Indeed OP provides support to prototype tools and task objects, so that a UIMS can use
them as building blocks for the development of the entire application.

OP provides a set of components for rapidly building functional physical objects
that are based on the Mixed Interaction Model [7], a conceptual design model that has
been shown to be useful for exploring the design space of mixed objects. The tool
allows its users to explore at the same time the physical forms of the object with
various materials (foam, play dough, cardboard, etc.) as well as the interaction with the
object via seamless conceptual reasoning and practical prototyping.

In the future, we would like to empower new users, namely designers with no
programming skill but not necessarily working together with a developer. Toward this
aim, we will be exploring a tangible interface for the toolkit. Indeed, prototyping is
often participatory and tangible user interfaces suit group work, in contrast to on-screen
interfaces. OP could provide tangible blocks for each abstraction level of the mixed
object, to be embedded in a rapidly shaped physical prototype. In this way, re-
arrangements and iteration directly on the physical prototypes could be done by each
member of the group. In addition, a further open challenge we would like to address is
in defining a tool based on the OP toolkit for letting the end-users define at runtime a

mixed object by linking physical and digital properties. For example in [5] three types
of coupling are defined: [personal, universal, transient] coupling between physical and
digital properties of a mixed object that is defined dynamically.

Acknowledgments. We thank N. Mandran (LIG) for her support on evaluations.

References

1. ARTooKit, http://www.hitl.washington.edu/artoolkit/
2. Beaudoin-Lafon, Designing Interaction, not Interfaces, AVI’04, 15-22.
3. Bouchet, et al, ICARE Software Components for Rapidly Developing Multimodal Interfaces,

ICMI’04, 251-258.
4. Buxton, Sketching User Experiences: Getting the Design Right and the Right Design, Morgan

Kaufmann Publishers Inc. 2007
5. Carvey, et al., Rubber Shark as User Interface, CHI’06, 634-639.
6. Coutrix, Nigay, Balancing Physical and Digital Properties in Mixed Objects, AVI’08, 305-

308
7. Coutrix, Nigay. An Integrating Framework for Mixed Systems, In The Engineering of Mixed

Reality Systems Book, Springer-Verlag, 9, 2009.
8. Dragicevic, Fekete, Input Device Selection and Interaction Configuration with ICON, IHM-

HCI’01, 543-448.
9. Dubois, Gray, A Design-Oriented Information-Flow Refinement of the ASUR Interaction

Model, EHCI-HCSE-DSVIS’07.
10. Fishkin, A taxonomy for and analysis of tangible interfaces, Personal Ubiquitous Computing,

8(5), Septembre 2004, 347-358.
11. Hartmann, et al., Reflective Physical Prototyping through Integrated Design, Test, and

Analysis, UIST’06, 299-308.
12. Holmquist, et al., Token-based access to digital information, HUC’99, 234-245.
13. Hudson, Mankoff, Rapid Construction of Functioning Physical Interfaces from cardboard,

Thumbtack, Tin Foil and Masking tape, UIST’06, 289-298.
14. Jacob et al., Reality-Based Interaction: A Framework for Post-WIMP Interfaces, CHI’08,

201-210.
15. Klemmer, et al., Papier-Mâché: Tookit Support for Tangible Input, CHI’04, 399-406.
16. Lim, et al., The anatomy of prototypes: Prototypes as filters, prototypes as manifestations of

design ideas, ACM TOCHI, 15(2).
17. MaxMSP, http://cycling74.com/
18. Myers, et al., Past, Present and Future of User Interface Software Tools, ACM TOCHI, 7(1).
19. Olsen, Evaluating user interface systems research, UIST’07, 251-258.
20. OpenInterface Platform, http://www.oi-project.org
21. Patten, Ishii, Mechanical Constraints as Computational Constraints in Tabletop Tangible

Interfaces, CHI’07, 809-818.
22. Phidgets, http://www.phidgets.com/
23. Qt, http://trolltech.com/products/qt
24. Salber, et al., The Context Toolkit: Aiding the development of Context-Enabled Applications,

CHI’99, 434-441.
25. Underkoffler, et al., A luminous-tangible workbench for urban planning and design, CHI’99,

386-393.
26.Wakita, Anezaki, Intuino: an authoring tool for supporting the prototyping of organic

interfaces, DIS'10, 179-188.
27. Wellner, Interacting with paper on the DigitalDesk, CACM, 36, 7 (July1993), 87-96.

