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ABSTRACT
Wireless Sensor Networks (WSNs) are usually deployed in
order to monitor parameters of an area. When an event
occurs in the network an alarm is sent to a special node
called the sink. In critical real-time applications, when an
event is detected, the Worst Case Traversal Time (WCTT)
of the message must be bounded. Although real-time proto-
cols for WSNs have been proposed, they are rarely formally
verified. The model checking of WSNs is a challenging prob-
lem for several reasons. First, WSNs are usually large scale
so it induces state space explosion during the verification.
Moreover, wireless communications produce a local broad-
cast behavior which means that a packet is received only by
nodes which are in the radio range of the sender. Finally,
the radio link is probabilistic. The modeling of those aspects
of the wireless link is not straightforward and it has to be
done in a way that mitigate the state space explosion prob-
lem. In this paper we particularly focus on the modeling of
the local broadcast behavior with Timed Automata (TA).
We use TA because they have sufficient expressiveness and
analysis power in order to check time properties of proto-
cols, as shown in the paper. Three ways of modeling local
broadcast with synchronizations of TA are presented. We
compare them and show that they produce different state
space sizes and execution times during the model checking
process. We run several model checking on a simple WSN
protocol and we conclude that one model mitigate the state
explosion problem better than the others. In the future, the
next step will be to enhance this model with the probabilis-
tic aspect of radio communications and to show it remains
the best one.

Categories and Subject Descriptors
C.4 [PERFORMANCE OF SYSTEMS]: Modeling tech-
niques; C.3 [SPECIAL-PURPOSE AND APPLICATION-
BASED SYSTEMS]: Real-time and embedded systems;
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C.2.2 [COMPUTER-COMMUNICATION NETWORKS]:
Network Protocols—Protocol verification

General Terms
VERIFICATION

1. INTRODUCTION
A Wireless Sensor Network (WSN) is composed of nodes
deployed in an area in order to monitor parameters of the
environment. Those nodes are able to send information to
dedicated nodes called sinks without the need of a fixed net-
work infrastructure. Every node is able to forward mes-
sages from other nodes. They usually run on batteries so
they should consume as little energy as possible in order to
increase the network lifetime. Because WSNs can contain
thousands of nodes, the financial cost of a node should be as
low as possible, this leads to design nodes with poor capa-
bilities (computation, radio, memory, etc...). For these rea-
sons, network protocols have been designed mainly in order
to optimize energy consumption and to provide autonomous
network mechanisms. Nevertheless some applications need
more than these characteristics. Indeed, critical applications
require more reliability and the respect of time constraints.
For example volcano monitoring application [19] should give
guarantees on the delivery and end-to-end delay of alarm
packets. The use of formal methods is essential in order to
produce such guarantees.

In this paper we focus on time properties of WSNs protocols.
We use the model checking approach because it has already
been proven to be efficient to validate protocol designs [7]
but mainly in wired networks. Theorem proving could have
been considered because it can allow to obtain more gen-
eral conclusions than model checking, but the authors of [7]
consider that it is a slower and more error-prone process.
There exists several formalisms for representing timed sys-
tems (Time Petri Nets, Process Algebra and higher level
formal languages). We choose Extended TA formalism and
UPPAAL [10] for several reasons explained in section 2.

The main specificities of WSNs are their large scale and the
use of radio medium to communicate. The large scale aspect
implies that the verifying method must handle large systems
and thus avoid, as far as possible, state space explosion. The
radio medium implies that, when a node sends a message,
it is received by the nodes which are in the communication
range of the sender, we name this local broadcast. This
behavior requires that the representation of the connectivity



in the network is provided in the model. The radio medium
is also unreliable which means that there is a probability
that the packet is not received. Thus, when a real-time
WSN protocol is verified, the guaranty on the WCTT must
be given with a corresponding probability that depends on
the reliability of the radio link.

In this paper we focus on the modeling of the local broadcast
because it is an essential characteristic of WSNs. Moreover,
the state explosion due to local broadcast modeling has to be
addressed before we can take into account the probability as-
pect of the radio link. Indeed, adding probabilities increases
the complexity of the model and thus it may worsen the state
explosion problem. This second aspect of wireless communi-
cations will be treated in future works. Usually, to model a
network [15] [4], the behavior of each node is described with
transition system and the communications between nodes
are represented using synchronizations between transition
systems. Solutions to model local broadcast in wireless net-
works have been proposed in the literature [22] [11] [20] [8].
We describe and compare those solutions in terms of con-
venience for the user and performances such as the size of
the state space and execution duration of model checking of
Worst Case Traversal Time (WCTT) bounds. Indeed, the
WSNs are large scale networks so the state space explosion
problem has to be mitigated in order to verify properties on
WSNs protocols. We give a method in order to efficiently
represent local broadcast and mitigate state explosion.

In section 2 we motivate the choice of Extended TA and de-
tail the propositions of the literature to model local broad-
cast. In section 3 we give the problem statement. In section
4 we define precisely three ways of modeling local broadcast
for WSNs and we compare the propositions by the mean of
simple examples. In section 5 we confirm the results of the
comparison by checking WCTT bounds of a simple WSNs
protocol and we give a method to integrate the connectivity
information into the model. We present the performances
of the three methods and discuss the pros and cons of each.
In section 6 we conclude and give future works.

2. DEFINITIONS AND RELATED WORK
Over the years, many formalisms have been proposed to for-
mally describe concurrent systems and protocols. In this
section we present such formalisms and motivate our choice
to use Extended TA of UPPAAL. We give some useful def-
initions about TA. We then describe the different solutions
of the literature to model local broadcast.

Some formalisms provide explicit representation of time whereas
others do not. If no explicit representation of time is pro-
vided, delay is modeled by several silent transitions (transi-
tion with an unobservable action, called tick action). This
representation of delays leads to very large transition sys-
tems. Nevertheless discrete time can be used in the case
of synchronous systems, a clock pulse is represented by a
transition. For asynchronous systems the elements can have
different clocks and different speeds so continuous time do-
main is more convenient for representing the system and
its properties. WSNs can be seen as asynchronous because
there is no global clock in the system (each node has its own
clock). Since we want to verify time properties of WSNs
protocols, we focus on formalisms which provide an explicit

representation of time.

One of the first formalisms to represent concurrency was
Petri nets [3]. Time Petri Nets (TPN) allow explicit repre-
sentation of time. Modeling and verification tools such as
TINA [2] and ROMEO [9] are available for this formalism.
Nevertheless, [5] shows that TA are strictly more expressive
than TPN. Moreover network protocols are often described
with Finite State Machine (FSM) which are conveniently
translatable in TA.

Milner then introduced process algebra with CCS [14]. A
process algebra is a mathematical structure which satisfies
axioms on basic operators, a process being an element of the
algebra. Process algebras have been extended with explicit
representation of time [21]. In [18] a process calculus for
mobile ad hoc network is proposed but it does not provide
explicit representation of time and there is no model check-
ing tool available for this process algebra. Nevertheless, pro-
cess algebra defines synchronization between process which
is useful to represent the communications in a network.

TA have been introduced by Alur and Dill [1] but most of
tools use Time Safety Automata (TSA) [12]. In this pa-
per, as in the literature, TSA are referred as TA. A TA
is composed of locations and transitions between locations.
Transitions are instantaneous and time can pass in locations.
Conditions on transitions named guards can be defined.

Formally a TA is a tuple TA = (Loc,Act,X,→, Loc0, Inv, L)
where:

• Loc is a set of locations and Loc0 ⊆ Loc is a set of
initial locations

• Act is a set of actions

• X is a set of clocks

• →⊆ Loc × ζ(X) × Act × 2X × Loc is the transition
relation

• Inv : Loc→ ζ(X) is the invariant assignment function

• L : Loc→ 2AP is a location labeling function with AP
a set of atomic propositions

ζ(X) represents clock constraints. In a location time can
pass if the invariant is not violated. Any transition which
guard is satisfied can be taken. One enabled transition is
selected nondeterministically. A configuration of a TA is a
tuple (l, v) where l ∈ Loc is a location and v ∈ ν(X) is a
clock valuation.

A Network of TA (NTA) is the parallel composition of {Ai}1≤i≤n

TA where Ai = (Loci, Act,X,→i, Loc
0
i , Invi, Li) for 1 ≤

i ≤ n. A configuration of a NTA is a tuple (l̄, v) where
l̄ ∈ L1× ...×Ln is a location vector and v ∈ ν(X) is a clock
valuation. Since ν(X) ∈ R+, the number of configurations
is infinite and uncountable. In order to mitigate that prob-
lem zones have been introduced, they are defined as sets of
clock valuations (details can be found in [4]). Thus with
zones a configuration of a NTA become a tuple (l̄, z) where
l̄ ∈ L1 × ... × Ln is a location vector and z ∈ Z is a zone,



for the remainder of the paper we will use this definition of
configuration.

UPPAAL [10] is a state of the art model checker. The mod-
eling formalism is Extended TA which are TA extended with
data types (integer, arrays ...). These data types allow to
represent variables of the protocol and store the connectiv-
ity information. Moreover, special locations called urgent
and committed locations are defined. In urgent locations
time cannot pass, an edge has to be taken immediately. In
committed location time cannot pass and if any automaton
of the network is in a committed location, the next tran-
sition must be taken from a committed location. Special
actions called synchronizations can be defined, these actions
are taken from CCS [14].

There also exit languages based on TA such as IF[15]. In
IF, a set of processes can be specified. Each process is a
TA thus the set of processes defines a NTA. The processes
can exchange messages using a FIFO queue, synchroniza-
tions are transitions triggered by the reception of a mes-
sage. As in UPPAAL, IF provides urgent transitions. Nev-
ertheless the tools associated with IF provide less features
than UPPAAL. For example UPPAAL-Pro allows to define
probabilistic models which could be used to represent the
probabilistic radio link.

Real-time Maude [16] is a time rewrite theory formalism.
It can be used to describe WSNs protocols. The nodes are
described as objects with a location, a communication range,
an amount of energy and so on. This representation seems
very intuitive but the definition of the behavior of a node
requires a good knowledge of rewrite theory. In [16] the
authors describe and verify a WSN protocol. Nevertheless
due to state space explosion the verification is performed on
networks composed of only up to 6 nodes.

For all those reasons we choose to use Extended TA of UP-
PAAL in order to model the network and then perform
the model checking. Moreover UPPAAL is state-of-the-art
model checker for timed systems which has been successfully
used to verify network protocols [17].

Now that we motivated the choice of the formalism and
model checking tool, we focus on the modeling of the local
broadcast behavior. The literature provides different ways of
modeling this behavior. They are all based on synchroniza-
tions of TA. They are described in the following paragraphs.

In [10] the modeling of a network communication is done
by a synchronization of TA with value passing. Communi-
cations in WSNs and ad hoc networks correspond to what
authors call one-way conditional value passing synchroniza-
tion, where the condition is that there is connectivity be-
tween the sender and the receiver and the value passed is
the information contained in the transmitted packet. It does
not explicitly provide a way of modeling local broadcast but
it inspired the next references.

In [22] the authors verify properties of an ad hoc routing
protocol (LUNAR) with SPIN [13] and UPPAAL. SPIN is
a model checker which uses automata formalism with no
explicit representation of time. In the paper the connec-

tivity among nodes is represented using a two dimensional
array of boolean. It is symmetric so it is assumed that the
links are bidirectional. In the case of SPIN, the local broad-
cast is modeled by synchronizing to all the neighbors of the
sender. One unicast synchronization is done for each neigh-
bor. UPPAAL provides broadcast synchronization. Thus
in the case of UPPAAL modeling, the sender synchronizes
with the whole network, each node of the network then veri-
fies whether it is connected to the sender or not by checking
the connectivity boolean array. With UPPAAL the unicast
synchronization is not used because it would obligate the
modeler to define a synchronization channel per pair of con-
nected nodes. In [20] the same modeling method is used
to check Quality of Service properties of Biomedical Sensor
Networks with UPPAAL. The authors also compare their
model checking results to simulations results.

In [8] the authors model and verify the LMAC protocol using
UPPAAL. They check every possible connected topologies of
four and five nodes. As in [22] and [20] a connectivity matrix
is used. Nevertheless in this case the receivers synchronize
with the sender only if they are connected to it. The con-
nectivity is checked before the synchronization. The authors
are able to find relevant faults but only in small networks.

In [11] another approach is used. The authors propose to
model ad hoc networks with UPPAAL by defining mobility
of nodes, unicast communication and local broadcast. The
mobility is defined with the notion of location, the change of
location signifies mobility. The location of a node is defined
with a set of groups. What the authors called groups in the
paper are actually maximal cliques. There is no information
on how the groups are computed and updated. The local
broadcast is modeled with a broadcast synchronization and
a guard, the guard prevents the nodes which are not in the
same group as the sender to synchronize. The information
on the groups of the sender is stored in a global variable.
The way the global variable is updated is not mentioned.
Moreover the usage of groups is not motivated in the paper,
a two dimensional array of boolean could be used as well. It
is also not clear if there is a broadcast channel per group or
only one for the whole network.

The previously cited process calculus for mobile ad hoc net-
works [18] is an interesting proposition because the local
broadcast modeling is native. Like [11], it uses the notion of
maximal clique. Nevertheless the behavior of the nodes have
to be modeled using a process calculus formalism which is
less convenient to manipulate than TA.

In this paper, we are interested in the influence of the local
broadcast modeling on the number of accessible configura-
tions of the NTA i.e., the state space size. The state space
explosion problem is indeed a main issue of model checking.
In the literature solutions in order to model local broadcast
have been proposed but, up to our knowledge, the impact
on the state space size has not been studied.

3. PROBLEM STATEMENT
Model checking method has been successfully used to verify
wired network protocols, but the WSNs have some specifi-
ties:



• Large scale (up to thousands of nodes)

• Wireless communications are unreliable and have a lo-
cal broadcast behavior

• Dynamic topology (the nodes can run out of energy)

In this paper we focus on the modeling of the local broadcast
and the state space size it induces during the model check-
ing process. It is an important parameter since the WSNs
are large scale and thus lead to state space explosion during
the model checking. Choosing an appropriate local broad-
cast model is necessary to model WSNs and reduce state
explosion. This work will allow to add the probabilistic as-
pect of the link and the dynamicity of the topology in future
works, on a basis that already mitigates the state explosion
problem.

The local broadcast behavior implies that, when a node
sends a message, it is received by the nodes which are in
the communication range of the sender. The formalism de-
scribes the local broadcast behavior with synchronizations,
the nodes must synchronize according to the connectivity
in the network. A representation of the connectivity graph
must thus be included in the model.

The model must induce a state space size that fits in the
memory of a computer. The way the local broadcast is mod-
eled can influence the size of the state space. In the previous
section we motivate the choice of TA formalism and we show
that several methods to model the local broadcast behavior
exist. In the remainder of the paper we compare those meth-
ods and discuss the results.

4. DEFINITION AND COMPARISON OF THE
MODELING METHODS

In this section we define and compare 3 ways of modeling
local broadcast. In order to compare these 3 solutions we
consider a network depicted on Figure 1 of 5 nodes with a
node which has a message to send (the source) and 4 nodes
which are waiting for messages. We will compare the solu-
tions by counting the number of accessible configurations in
each case. Indeed, if the number of configurations induced
by a solution is less than the other, this solution mitigates
the state space explosion problem.

Figure 1: Network connectivity graph

4.1 Modeling methods

1. In the first modeling method, the connectivity is checked
after the synchronization: this is the method described in
[22] and [20]. A broadcast channel is used. The sender
synchronizes all the nodes of the network and updates a
global variable with its identification number and a global
variable that corresponds to the information of the message.
All the nodes then check if they are neighbors of the sender,
if it is the case they save the information, otherwise they
ignore it.

(a) source (b) node

Figure 2: Model of case 1

The TA of the source and the TA of the nodes for this case
are depicted respectively on Figure 2a and Figure 2b. The
identification number of the source is stored in the global
variable ID. The nodes synchronize with the source and
store the value ofm in the local variable val. Then each node
checks if the it is directly connected to the source in order to
know if the message can actually be received. This is done
by the connected(ID) function which checks connectivity in
a two-dimensional boolean array.

2. The second method defines one broadcast channel per
group (or maximal cliques): we keep the idea of groups from
[11] but we choose to use one broadcast channel per group.
Thus the model has to be produced in function of the con-
nectivity graph of the network, the TA of each node depends
on which channel it synchronizes i.e., to which group it be-
longs.

(a) source (b) group1
node

(c) group2
node

(d) group3
node

Figure 3: Model of case 2

Nodes belong to groups which are maximal cliques. In the
example network there are 3 maximal cliques: g1 = (s, n2, n3),



g2 = (s, n1) and g3 = (n2, n4). The TA of the source, the
TA of g1 nodes, the TA of g2 nodes and the TA of g3 nodes
are depicted respectively on Figure 3a, Figure 3b, Figure 3c
and Figure 3d. To each group corresponds a broadcast chan-
nel. The source synchronizes only on the channels which
correspond to the groups it belongs to (in this example g1
and g2). The m value is updated only once since it has to be
the same for all the receiver. The identification number of
the source does not need to be sent because the connectivity
information is embedded in the model in this case.

3. In the third case the connectivity is checked before the
synchronization: this solution is similar to the first one but
the updates of the sender are done before the synchroniza-
tion and there is a guard on the synchronization edge of
receiving nodes that prevent non connected nodes to syn-
chronize with the sender. It is the method used in [8].

(a) source (b) node

Figure 4: Model of case 3

The TA of the source and the TA of the nodes are depicted
respectively on Figure 4a and Figure 4b. This case seems
very similar to the first one. But the source sends infor-
mation before synchronization. Thanks to that information
and the guard (the connected(ID) function), only the nodes
that are directly connected to the source synchronize.

4.2 Number of accessible configurations
In each case we are interested in the number of configura-
tions induced by the model in order to conclude on which
method mitigates the state space explosion. In this part we
do not consider time valuations in the configurations since
time is not used in the examples. Thus a configuration is a
vector of states, one state for each TA of the NTA.

In the first case (Figure 2), the number of accessible config-
urations is 18: there is (initial, initial, initial, initial, ini-
tial), after the synchronization there is (sent, choice, choice,
choice, choice) and then there is an interleaving between
the 4 nodes giving 24 = 16 possibilities (it is a power of 2
because each node can be in choice or either in received or
initial). Because of this interleaving the number of configu-
rations induced by the communication is exponential in the
number of nodes in the modeled network. In the case of
large scale networks such as WSNs this is an issue.

In the second case (Figure 3), the number of accessible con-
figurations is 3: initially, there is (initial, initial, initial, ini-
tial, initial), then ( , initial, received, received, initial) ( is
the committed location of the source TA) and finally (sent,
received, received, received, initial). In this case the num-

ber of configurations induced by the communication grows
linearly with the number of groups the source belongs to.

In the third case (Figure 4), the number of accessible con-
figurations is 3: first, (initial, initial, initial, initial, initial),
then ( , initial, initial, initial, initial) and finally (sent, re-
ceived, received, received, initial). In this case, the number of
configuration induced by the communication should always
be 3 if there is one sender at a time.

The way a local broadcast communication is modeled in-
fluences the number of accessible configurations and thus
can mitigate or accentuate the state space explosion prob-
lem. When verifying time properties on WSNs this can be
an issue so the more efficient modeling technique has to be
chosen. This comparison shows that the first case which is
proposed in [22] and [20] should be avoided. The two other
cases should not induce too large state spaces. Nevertheless
we can note that in the second case the connectivity informa-
tion is embedded directly in the TA (because of the channels
on the edges) so mobility (or changes in the topology) seems
difficult to model. In the third case the connectivity infor-
mation is in a two-dimensional array which can easily be
modified in order to model mobility.

In the next section we choose a simple WSNs protocol and
compare the performances of the UPPAAL model checker
when the communications are modeled with the three pre-
sented cases. This shows how to use these methods with a
real case and confirms the conclusions of the comparison.

5. COMPARISON USING A WSN PROTO-
COL

We choose to use the GRAB[23] protocol because it is a sim-
ple WSNs protocol so we can focus in the modeling methods
more than the modeling of the protocol in itself.

5.1 The GRAB protocol
GRAB is a routing protocol for WSNs. At the initialization
of the network, each node retrieves its distance to the sink
in hop-count. The forwarding scheme is depicted on Figure
5. Data packets are routed using gradient-routing: when a
packet is emitted, the nodes with smaller hop-counts than
the sender are potential forwarders. As many nodes with the
same hop-count can hear the packet, the selection of the for-
warder can be based on the signal strength (so the furthest
node from the sender is elected) or on a random value, and
multiple forwarders can be elected, creating multiple paths.
In this paper we consider the case in which there is only
one forwarder. When the first potential forwarder emits the
packet it prevents the other to send it a second time.

For each of the cases defined in section 4 we produce a UP-
PAAL model which is the basis of our tests. We also define
a tool that inserts the graph of the network in the UPPAAL
model. In the cases where the connectivity is checked af-
ter the synchronization and before the synchronization, the
graph is stored in a two-dimensional array of boolean. Thus
the array has to be written in the global declarations of the
UPPAAL model. In the case of the usage of the groups it is
more complicated, the graph has to be analyzed in order to
find the maximal cliques.



Figure 5: Grab forwarding scheme in the multi-path case.
The black nodes forward the packet. The numbers and lines
represents the hop-count (the rank).

5.1.1 Case "check after"

Figure 6: TA in the case the connectivity is checked after

Figure 6 depicts the TA of a node in the case where the con-
nectivity is checked after the synchronization. All the nodes
start in the initial location. If a node has a message to send
it goes to location sndd, if it has no packet to send it goes
in location idle and waits for a synchronization. A node in
location sndd wait between 3 and 5 time units before taking
the synchronization edge (the time for a node to decide to be
a forwarder is at least 3 time units and at most 5). When
taking the edge it updates several values: the rank of the
sender of the message (the rank is the hop-count), the ID of
the sender and the credit of the message (the credit corre-
sponds to the possible number of forwarders, in our case it
is one). Simultaneously, the nodes that are in idle location
synchronize by taking the edge to rcvd location. If a receiver
is connected to the sender, it remains credit and the rank of
the receiver is smaller than the rank of the sender, the edge
to sndd is taken in order to forward the packet. Otherwise
it takes the edge to idle.

We created a script tool that takes the TA of Figure 6 and
the graph of the network. It produces the NTA to be checked
with the two-dimensionnal boolean array that represents the
network as a global variable.

5.1.2 Case "groups"
Figure 7 presents the basis TA used in the case of the usage
of groups. In this case the connectivity is not verified be-
cause a node receives the message only if it is in one group
of the sender. In fact, the Figure 7 depicts the TA which
serves as a basis in order to build the model. Indeed a node

Figure 7: Basis TA in the case of groups

which belongs to several groups has multiple edges from idle
to rcvd, one for each group it belongs to. It has also multiple
edges and committed locations between sndd and idle as in
the case of the source in Figure 3a. On Figure 8 an example
of node specific TA is given, it corresponds to the node2 of
the topology of Figure1.

Figure 8: Example of TA in the case of groups

We developed a tool that takes the basis TA and the network
graph as input and gives the NTA to be checked as output.
The tool retrieves the groups (maximal cliques) from the
graph by using the Bron-Kerbosch algorithm [6]. For each
node it creates a TA which corresponds to the basis TA with
the synchronizations that corresponds to its groups. It adds
the produced TA to the NTA to be checked.

5.1.3 Case "check before"

Figure 9: TA in the case the connectivity is checked before

Figure 9 depicts the TA of a node in the case where the
connectivity is checked before the synchronization. A node



that has a message to send can access the location sndd, it
can stay there between 3 and 5 time units. Then it takes
the transition to the committed place. It updates the global
variables of the message. Finally, it synchronizes by taking
the edge to idle location. Nodes that are in idle location
synchronize only if they are connected with the sender.

In this case the tool which produces the NTA is the same
as in the case the connectivity is checked after the synchro-
nization.

5.2 Performances and discussion
5.2.1 Performances

In this section we present results on the efficiency of the
model checking using the different aforementioned approaches.
We are interested in the size of the state space and the du-
ration of the model checking.

The NTAs produced by the tools presented in the previous
section are checked with UPPAAL. The graphs used in order
to realize the tests are geographic random connected graphs
(nodes are placed randomly on a plane and there is a link
between two nodes if they are in each others radio range).
The number of nodes varies from 6 to 21 (including the sink
node) and for each number of nodes we perform the model
checking on 10 random graphs. For each model checking,
only one node has a message to send. The node is picked
among the nodes which have the highest hop-count.

We want the model checker to generate, store and explore
the maximum number of states in order to compare the
worst case of each solution. We thus choose to check a safety
time property, so it should be true in all states of the model.
UPPAAL uses on-the-fly method, so if the property is ver-
ified in all states it has to explore all the states. If it is
false in one state the model checking ends when this state is
reached even if it remains unexplored states. We check the
property:

A[] n0.m imply (z > N ∗ 3 and z ≤ (N + 1) ∗ 5)

N is the rank of the source, n0.m signifies that the sink has
received a message and z is a clock. The values 3 and 5
come from the model, indeed a node wait between 3 and 5
time units before sending its message. This property means
that the packet must arrive at the sink during a defined time
window and thus that the WCTT must be bounded.

Figure 10 presents the average state space size with 95%
confidence interval in function of the node number in the
graph for the 3 solutions. The scale of the ordinate is loga-
rithmic thus the curves are exponential. From section 4 we
deduce that the case where the connectivity is checked after
should induce exponential growth of the state space whereas
in the two other cases it should be constant or linear with
the number of groups the sender belongs to. Here it is ex-
ponential in all cases, but it is not only due to the modeling
of the local broadcast behavior. The transition between the
initial state and the idle or sndd state produces interleav-

Figure 10: Average number of states stored during the model
checking process in function of the number of nodes

ing, so do the choice of only one forwarder among receivers
of the packet.

Anyway, the solution which leads to the largest state space
size is the case where the connectivity is checked after the
synchronization. This is because of the interleaving induced
by the verification of connectivity by the potential receivers
as we showed in section 4. The two other cases have similar
performances, the curves are nearly perfectly superposed. In
section 4 we said that the case of groups should induce a little
more states than the case where the connectivity is checked
before if the nodes belong to several groups. Nevertheless
the difference is so small that it cannot be seen on Figure10.
The case where the connectivity is checked after has a large
confidence interval, nevertheless, it does not overlap with the
ones of the other solutions. They can thus be considered to
be better.

Figure 11: Average duration of the model checking process
in function of the number of nodes

Figure 11 represents the average duration of model check-
ing with 95% confidence interval in function of the number
of nodes in the graph. In this case the scale of the ordi-



nate is also logarithmic. The results under 1 second are not
strictly monotonic because the impact of potential execu-
tions of other processes during the model checking. Those
executions have less impact on longer model checking du-
rations. The forms and differences among curves for each
methods are very similar to those of Figure10. This is be-
cause the more state to be stored and explored, the longer
the model checking process.

5.2.2 Discussion
The results of the tests we perform for the different solu-
tions with GRAB confirm the results of the comparison of
section 4. The case where the connectivity is checked after
the synchronization leads to state explosion with a smaller
model than the other cases. It should thus be avoided when
modeling large scale systems such as WSNs. The two other
cases have equivalent performances in terms of state space
and duration of execution of the model checking. Neverthe-
less the solution where the connectivity is checked before the
synchronization allows to model mobility (or more generally
changes in the topology) whereas the groups solution leads
to model check a static network. Moreover the tool which
constructs the NTA in the case of the groups is more com-
plex. Thus the solution where the connectivity is checked
before should be used in order to model the local broadcast
behavior of WSNs.

6. CONCLUSIONS AND FUTURE WORKS
In this paper we are interested in the efficient modeling of
local broadcast behavior of WSNs for the model checking of
time properties (mainly WCTT bounds). We present three
ways of modeling local broadcast that comes from the liter-
ature or are adaptations or improvements of existing solu-
tions. We compare the solutions by using a simple example.
The solution which checks the connectivity after the syn-
chronization leads to a larger state space than the solution
which relies on maximal cliques and the one which checks the
connectivity before the synchronization. We then compare
the solutions with a simplified version of GRAB protocol.
We give a method to automatize the integration of the con-
nectivity information in the NTA model for each solution.
The results with the WSN routing protocol confirm the re-
sults of the first comparison. It shows that, when modeling
WSNs, the issue of local broadcast has to be carefully con-
sidered in order to mitigate state space explosion problems.
The solution which checks the connectivity before the syn-
chronization should be preferred. Because it induces as few
states as the group solution, but allows to model mobility or
dynamicity of the topology, and induces lighter treatments
for the production of the NTA.

In the future we plan to use the local broadcast modeling
presented in this paper as a basis to represent wireless com-
munications more accurately. We will add the probabilistic
aspect of the radio link and the dynamicity of the topol-
ogy. We also plan to model and verify more realistic WSNs
protocols on larger topologies.
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