
HAL Id: hal-00759030
https://hal.inria.fr/hal-00759030

Submitted on 29 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spec: A Framework for the Specification and Reuse of
UIs and their Models

Benjamin van Ryseghem, Stéphane Ducasse, Johan Fabry

To cite this version:
Benjamin van Ryseghem, Stéphane Ducasse, Johan Fabry. Spec: A Framework for the Specification
and Reuse of UIs and their Models. Proceedings of ESUG International Workshop on Smalltalk
Technologies (IWST 2012), Aug 2012, Gent, Belgium. �hal-00759030�

https://hal.inria.fr/hal-00759030
https://hal.archives-ouvertes.fr

Spec
A Framework for the Specification and Reuse of UIs and their Models

Benjamin Van Ryseghem
RMoD, Inria Lille – Nord Europe

benjamin.van_ryseghem@inria.fr

Stéphane Ducasse
RMoD, Inria Lille – Nord Europe

stephane.ducasse@inria.fr

Johan Fabry
PLEIAD Lab – Computer Science
Department (DCC) – University of

Chile
jfabry@dcc.uchile.cl

Abstract
Implementing UIs is often a tedious task. To address this,
UI Builders have been proposed to support the description
of widgets, their location, and their logic. A missing aspect
of UI Builders is however the ability to reuse and compose
widget logic. In our experience, this leads to a significant
amount of duplication in UI code. To address this issue, we
built Spec: a UIBuilder for Pharo with a focus on reuse.
With Spec, widget properties are defined declaratively and
attached to specific classes known as composable classes. A
composable class defines its own widget description as well
as the model-widget bridge and widget interaction logic.
This paper presents Spec, showing how it enables seamless
reuse of widgets and how these can be customized. After
presenting Spec and its implementation, we discuss how its
use in Pharo 2.0 has cut in half the amount of lines of code of
six of its tools, mostly through reuse. This shows that Spec
meets its goals of allowing reuse and composition of widget
logic.

1. Introduction
Building user interfaces is a notoriously time-consuming
task. To help developers in their tasks, several approaches
have been proposed previously. The basic principle of de-
coupling the model from its view: MVC [5] was first pro-
posed in Smalltalk-80. This principle was later evolved to
Model View Presenter (MVP) [10] by the Taligent project.
In MVP, the presenter assumes part of the functionality of
the controller and is the sole responsible for coordinating
how the UI manipulates the underlying model. The view is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
IWST ’12 August 28th, 2012, Gent, Belgium.
Copyright c© 2012 ACM [to be supplied]. . . $10.00

now also responsible for handling UI events, which used to
be the controller’s responsibility.

Orthogonally to these concepts, UI builders were devel-
oped as tools to facilitate the design and building of UIs.
The goals of UI builders are often twofold: firstly to sup-
port the description of widgets (location, size, color) and
their logic, and secondly the composition and reuse of ex-
isting component logic. VisualWorks [4, 9] was a pioneer of
this approach. Its builder is based on application classes that
glue widgets and domain objects together, based on a literal
description of widget properties.

Important issues with UI builders stem from the fact that
their working is often based on direct code generation from
the UIBuilder visual pane. As a first consequence the sim-
ple fact of reloading a UI description in the builder for edit-
ing, arguably a common occurrence, is already a compli-
cated process. This complication arises because the UI de-
scription code has to be interpreted differently from a nor-
mal execution, since the normal execution opens the UI
for use. Secondly, there is still the challenge of reusing
widgets and their interaction logic. In our experience with
Pharo, the use of UI builders there has led to a significant
amount of code duplication which can be avoided. For ex-
ample, the Senders/Implementors tool shows a list of meth-
ods and displays their source code. Pharo also provides the
VersionBrowser, which displays methods as a list and their
source code. Furthermore the ProtocolBrowser displays all
the methods of a class and their source code. These three
tools are mostly duplicated code, essentially implementing
three times the same behavior and the same UI, with some
superficial differences. In our opinion this code duplication
arises because the widgets are not generic enough to be
reused while also being able to be adapted to cope with (sub-
tle) variations.

To address the above issues, two underlying design
choices need to be taken: (1) how do we define UI descrip-
tions and (2) how do we compose the logic of UIs. We assert
that there is a need for a declarative way to specify UIs that
also allows for seamless composition and reuse of the UI
declaration and logic. In line with this assertion we have de-

veloped Spec, a UI builder for Pharo, and we present it in
this article.

With Spec, widget properties are defined declaratively
and attached to specific classes known as composable classes.
These composable classes also act as presenters by defining
the bridge to the underlying model, in addition to the widget
interaction logic. Spec reuse includes these presenters, i.e.
Spec allows for the reuse of widget logic and their compo-
sition as well as their connection to the underlying model.
This support for reuse is not only novel but we also con-
sider it the most important contribution of Spec, as its use
removed a high amount of code duplication in Pharo 2.0.

This paper is structured as follows: We next detail the
issues that emerge from the current UI builder approach.
This is followed, in Section 3, by an introduction of Spec that
builds a number of UIs highlighting reuse. In Section 5, we
provide a more formal description of the different elements
used in the example, and Section 4 gives an overview of the
more salient points of its implementation. Spec is currently
used in Pharo, and we talk about this in Section 6. Related
work is discussed in Section 7, and Section 8 concludes.

2. UI Builder Challenges
A UI builder is a tool used to generate user interfaces. Such
builders help the developers by providing a framework for
UI construction on top of the UI libraries provided by the
language. They may also provide a UI for graphically build-
ing a UI. Put differently, a UI builder is not necessarily a tool
with a UI although it may provide a UI to interactively place
widgets on a canvas.

To be able to help the developers in creating UIs, UI
builders usually provide support for:

• the description of widgets (color, size, visual effect, spe-
cific behavior,...)

• the description of their placement
• the definition of the widget behavior, e.g., how it reacts

to certain events.

However in our experience the above is not enough. This
is because developing UIs is not only about widget genera-
tion, but also about the reuse of the logic between widgets.
As Pharo maintainers we have seen that most of the UIs of
the tools present in Pharo were written from scratch. This
even if a lot of tools are essentially manipulating the same
objects and rendering them more or less the same way. This
lack of reuse makes the system harder to maintain and slows
down enhancements to the UIs of these tools. To address
these problems, UI builders should also support the reuse of
widget logic and composition. We have seen that the logic
of one widget is often based on the wiring of the logic of
adjacent or nested widgets. Hence being able to compose
and reuse existing behavior is central to be able to build new
widgets.

The goal of reusability however brings a new problem.
Indeed, if the widgets must be reusable it means that on
one hand the widgets must be generic enough to be used
in different scenarios and on the other hand they should be
parametrizable enough to fit these new scenarios.

To enable the reuse in the process of building and main-
taining the UIs of Pharo, we have built Spec. Spec is a new
UI builder whose goal is to support UI interface building and
seamless reuse of widgets. Spec is based on two core ideas:
first the declarative specification of the visual behavior of
widgets and their logic, and second inherent composability
of widgets, based on explicit variation points.

Figure 1 shows the principles of Spec: a UI is built from
composed widgets that are glued together using ports and
whose visual characteristics are defined using a declarative
specification that are reused over composition.

(CompositeLayout
 (Layout
 (columns 2))
 (Size 600@400)
 (List (singleSelection))
 (ReuseSpecification
 (MethodsBrowser default)))

(CompositeLayout
 (Layout
 (rows 2))
 (Size 600@400)
 (List singleSelection)

Port

Event flow

Widget
specification

Figure 1. Spec principles

3. Spec by Example
In this section we introduce Spec and its key points by
showing an example of the typical use of Spec. Note that
we only focus here on the logic of the building process, the
discussion of a graphical tool to compose widgets based on
Spec is out of the scope of the paper.

The example we develop in this section starts with show-
ing how basic widgets are composed to build a simple UI and
continues with illustrating how these composed widgets can
be reused and adapted to build more substantial UIs. In total
we build three UIs: a Method List that shows a collection of
methods, in Section 3.1, a Method Browser that reuses the
list and adds a pane showing the source code of the method,
in Section 3.2, and lastly a Class Browser, reusing and adapt-
ing the Method Browser, in Section 3.3.

3.1 Methods List
In this section, we present how to build a method list in five
steps:

1. the creation of the class;

2. the implementation of the initialize process;

3. the implementation of the getters;

4. the specification of a layout;

5. the window title.

We will now present these four steps in more detail.

Class Creation. First we need to create a class named
MethodsList.

ComposableModel subclass: #MethodsList
instanceVariableNames: ’list’
classVariableNames: ’’
poolDictionaries: ’’
category: ’IWST12-Spec’

Here we can see two things:

• the superclass is ComposableModel: this class is the root
of the Spec UI model hierarchy.

• the instance variable list: an instance variable needs to be
defined for holding the UI model that will represent our
methods list.

Initialization. Second, the initialization. The initialization
of a UI can be done in three different methods:

1. initializeWidgets: to set the instance variables which hold
sub models and their associated widgets and to configure
these sub UI models;

2. initializePresenter: to wire sub UI models together;

3. initialize: to initialize remaining state of the UI.

In this example, only the widget instantiation has to be
done in the initializeModels method of the MethodsList class,
such that it sets the list instance variable to contain a List-
ComposableModel with its associated list UI element.

MethodsList>>initializeWidgets
self instantiateModels: { #list -> #ListComposableModel }.

The code above shows how the model for the list is in-
stantiated, in a declarative fashion. The method instantiate-
Models: allows one to provide a collection of associations
where the key is the instance variable name and the value
is a UI model class. Hence the code above creates a new
instance of ListComposableModel (and its associated list UI
element) and stores it in the instance variable list.

Accessors. Third the accessor to the instance variable has
to be implemented, such that the Spec infrastructure can
obtain this list instance when required.

MethodsList>>getList
^ list

Layout Specification. Fourth we specify a layout: the ob-
ject that is used to describe and represent the layout of the

UI elements. This is done by implementing a method that
returns it on the class side of the UI model. For our ex-
ample, we implement MethodsList class»myFirstSpec on the
class side of MethodsList as follows:

MethodsList class>>myFirstSpec
<spec: #default>

^ SpecLayout composed
add: #getList;
yourself.

Since multiple layouts per UI model can be present, there is
a mechanism to set the layout to use by default. There are
two ways to define the default specification to be used:

1. pragma: all specifications are tagged with a pragma
<spec:> allowing the spec infrastructure to correctly
retrieve the corresponding method. In addition, the key-
word default can be used in the pragma to specify that this
layout has to be used by default.

2. method name: if there is no <spec: #default> tag, the
method named defaultSpec is used.

The code above uses a pragma and simply returns the
layout object for this UI. Sending the message composed
to the SpecLayout class yields a composed layout, which
allows one to compose the different models that are part
of Spec. To this composed layout, the add: message is sent,
adding the argument to the layout. In this case we provide
the symbol getList, the selector of the getter of the model we
want to include into the methods list. Note that, in general,
this argument may be a SpecLayout as well, allowing for the
reuse of high level composed models, as we shall show later.

Executing the following snippet displays the generated
widget embedded in a window using the above, default,
specification. It produces the window.

MethodsList new openWithSpec.

To populate the list, the message items: has to be sent
to the instance variable list with a collection of items to
be shown as argument. In our example this would be a
collection of methods, e.g., the methods of the class Object
as shown below:

(MethodsList new
openWithSpec;
yourself)
getList items: Object methods

By default, the method printString is sent to each item to
produce the string used to display the item in the list. Often
the default behavior displays to much information, or is not
accurate enough. To address this, a block can be used to
specify how to generate the display string. This is achieved
by sending the message displayBlock: to the list widget. The
following code provides an example of how to specify a

display block in the initializeWidgets method such that the
displayed string follows the form class name»selector.

MethodsList>>initializeWidgets
self instantiateModels: { #list -> #ListComposableModel }.
list displayBlock: [:method || name |

name := method methodClass name.
name, ’>>#’, method selector].

When the window is opened, each item is displayed as
shown in Figure 2.

Figure 2. The methods list with a specific display

Window Title. Fifth and last, we show how to change the
window title according to the current list selection. By con-
vention, the window title is determined by the return value
of the method named title.

MethodsList>>title
^ list selectedItem

ifNil: [’Methods list’]
ifNotNil: [:method | method selector].

The code above returns the selector of the selected method,
or the string ’Methods List’ if no item is selected.

In order to update the title each time the selected item
of the list has changed, we must relate the selection action
in the methods list to the updating of the window title.
This hence needs to be implemented in the initializePresenter
method, and is as follows:

MethodsList>>initializePresenter
list whenSelectedItemChanged: [self updateTitle].

The code of the method states that the title of the window
should be updated when the selected item in the list changes.
In Figure 3 we show the result of these changes: a window
where the title is the selector of the selected item.

Public API. This completes the construction of the UI
model. However if we want this UI model to be reused and

Figure 3. The methods list with a dynamic title

embedded we must provide a public API for it. In our exam-
ple, we want to have the API of MethodsList polymorphic
to the core protocol of the embedded list. Hence for each
method of the API we forward the message to the list in-
stance variable, as shown below:

MethodsList>>items: aCollection
list items: aCollection

MethodsList>>displayBlock: aBlock
list wrappingBlock: aBlock

MethodsList>>whenSelectedItemChanged: aBlock
list whenSelectedItemChanged: aBlock

MethodsList>>resetSelection
list resetSelection

MethodsList>>selectedItem
list selectedItem

Those methods will be used in the following section when
defining its public API, which is used in our last example (In
Section 3.3).

3.2 Methods Browser
To show how Spec allows for the reuse of existing models,
the next step of our example builds a message browser which
reuses the method list we just constructed. We will follow the
same five steps as previously:

1. the creation of the class;

2. the implementation of the initialize method;

3. the implementation of the getters;

4. the specification of a layout;

5. the window title.

These steps will now be presented in more details.

Class Creation. First we define a class, this time named
MethodsBrowser.

ComposableModel subclass: #MethodsBrowser
instanceVariableNames: ’methodsList text’
classVariableNames: ’’
poolDictionaries: ’’
category: ’IWST12-Spec’

The class has two instance variables:

• methodsList: the list for displaying the methods. It will
be an instance of the MethodsList class we defined in
Section 3.1, i.e., we reuse the methods list we defined
previously.

• text: the text zone used to display the source code. It will
be an instance of TextModel.

Initialization. Second, in the initialize process, we have to
instantiate the value for each instance variable.

MethodsBrowser>>initializeWidgets
self instantiateModels:

{ #methodsList -> #MethodsList.
#text -> #TextModel }

The above code shows that a model that is being instanti-
ated can be a standard class of Spec as well as any UI model
class that has been defined using Spec. This is the key feature
that allows for seamless reuse of models in Spec.

Next, we specify the overall behavior of the UI, linking
the two widgets together. When an item from the list is
selected, the text area should display its source code.

MethodsBrowser>>initializePresenter
methodsList whenSelectedItemChanged: [:method |

text text: (method
ifNil: [’’]
ifNotNil: [method sourceCode])]

The initializePresenter method above specifies the overall
behavior of the UI. It links the list to the text field by stating
that when a item in the list is selected the text of the text zone
is set to:

• an empty string if no item is selected
• the source code of the selected item otherwise.

Accessors. Third we implement the getters needed by the
layout.

MethodsBrowser>>methodsList
^ methodsList

MethodsBrowser>>text
^ text

Layout Specification. Fourth we specify a presentation, by
defining a method at the class side.

MethodsBrowser class>>spec
<spec: #default>
^ SpecLayout composed

add: #methodsList origin: 0@0 corner: 1@0.5;
add: #text origin: 0@0.5 corner: 1@1;
yourself

In addition of showing that the reuse of a Spec model is
transparent with regard to the layout, the above method also
shows that a position can be specified for each sub-model.
Here, methodsList will be displayed in the top-most half
of the generated widget while text will be displayed in the
bottom-most half of the generated widget.

The following snippet opens the widget and populates the
list with the methods of Object:

(MethodsBrowser new
openWithSpec;
yourself)
methodsList items: Object methods

Figure 4 shows the result of executing the above code.

Figure 4. The methods browser

Window Title. When an item is selected the title is not
updated as it used to be in MethodsList. This is addressed
by implementing a title method, and slightly modifying the
initializePresenter method as follows:

MethodsBrowser>>title
^ methodsList title

MethodsBrowser>>initializePresenter
methodsList whenSelectedItemChanged: [:method |

self updateTitle.
text text: (method

ifNil: [’’]
ifNotNil: [method sourceCode])]

This gives us a dynamic title, as shown in Figure 5.

Figure 5. The methods browser with the dynamic title back

Public API. Recall that to have a reusable model, we need
to define its public API. We will reuse this model in our last
example, therefore below we show the methods of the public
API for our MethodsBrowser. As these are straightforward
we do not discuss them in more detail.

MethodsBrowser>>items: aCollection
methodsList items: aCollection

MethodsBrowser>>displayBlock: aBlock
methodsList wrappingBlock: aBlock

MethodsBrowser>>resetSelection
methodsList resetSelection

MethodsBrowser>>selectedItem
methodsList selectedItem

Note that the methods we invoke here are part of the
public API we defined at the end of section 3.1.

Conclusion. This concludes the construction of our meth-
ods browser. In the construction of this browser we have
shown how we can straightforwardly reuse existing models
and how a selection in one widget can be used to update
the display in another widget, effectively linking widgets to-
gether.

3.3 Classes Browser
The last example we provide shows how to parametrize
the reuse of models, and how a UI communicates with the
underlying model. We do this by illustrating how to build a
simple class browser that reuses the MethodsBrowser. Being
able to deeply parametrize models allows for extended reuse
possibilities of the models since they can be more generic.

The five construction steps essentially are still the same,
therefore we first only show a overview of the browser con-
struction process. We will instead focus on how the reuse of

user interface specifications can be parametrized. Second we
modify the behavior of the reused UI model, and third mod-
ify the layout of the reused models. Fourth and last we show
how to connect the browser to the class structure, i.e. to its
model.

Basic Reuse. The class for the browser is called Classes-
Browser and it has two instance variables: classes for the list
of classes, and methodsBrowser for the list of methods and
the text zone, i.e. the methods browser we constructed above.
The layout specification below shows how the two are laid
out.

ClassesBrowser class>>defaultSpec
<spec>
^ SpecLayout composed

add: #classes origin: 0@0 corner: 0.5@1;
add: #methodsBrowser origin: 0.5@0 corner: 1@1;
yourself.

For brevity, we omit the methods that set the title, the
accessors and the initialization methods that instantiate the
widgets and link them together. The below snippet pops up
the window shown in Figure 6 and populates it with all the
classes of the system.

(ClassesBrowser new
openWithSpec;
yourself)
classes items: Smalltalk allClasses

Figure 6. Classes browser

UI Parametrization. We now present how to parametrize
the behavior of reused UI models. When reusing a UI model,
the reusing UI model can override all parametrization pa-
rameters, e.g.,, the displayBlock, of the reused UI model. This
is done by simply providing a new parameter for the reused
UI model. It overrides any parametrization made inside of
the reused UI model.

In our example, when a class is selected in the classes
browser, its methods are displayed. But they are displayed
following the form class name »selector, where the class
name is redundant as it is already given by the list selec-
tion. Also, the title shown is not correct: it displays the de-
fault title, ‘Untitled window’, even when items in the method
list are selected. To perform these two parametrizations, we
modify the initialization methods of ClassesBrowser to over-
ride the behavior specified in MethodsBrowser. The modifi-
cations consist in adding one line to the method, as shown
below.

ClassesBrowser>>initializeWidgets

"... omitting code for behavior shown previously ..."
methodsBrowser displayBlock: [:method | method selector].

ClassesBrowser>>initializePresenter

"... omitting code for behavior shown previously ..."
methodsBrowser whenSelectedItemChanged: [self updateTi-

tle].

Recall that these methods we are calling are part of the API
we defined at the end of Section 3.2.

The default behavior of Spec is to ignore the window
title logic of reused models, hence the presence of the de-
fault title. The last line above configures the reused method
browser to update the title on a list (de)selection, using the ti-
tle method defined in the classes browser. We therefore also
have to implement ClassesBrowser»title. The following im-
plementation inspects the selection of method browser to
return the appropriate value. It returns ‘Classes Browser’
if nothing is selected, or the selected class name if only a
class is selected, or class name »selector if both a class and a
method are selected.

ClassesBrowser>>title

^ classes selectedItem
ifNil: [’Classes Browser’]
ifNotNil: [:class | methodsBrowser selectedItem

ifNil: [class name]
ifNotNil: [:method | class name, ’>> #’, method se-

lector]].

As shown in Figure 7, the methods are now displayed
using only their selector and the title follows the form class
name »selector, since a method is selected.

Layout Specification. The current layout of the Classes-
Browser view is somewhat unusual. The classic layout for
such a tool is to have the two lists in a row in the top-most
half and the text zone in the bottom-most half. To do this, a
new layout is provided by implementing a new spec method,
and set as the default spec:

ClassesBrowser class >>moreClassicalSpec

Figure 7. Classes browser with methods displayed using
their selector

<spec: #default>

^ SpecLayout composed
add: #classes origin: 0@0 corner: 0.5@0.5;
add: #(methodsBrowser methodsList) origin: 0.5@0 cor-

ner: 1@0.5;
add: #(methodsBrowser text) origin: 0@0.5 corner: 1@1;
yourself

In the above code, instead of using the methodsBrowser
layout we define precisely how we want the sub-widgets to
be rendered.

The result is the widget shown in Figure 8: a classes
browser with the two lists in the upper part and the text zone
in the lower part.

Figure 8. Classes browser with a classic layout

The Figure 9 exposes a view of the different layers com-
posing the ClassesBrowser UI.

List (basic widget)

Text (basic widget)

MethodsList

MethodsBrowser

ClassesBrowser

List (basic widget)

Figure 9. The three levels of layers composing the ClassesBrowser UI

Connecting the UI to the Underlying Model. As is, the UI
we built is disconnected from the model it is representing:
after we pass it an initial list of classes we are not able
to modify it, e.g., by editing methods, and it is not aware
of any modifications made to its model by other browsers.
We now show how to connect the UI to the underlying
model, by specifying menu actions to enable the former, and
subscribing to announcements to implement the latter. As
this behavior belongs in the methods browser, we specify it
there, and it will automatically also be present in the classes
browser.

The text widget present in the methods browser provides
for a standard code editing menu, where we can specify the
action to take whenever the code is saved or accepted. This
is performed by providing an accept block, as illustrated
below:

MethodsBrowser>>initializePresenter
"... omitting code for behavior shown previously ..."
self text acceptBlock: [:text :notifier | ... compile the text ...].

The code obtains the text field from the methods browser
and specified that the code, contained in the text parameter
should be compiled. (We do not include the compilation
code as it is not pertinent to this discussion.)

Lastly, to have the browser to react to changes in the un-
derlying class structure, we use the system announcements
mechanism to refresh its contents when needed. We rely on
the fact that when such changes occur, the system raises an
announcement, and subscribe to these announcements, for
example using the code below the browser becomes aware
of methods being added, adding them to the list of methods
shown.

MethodsBrowser>>initializePresenter
"... omitting code for behavior shown previously ..."

SystemAnnouncer announcer weak
on: MethodAdded send: #methodAdded: to: self.

MethodsBrowser>>methodAdded: anAnnouncement
| sel text it |
text := self text pendingText.
sel := self methodsList selectedItem.
it := anAnnouncement item.
self items: (self methodsList: listItems add: it; yourself).
self methodsList setSelectedItem: sel.
self textModel pendingText: text.

The methodAdded: method first keeps a copy of the text
being shown in the text field, as it may contain edits that
have not been saved. It then obtains the selected item in the
methods list, and adds the new method to the list. As the
change in list items may change the selection in the list, it
then sets the selected item to the previously stored value.
Lastly, it sets the text being shown in the text field to the
value stored in the first step.

Conclusion. This concludes the construction of our last
example: a methods browser. In this section we have seen
how it is possible to parametrize both the behavior and
layout of UI models that are being reused. This allows for
more generic models to be reused and customized further
when needed, increasing their reuse possibility. We have also
shown how to connect the user interface to an underlying
model, yielding a fully functional UI.

4. The Implementation of Spec
The implementation of Spec is based on two pillars: the
presence of a SpecLayout and the use of value holders. The
SpecLayout is used to describe how the graphical elements
are positioned inside the generated UI, by using either basic
widgets or by reusing composed widgets. The value holders

are used to store the variation points of the model and to react
precisely to one of these changes. This way the UI updates
are less frequent and more precise, and hence faster.

To avoid any ambiguities in this text due to issues with
terminology, we first define three terms briefly, since these
typically have overloaded meanings.

UI Element: an interactive graphical element displayed as
part of the Graphical User Interface.

UI Model: an object that contains the state and behavior of
one or several UI elements.

Widget: the union of a UI Element and its UI model.

In this section we will discuss these two points in more
detail, firstly talking about SpecLayout and secondly dis-
cussing the value holders.

4.1 SpecLayout and its Interpreter
The SpecLayout describes and represents the layout of the
UI elements in Spec. More details about how to manipulate
SpecLayout objets will be provided in Section 3.1. A Spec
interpreter is used to build a UI widget from this layout.
To have a static structure which can be easily used by the
interpreter, the SpecLayout object is converted to an array
before it is passed to the interpreter.

We have only seen here the composed layout, consisting
of an aggregation of different Spec widgets. However there
are additional kinds of layouts provided: one kind for each
type of widget. This allows one to attach specific behavior to
each spec type, e.g.,, the class of the UI element specific to
this kind of layout. The array representation of a spec has as
first element an identifier of its type.

By using a spec type, default behavior can be defined and
shared among all the widgets. It means the all the widgets
produced by a defined spec type can be changed by modi-
fying the spec type itself. Types also allow the creation of a
data structure representing the tree of sub-widgets and to use
a visitor pattern to build tools on top of specs, e.g., like a UI
builder.

The remainder of the array representation of a spec can
be seen as a stack: each time a selector is read, as many
arguments as needed by the selector are popped and ana-
lyzed. The spec interpreter iterates over a SpecLayout array
and builds each part of the widget by recursively interpreting
each element.

A SpecLayout allows one to specify where to position a
widgets sub-widgets, and also allows one to position the sub-
widgets of sub-widgets. This provides a way to reuse generic
widgets while being able to customize them sufficiently to
make them conform to a new usage scenario.

4.2 Value Holder
A value holder is a simple object which wraps a value and
raises an announcement when this value is changed. Thanks
to this mechanism we can use value holders as wrappers

around model values and make the UI react at specific
changes to the model. As such, we provide an event based
structure that allows one to react to only to value change of
interest.

The above means that, for example, the selection index of
a list is stored in a value holder. When a new item is selected,
the index changes, and the corresponding value holder raises
an announcement. The basic widgets of Spec provide as part
of their API event registration methods, which allow a user-
defined object to react to this change if needed.

Moreover, having a value holder for each model data
allows one to update the UI only for the data which has
changed, without having to examine this change to estab-
lish its relevance as the DependencyTransformer in Vi-
sualWorks. This is in contrast to classical MVC [5] and
MVP [10]. Here, when the observable object has changed,
it sends an update: message to all observer objects with the
changed value as argument. Then in the update: method, the
observer has to examine the argument is to react in accor-
dance with the change. In Spec, the observer registers to
each observables’ value holder it is interested in, and for
each value holder specifies a method to invoke when the
value holder is changed. Hence the examination of the up-
dated value is no longer necessary and the dispatch to the ap-
propriate update logic is done naturally without any switch
case.

In addition, since the whole event flow is controlled and
propagated through value holders, we can ensure that there
is no event loops due to circular events sends.

Note that since every object can register to a value holder
changes, this means that a model can register itself to any of
it sub-widgets value holders, or any sub-widgets sub-widgets
value holder. Thanks to this, a model can add new behavior
for its sub-widgets. This provides a way to reuse generic
widgets while being able to parametrize them enough to
make them correspond to a new scenario.

5. The spec of Spec
In this section we summarize the specification of the public
APIs of the relevant building blocks for a user of Spec: the
basic widgets and SpecLayout.

5.1 Models public API
To build a UI the user combines basic UI models and existing
Spec models as required. For Spec there is however no
distinction between these two, as basic UI models are reified
as Spec models. Put differently, these basic UI models are
Spec models that simply wrap the widgets that are provided
by the GUI framework.

Due to lack of space, we do not provide a complete spec-
ification of the public API of all models provided by Spec
(11 models, in total 228 methods). The complete API for all
models is provided as part of a tech report about Spec [12].
We restrict ourselves here to the public API methods of

Selector Result
displayBlock: set the block used to produce the string for displaying items
items: set the contents of the list
resetSelection unselect selected items
selectedItem return the last selected item
whenSelectedItemChanged: set the block performed when the selected item changed

Table 1. ListComposableModel public API

Selector Result
accept force the text zone to accept the pending text
acceptBlock: set the block to perform when the pending text is accepted (saved)
text: set the text of the widget to the value provided as argument
whenTextIsAccepted: set a block to perform when the text is accepted
whenTextChanged: set a block to perform when the text has changed

Table 2. TextModel public API

the basic models used in this paper: ListComposableModel,
shown in Table 1, and TextModel, shown in Table 2.

5.2 SpecLayout
A SpecLayout is an object used to describe the layout of the
UI elements of a widget.

The SpecLayout class provides a small API (only 8 meth-
ods), shown in table 3. The add methods cover the bulk of
the use cases: adding elements to the layout. Indeed, as we
will see in Section 3 they are the only methods used when
the layout is a composed layout.

The remaining two send methods are required to be able
to interact with basic widgets. Since the Spec reification
of basic UI models provides a bridge between Spec and a
graphical library, the class of the UI element nor its API can
be predicted. Hence we need to be able to send any message
to those classes through the SpecLayout. To allow for this,
the SpecLayout provides for the send methods, which enable
performing any selector with the corresponding arguments.
Thanks to these methods we ensure that a bridge can be built
between Spec and any graphical library.

As an example use of the send:withArguments: method,
the following code is the implementation of TextModel
class»defaultSpec, which defines the binding between Spec
and the Morphic UI framework for the TextModel widget.
(Due to the low-level nature of this code we do not explain
its functionality in detail.)

defaultSpec
<spec>
^ SpecLayout text

send: #on:text:accept:readSelection:menu:
withArguments: #(model getText accept:notifying: read-

Selection codePaneMenu:shifted:);
send: #classOrMetaClass: withArguments: #(model behavior);

send: #enabled: withArguments: #(model enabled);
send: #eventHandler: withArguments: #(Even-

tHandler on:send:to: keyStroke keyStroke:fromMorph: model);
send: #vSpaceFill;
send: #hSpaceFill;
yourself

6. Spec in Pharo
Spec has been introduced in Pharo 2.0 with the goal to be
used for rewriting all the tools. For now, six different widgets
have been implemented:

1. MessageBrowser: a tool made for browsing messages
(similar to the MethodsBrowser made in section 3.2);

2. Senders/Implementers: a tool to browse the senders or the
implementors of a given selector;

3. ProtocolBrowser: a tool to browse all the methods that a
given class can understand;

4. VersionBrowser: a tool used to browse the different ver-
sions of a provided method;

5. ChangeSorter: a tool made for managing the changes of
the system;

6. DualChangeSorter: a second tool for managing changes,
with focus on the transfer from one change sorter to
another.

As a testament to the possibilities of reuse the Message-
Browser is used for the Senders/Implementors, and the Pro-
tocolBrowser. Moreover the DualChangeSorter is made of
two ChangeSorter linked together and specialized to add
functionality involving the interactions between the two
change sorters.

Selector Result
add: add the object provided as argument. This object can be the selec-

tor of a getter to an instance variable storing a ComposableModel
or another layout.

add:origin:corner: add the object provided as argument and specify its position as
fractions.

add:origin:corner:offsetOrigin:offsetCorner: add the object provided as argument and specify its position as
fractions and offsets.

add:withSpec: add the model provided as first argument using the selector pro-
vided as second argument for retrieving the spec. The first argu-
ment can be the selector of a method that returns a Composable-
Model or a collection of such selectors.

add:withSpec:origin:corner: add the model provided as first argument using the selector pro-
vided as second argument for retrieving the spec. and specify its
position as fractions.

add:withSpec:origin:corner:offsetOrigin:offsetCorner: add the model provided as first argument using the selector pro-
vided as second argument for retrieving the spec. and specify its
position as fractions and offsets.

send: send the message with selector specified as first argument to the
underlying widget

send:withArguments: send the message with selector specified as first argument and
arguments specified as second argument to the underlying widget.

Table 3. SpecLayout public API

Table 4 shows the difference in the number of lines of
code (LOC) used to implement those tools before the use of
Spec (Pharo 1.4) and after (Pharo 2.0). The purpose of this
table is to emphasize the reduction of code duplication. The
table follows the form:

• in the first column the name of the tool which is being
compared;

• in the second column the name of the class used to imple-
ment this tool in Pharo 1.4 and the number of LOC used
to implement it;

• in the third column the name of the class used to imple-
ment this tool in Pharo 2.0 and the number of LOC used
to implement it;

• the ratio in LOC reduction.

We will now explain the difference for each line in more
details.

MessageBrowser. MessageSet is used in Pharo 1.4 to
browse a collection of method references. MessageBrowser
from Pharo 2.0 covers all the functionalities of MessageSet
and even add new features like a topological sort or a up-
date mechanism and the support for methods in addition of
method references. Yet MessageBrowser is still smaller be-
cause thanks to widget reuse, some data of the UI itself is
managed by widgets that are being reused, e.g., index selec-
tion management.

Senders/Implementers. FlatMessageListBrowser is used
in Pharo 1.4 to browse the senders or implementers of a
selector. In Pharo 2.0 we have decided to reuse Message-
Browser since senders and implementers are also a collec-
tion of method references. MessageBrowser already covers
all the FlatMessageListBrowser functionalities, and more-
over adds the topological sort and the update mechanism as
well. Only a trivial modification needed to be made to Mes-
sageBrowser. Hence the Senders/Implementers browser is
actually a MessageBrowser, where we implemented the re-
quired API to open the corresponding list of messages. This
explains why the number of line for this tool in Pharo 2.0 is
so small.

ProtocolBrowser. ProtocolBrowser is used in Pharo 1.4 to
browse all the methods that the provided class can under-
stand. Again, MessageBrowser covers all the features of Pro-
tocolBrowser and still adds the topological sort and the up-
date mechanism. As above, MessageBrowser is reused, by
adding the logic specific to the ProtocolBrowser. These 20
LOC are the algorithm to collect the relevant methods.

VersionBrowser. NewVersionBrowser provides a new tool
in Pharo 2.0 that covers all the functionality of the previ-
ous tool. Implemented as its own class, it reuses Message-
Browser for the UI and beyond that only contains version
retrieval methods and UI specialization methods. This leads
to a low number of LOC.

Tool Pharo 1.4 Pharo 2.0 Percentage of reduction

MessageBrowser MessageSet MessageBrowser 33%488 329

Senders/Implementers FlatMessageListBrowser MessageBrowser 99%463 + 4

ProtocolBrowser ProtocolBrowser MessageBrowser 47%49 + 20

VersionBrowser VersionsBrowser NewVersionBrowser 82%312 57

ChangeSorter

ChangeSorter (970) ChangeSorterApplication (410)

41%+ +
DualChangeSorter (39) DualChangeSorterApplication (186)

1009 596
Total 2321 1006 57%

Table 4. Comparison between tools in Pharo 1.4 and Pharo 2.0

ChangeSorter. The two tools have been grouped since the
implementation in Pharo 1.4 moved the logic of the Du-
alChangeSorter into the ChangeSorter class. ChangeSorter
instances are aware of belonging to a DualChangeSorter or
not and act accordingly.

In Pharo 2.0 the ChangeSorterApplication class is smaller
than the ChangeSorter class because it only knows about
itself. It doesn’t contain any information about being part
of a DualChangeSorterApplication or not. This is because
the DualChangeSorterApplication class knows how to reuse
ChangeSorterApplication and what logic to add, and as a
result is bigger than the DualChangeSorter class.

But when summing up both applications, the Spec im-
plementation is smaller even while covering all the origi-
nal functionalities. This is for two reasons: firstly because
checking ubiquitously for being part of a dual change sorter
is expensive in term of lines of code. Secondly for the same
reason than for the use of MessageBrowser, relocating UI el-
ement management to a sub-widget allows the reusing code
to be concise.

Conclusion. In this section we have seen how the reuse
provided by Spec is used in Pharo and how this reuse can
reduced the number of lines of code (and the code duplica-
tion) by almost half. This confirms our assertion that there
is a need for a declarative way to specify UIs that also al-
lows for seamless composition and reuse of the UI declara-
tion and logic. Moreover this shows that Spec is an effective
tool to address this need. As a consequence of this observa-
tion, rewriting all the tools using Spec is a goal for the next
version of Pharo.

7. Related Work
Spec is inspired by the VisualWorks [8][11] UI framework,
and like it is based on static specifications i.e. the SpecLay-
out instances at class side. In VisualWorks all the specifi-
cations are performed in terms of low level widgets which

means that no composed widget can be reused. In contrast,
Spec allows the reuse of high level widgets and as a result,
the specifications are simpler. Thanks to this fact the UIs can
be composed of smaller widgets that make the system more
modular and easier to maintain.

Spec also follows the lead of Glamour [1] in favoring an
event-based flow through the widgets. However, Spec can
be used for every kinds of UI while Glamour is restricted to
browsers. Spec widgets also explicitly declare a public API
instead of heavily relying on blocks, as Glamour does.

For the UI generation part, Spec is different from tools
like NetBeans [7] or WindowBuilder [3] in the sense that
they both only provide graphical tools for generating user
interfaces while Spec is based on a text based description of
the UI. Furthermore, where NetBeans and WindowBuilder
generate java code, Spec uses an object and relies on this
object for describing the user interface. Instead NetBeans or
WindowBuilder use an XML file or parse Java source code.
The disadvantage of this is that if the XML file is edited by
hand or if some parts of the generated Java code is refactored
these tools are not always able to handle these changes.

In addition of the UI code Spec also provides a framework
for the model behavior when NetBeans or WindowBuilder
only provide UI elements generation source code. Indeed,
Spec can be used to define (and reuse) the logic links be-
tween widgets where NetBeans or WindowBuilder can only
be used to generate UI elements.

XUL [6] is an XML based language used for describing
and reuse widgets through overlays. While a group of wid-
gets can be reused, unlike Spec XUL doesn’t allow for lo-
cally changing the inner logical links. SWUL [2] is a DSL
based on the strategy transformation framework that pro-
poses a more declarative syntax for expressing widgets de-
scription in Swing. SWUL behaves like XUL in the sense
of not being able to locally redefine the behavior of a sub-
widget.

8. Conclusion
In this paper we presented Spec, a UI builder whose goal
is to support UI interface building and seamless reuse of
widgets. Spec is based on two core ideas: first the declarative
specification of the visual behavior of widgets and their
logic, and second inherent composability of widgets, based
on explicit variation points.

In our experience maintaining Pharo, we have seen that
there is a nontrivial amount of code duplication in UI code
which can be avoided and that the logic of one widget is
often based on the wiring of the logic of adjacent or nested
widgets. Hence being able to compose and reuse existing
behavior is central to be able to build new widgets.

We have shown how Spec can be used, by providing three
example UIs that highlight the reuse and parametrization
features of Spec. This was followed by a more formal spec-
ification of the APIs used in the example and an overview
of the most relevant points of the implementation. We then
showed how Spec enabled a 57% of code reduction in the re-
implementation of six UIs of Pharo, thanks to a high amount
of reuse of widgets.

The latter shows that Spec provides ample support for
reuse of widgets and is an appropriate tool to address the
problem of code duplication in UI code. As a consequence it
will be the standard UI builder for Pharo 2.0 and all UI tools
in Pharo will be rewritten using Spec.

Availability
Spec is part as standard of Pharo 2.0 and is also avail-
able in Pharo 1.4, its Metacello configuration is called Con-
figurationOfSpec and is available from SqueakSource3 (http:

//ss3.gemstone.com/).

Acknowledgments
This work was performed in the context of the INRIA Asso-
ciated Team PLOMO (2012).

References
[1] P. Bunge. Scripting browsers with glamour. Master’s the-

sis, Fakultät der Universität Bern, April 2009. Available
at: http://scg.unibe.ch/archive/masters/Bung09a.pdf.

[2] R. de Groot. Implementation of the java-swul lan-
guage: a domain-specific language for the swing api
embedded in java. Master’s thesis, Faculty of Sci-
ence, Utrecht University, January 2005. Available at:
http://strategoxt.org/pub/Stratego/Java-Swul/swul-article.pdf.

[3] Eclipse Technology. Windowbuilder user guide.
Technical report, Google, 2011. Available at:
http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.
wb.doc.user%2Fhtml%2Findex.html.

[4] T. Howard. The Smalltalk Developer’s Guide to VisualWorks.
SIGS Books, 1995. ISBN 1-884842-11-9.

[5] G. E. Krasner and S. T. Pope. A cookbook for using the
model-view-controller user interface paradigm in smalltalk-

80. Journal of Object-Oriented Programming, 1(3):26–49,
Aug. 1988.

[6] Mozilla Developer Network. XUL - MDN, 2012. Available
at https://developer.mozilla.org/en/XUL.

[7] NetBeans. Netbeans ide. http://www.netbeans.org, archived
at http://www.webcitation.org/5p1qB6hNt, 2010. URL http:
//www.netbeans.org.

[8] ParcPlace-Digitalk. VisualWorks cookbook, October
1995. Available at: http://www.esug.org/data/Old/vw-
tutorials/vw25/cb25.pdf.

[9] ParcPlace89. Parcplace systems, objectworks reference guide,
smalltalk-80, version 2.5, chapter 36, 1989. ParcPlace Sys-
tems.

[10] M. Potel. Mvp: Model-view-presenter. the tali-
gent programming model for c++ and java. Tech-
nical report, Taligent, Inc., 1996. Available at:
http://www.wildcrest.com/Potel/Portfolio/mvp.pdf.

[11] I. Tomek. The Joy of Smalltalk, September 2000. Available
at: http://stephane.ducasse.free.fr/FreeBooks/Joy/6.pdf.

[12] B. Van Ryseghem. Spec – technical report. Technical report,
Inria – Lille Nord Europe - RMoD, 2012. Available at:
http://hal.inria.fr/docs/00/70/80/67/PDF/SpecTechReport.pdf.

http://ss3.gemstone.com/
http://ss3.gemstone.com/
http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.wb.doc.user%2Fhtml%2Findex.html
http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.wb.doc.user%2Fhtml%2Findex.html
http://www.netbeans.org
http://www.netbeans.org
http://hal.inria.fr/docs/00/70/80/67/PDF/SpecTechReport.pdf

	Introduction
	UI Builder Challenges
	Spec by Example
	Methods List
	Methods Browser
	Classes Browser

	The Implementation of Spec
	SpecLayout and its Interpreter
	Value Holder

	The spec of Spec
	Models public API
	SpecLayout

	Spec in Pharo
	Related Work
	Conclusion

