
HAL Id: hal-00759228
https://hal.inria.fr/hal-00759228

Submitted on 3 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Herbrand-Confluence for Cut Elimination in Classical
First Order Logic

Stefan Hetzl, Lutz Straßburger

To cite this version:
Stefan Hetzl, Lutz Straßburger. Herbrand-Confluence for Cut Elimination in Classical First Order
Logic. CSL 2012, Sep 2012, Fontainebleau, France. �10.4230/LIPIcs.CSL.2012.320�. �hal-00759228�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49842347?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00759228
https://hal.archives-ouvertes.fr

Herbrand-Confluence for Cut Elimination in
Classical First Order Logic
Stefan Hetzl1 and Lutz Straßburger2

1 Institute of Discrete Mathematics and Geometry
Vienna University of Technology
Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
hetzl@logic.at

2 INRIA Saclay – Île-de-France
Ecole Polytechnique, LIX
Rue de Saclay, 91128 Palaiseau Cedex, France
lutz@lix.polytechnique.fr

Abstract
We consider cut-elimination in the sequent calculus for classical first-order logic. It is well known
that this system, in its most general form, is neither confluent nor strongly normalizing. In
this work we take a coarser (and mathematically more realistic) look at cut-free proofs. We
analyze which witnesses they choose for which quantifiers, or in other words: we only consider
the Herbrand-disjunction of a cut-free proof. Our main theorem is a confluence result for a
natural class of proofs: all (possibly infinitely many) normal forms of the non-erasing reduction
lead to the same Herbrand-disjunction.

1998 ACM Subject Classification F.4.1. Mathematical Logic, F.4.2. Grammars and Other
Rewriting Systems, F.1.1. Models of Computation

Keywords and phrases proof theory, first-order logic, tree languages, term rewriting, semantics
of proofs

Digital Object Identifier 10.4230/LIPIcs.CSL.2012.320

1 Introduction

The constructive content of proofs has always been a central topic of proof theory and it
is also one of the most important influences that logic has on computer science. Classical
logic is widely used and presents interesting challenges when it comes to understanding the
constructive content of its proofs. These challenges have therefore attracted considerable
attention, see, for example, [24, 11, 10], [6], [26, 27], [8], [21], or [5], for different investigations
in this direction.

A well-known, but not yet well-understood, phenomenon is that a single classical proof
usually allows several different constructive readings. From the point of view of applications
this means that we have a choice among different programs that can be extracted. In [25]
the authors show that two different extraction methods applied to the same proof produce
two programs, one of polynomial and one of exponential average-case complexity. This
phenomenon is further exemplified by case studies in [26, 3, 4] as well as the asymptotic
results [2, 15]. The reason for this behavior is that classical “proofs often leave algorithmic
detail underspecified” [1].

On the level of cut-elimination in the sequent calculus this phenomenon is reflected by the
fact that the standard proof reduction without imposing any strategy is not confluent. In this

© Stefan Hetzl and Lutz Straßburger;
licensed under Creative Commons License NC-ND

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 320–334

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.320
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

S. Hetzl and L. Straßburger 321

paper we consider cut-elimination in classical first-order logic and treat the question which
cut-free proofs one can obtain (by the strategy-free rewriting system) from a single proof
with cuts. As our aim is to compare cut-free proofs we need a notion of equivalence of proofs:
clearly the syntactic equality makes more differences than those which are mathematically
interesting. Being in a system with quantifiers, a natural and more realistic choice is to
consider two cut-free proofs equivalent if they choose the same terms for the same quantifiers,
in other words: if they have the same Herbrand-disjunction.

A cut-reduction relation will then be called Herbrand-confluent if all its normal forms
have the same Herbrand-disjunction. The main result of this paper is that, for a natural
class of proofs, the standard reduction without erasing of subproofs is Herbrand-confluent.
This result is surprising as this reduction is neither confluent nor strongly normalizing and
may produce normal forms of arbitrary size (which—as our result shows—arise only from
repetitions of the same instances).

As a central proof technique we use rigid tree languages which have been introduced
in [19] with applications in verification (e.g. of cryptographic protocols as in [20]) as their
primary purpose. To a proof we will associate a rigid tree grammar whose language is in-
variant under non-erasing cut-elimination and hence equal to the only obtainable Herbrand-
disjunction. This property suggests the new notion of Herbrand-content of a proof, which is
defined as the language of the grammar of the proof, and which is a strong invariant. A side
effect of this proof technique is a combinatorial description of how the structure of a cut-free
proof is related to that of a proof with cut. Such descriptions are important theoretical
results which underlie applications such as algorithmic cut-introduction as in [18].

In Section 2 we briefly review the sequent calculus and cut-elimination for classical first-
order logic. In Section 3 we describe regular and rigid tree grammars which we relate to
proofs in Section 4. Section 5 is devoted to proving the invariance of the Herbrand-content
under duplication of subproofs, and finally, in Section 6, we collect all results together.

2 Sequent Calculus and Cut-Elimination

For the sake of simplicity, we consider only a one-sided sequent calculus and formulas in
negation normal form, but the results can be proved for a two-sided sequent calculus in the
same way.

I Definition 1. A proof is a tree of multisets of formulas. Axioms are of the form A,A for
A atomic (where A denotes the De Morgan-dual of A). The inference rules are:

Γ, A[x\α]
−−−−−−−−−−− ∀
Γ, ∀xA

Γ, A[x\t]
−−−−−−−−−− ∃
Γ, ∃xA

Γ, A,A
−−−−−−−− c

Γ, A
Γ
−−−−− w
Γ, A

Γ, A ∆, B
−−−−−−−−−−−−−−−−− ∧
Γ,∆, A ∧B

Γ, A,B
−−−−−−−−−− ∨
Γ, A ∨B

Γ, A A,∆
−−−−−−−−−−−−−−− cut

Γ,∆
where α is called eigenvariable and does not appear in Γ,∀xA and t does not contain a bound
variable. We use the notation [x\α] for the substitution that replaces x by the eigenvariable
α. Similarly, [x\t] is the substitution that replaces x with t.

The explicitly mentioned formula in a conclusion of an inference rule, like A ∨ B for ∨ is
called main formula. Analogously, the explicitly mentioned formulas in the premises of an
inference rule, like A and B for ∨, are called auxiliary formulas. In the context of a concrete
derivation we speak about main and auxiliary occurrences of inferences.

I Definition 2. A proof is called regular if different ∀-inferences have different eigenvariables.

We use the following convention: We use lowercase Greek letters α, β, γ, δ, . . . for eigen-
variables in proofs, and π, ψ, . . . for proofs. For a proof π we write EV(π) for the set of

CSL’12

322 Herbrand-Confluence for Cut Elimination in Classical First Order Logic

Axiom reduction:

ψ

Γ, A A,A
−−−−−−−−−−−−−−−− cutΓ, A

;
ψ

Γ, A

Quantifier reduction:

ψ1

∆, A[x\t]
−−−−−−−−−−− ∃
∆,∃xA

ψ2

A[x\α],Γ
−−−−−−−−−−− ∀∀xA,Γ

−−−−−−−−−−−−−−−−−−−−−−−−− cutΓ,∆

;

ψ1

∆, A[x\t]

ψ2[α\t]

A[x\t],Γ
−−−−−−−−−−−−−−−−−−−−−−−−−−−− cutΓ,∆

Propositional reduction:

ψ1

Γ, A

ψ2

∆, B
−−−−−−−−−−−−−−−−−−− ∧Γ,∆, A ∧B

ψ3

A,B,Π
−−−−−−−−−− ∨
A ∨B,Π

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cutΓ,∆,Π

;
ψ2

∆, B

ψ1

Γ, A

ψ3

A,B,Π
−−−−−−−−−−−−−−−−−−−− cut

B,Γ,Π
−−−−−−−−−−−−−−−−−−−−−−−−−−−− cutΓ,∆,Π

Contraction reduction:

ψ1

Γ, A,A
−−−−−−−− cΓ, A

ψ2

A,∆
−−−−−−−−−−−−−−−−−−− cutΓ,∆

;

ψ1

Γ, A,A

ψ2ρ
′

A,∆
−−−−−−−−−−−−−−−−−−−− cutΓ,∆, A

ψ2ρ
′′

A,∆
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cutΓ,∆,∆

========= c∗Γ,∆

Weakening reduction:

ψ1

Γ
−−−− wΓ, A

ψ2

A,∆
−−−−−−−−−−−−−−−−−−− cutΓ,∆

;

ψ1

Γ
===== w∗Γ,∆

Unary inference permutation:

ψ1

Γ′, A
−−−−− rΓ, A

ψ2

A,∆
−−−−−−−−−−−−−−−−−−− cutΓ,∆

;

ψ1

Γ′, A

ψ2

A,∆
−−−−−−−−−−−−−−−−−−− cut

Γ′,∆
−−−−−− rΓ,∆

Binary inference permutation:

ψ1

Γ′
ψ2

Γ′′, A
−−−−−−−−−−−−−−−−−− rΓ, A

ψ3

A,∆
−−−−−−−−−−−−−−−−−−−−−−−−− cutΓ,∆

;
ψ1

Γ′

ψ2

Γ′′, A

ψ3

A,∆
−−−−−−−−−−−−−−−−−−− cut

Γ′′,∆
−−−−−−−−−−−−−−−−−−−−−−−−− rΓ,∆

Figure 1 Cut-reduction steps.

eigenvariables of ∀-inferences of π. Furthermore, we write |π| for the number of inferences
in π. Our results do not depend on technical differences in the definition of the calculus
(which in classical logic are inessential) such as the choice between multiplicative and ad-
ditive rules and the differences in the cut-reduction induced by these choices. However, for
the sake of precision, let us formally define the cut-reduction we use in this paper.

S. Hetzl and L. Straßburger 323

I Definition 3. Cut-reduction is defined on regular proofs and consists of the proof rewrite
steps shown in Figure 1 (as well as all their symmetric variants), where in the contraction
reduction step ρ′ = [α\α′]α∈EV(ψ2) and ρ′′ = [α\α′′]α∈EV(ψ2) are substitutions replacing
each eigenvariable occurrence α in ψ2 by fresh copies, i.e., α′ and α′′ are fresh for the whole
proof. We write for the compatible (w.r.t. the inference rules), reflexive and transitive
closure of ;.

The above system for cut-reduction consists of purely local, minimal steps and therefore
allows the simulation of many other reduction relations. We chose to work in this system
in order to obtain invariance results of maximal strength. Among the systems that can be
simulated literally are for example all color annotations of [11] in the multiplicative version
of LK defined there. The real strength of the results in this paper lies however in the general
applicability of the used proof techniques: the extraction of a grammar from a proof (that
is described in the next sections) is possible in all versions of sequent calculus for classical
logic and in principle also in other systems like natural deduction.

3 Regular and Rigid Tree Grammars

Formal language theory constitutes one of the main areas of theoretical computer science.
Traditionally, a formal language is defined to be a set of strings but this notion can be
generalized in a straightforward way to considering a language to be a set of first-order
terms. Such tree languages possess a rich theory and many applications, see e.g. [13], [9].
In this section we introduce notions and results from the theory of tree languages that we
will use for our proof-theoretic purposes.

A ranked alphabet Σ is a finite set of symbols which have an associated arity (their rank).
We write TΣ to denote the set of all finite trees (or terms) over Σ, and we write TΣ(X) to
denote the set of all trees over Σ and a set X of variables (seen as symbols of arity 0). We
also use the notion of position in a tree, which is a list of natural numbers. We write ε for
the empty list (the root position), and we write p.q for the concatenation of lists p and q.
we write p ≤ q if p is a prefix of q and p < q if p is a proper prefix of q. Clearly, ≤ is a
partial order and < is its strict part. We write Pos(t) to denote the set of all position in a
term t ∈ TΣ(X).

I Definition 4. A regular tree grammar is a tuple G = 〈N,Σ, θ, P 〉, where N is a finite set
of non-terminal symbols, and Σ is a ranked alphabet, such that N ∩ Σ = ∅, θ is the start
symbol with θ ∈ N , and P is a finite set of production rules of the form β → t with β ∈ N
and t ∈ TΣ(N).

The derivation relation →G of a regular tree grammar G = 〈N,Σ, θ, P 〉 is defined as
follows. We have s→G r if there is a production rule β → t in P and a position p ∈ Pos(s),
such that s|p = β and r is obtained from s by replacing β at p by t. The language of G is
then defined as L(G) = {t ∈ TΣ | θ→∗G t}, where →∗G is the transitive, reflexive closure of
→G. A derivation D of a term t ∈ L(G) is a sequence t0→G t1→G . . .→G tn with t0 = θ

and tn = t. Note that a term t might have different derivations in G.
In [19] the class of rigid tree languages has been introduced with applications in verifi-

cation (e.g. of cryptographic protocols as in [20]) as primary motivation. It will turn out
that this class is appropriate for describing cut-elimination in classical first-order logic. In
contrast to [19] we do not use automata but grammars—their equivalence is shown in [17].

I Definition 5. A rigid tree grammar is a tuple 〈N,NR,Σ, θ, P 〉, where 〈N,Σ, θ, P 〉, is a

CSL’12

324 Herbrand-Confluence for Cut Elimination in Classical First Order Logic

regular tree grammar and NR ⊆ N is the set of rigid non-terminals. We speak of a totally
rigid tree grammar if NR = N . In this case we will just write 〈NR,Σ, θ, P 〉.

A derivation θ = t0→G t1→G . . .→G tn = t of a rigid tree grammar G = 〈N,NR,Σ, θ, P 〉
is a derivation in the underlying regular tree grammar satisfying the additional rigidity
condition: If there are i, j < n, a non-terminal β ∈ NR, and positions p and q such that
ti|p = β and tj |q = β then t|p = t|q. The language L(G) of the rigid tree grammar G is
the set of all terms t ∈ TΣ which can be derived under the rigidity condition. For a given
derivation D : θ = t0→G t1→G . . .→G tn = t and a non-terminal β we say that p ∈ Pos(t) is
a β-position in D if there is an i ≤ n with ti|p = β, i.e., either a production rule β → s has
been applied at p in D , or β occurs at position p in t. In the context of a given grammar G,
we sometimes write D : α→∗G t to specify that D is a derivation starting with α and ending
with the term t.

I Lemma 6. Let G = 〈N,NR,Σ, θ, P 〉 be a rigid tree grammar and let t ∈ L(G). Then
there is a derivation θ→G . . .→G t which uses at most one β-production for each β ∈ NR.

Proof. Given any derivation of t, suppose both β → s1 and β → s2 are used at positions
p1 and p2 respectively. Then by the rigidity condition t|p1 = t|p2 and we can replace the
derivation at p2 by that at p1 (or the other way round). This transformation does not violate
the rigidity condition because it only copies existing parts of the derivation. J

I Lemma 7. Let G = 〈NR,Σ, θ, P 〉 be a totally rigid tree grammar and θ 6= β ∈ NR, such
that there is exactly one t with β → t in P . If G′ = 〈NR \ {β},Σ, θ, (P \ {β → t})[β\t]〉 then
L(G) = L(G′).

Proof. If a G-derivation of a term s uses β, it must replace β by t hence s is derivable
using the productions of G′ as well. The rigidity condition is preserved as the equality
constraints of the G′-derivation are a subset of those of the G-derivation. Conversely, given
a G′-derivation of a term s we obtain a derivation of s from the productions of G by replacing
applications of δ → r[β\t] by δ → r followed by a copy of β → t for each occurrence of β
in r. Let γ1, . . . , γn be the non-terminals that appear in t. By the rigidity condition for
i ∈ {1, . . . , n} there is a unique term at all γi-positions in the derivation. Hence β fulfills
the rigidity condition as well, and we have obtained a G-derivation of s. J

I Lemma 8. If a rigid tree grammar G′ is obtained from another rigid tree grammar G by
deletion of production rules, then L(G′) ⊆ L(G).

Proof. Every G′-derivation is a G-derivation. J

I Notation 9. For a given non-terminal β and a term t, we will write β ∈ t or t 3 β for
denoting that β occurs in t.

I Definition 10. Let G be a tree grammar. A path of G is a list P of productions α1 → t1,
. . . , αn → tn with n ≥ 1 and αi+1 ∈ ti for all i ∈ {1, . . . , n − 1}. The length of a path is
|P| = n. We will also write P : α1 → t1 3 α2 → . . . 3 αn → tn to denote a path.

For a given path P : α1 → t1 3 α2 → . . . 3 αn → tn we say that α1, . . . , αn are on the
path P and write αi ∈ P for that. We also write P : α1 99K tn and P : α1 99K αn, if we
do not want to explicitly mention the intermediate steps. For a fixed grammar G, we write
α 99K β to denote that there is a path P in G with P : α 99K β.

For a set P of production rules, we write α≺P β (or simply α≺ β, when P is clear from
context) if there is a production α → t in P with β ∈ t. We write ≺+ for the transitive

S. Hetzl and L. Straßburger 325

closure of ≺, and ≺∗ for its reflexive, transitive closure. Note that α 99K β implies α≺+ β,
but not the other way around, since β could be a non-terminal with no production β → s

in P .

I Definition 11. A tree grammar 〈N,Σ, θ, P 〉 is called cyclic if α ≺+
P α for some α ∈ N ,

and acyclic otherwise.

I Lemma 12. If G is totally rigid and acyclic, then up to renaming of the non-terminals
G = 〈{α1, . . . , αn},Σ, α1, P 〉 with L(G) = {α1[α1\t1] · · · [αn\tn] | αi → ti ∈ P}.

Proof. Acyclicity permits a renaming of non-terminals, such that αi ≺+
P αj implies i < j.

Then L(G) ⊇ {α1[α1\t1] · · · [αn\tn] | αi → ti ∈ P} is obvious. For the left-to-right inclusion,
let D : α0 = s0→G . . .→G sn = s ∈ TΣ be a derivation in G. By Lemma 6 we can assume
that for each j at most one production whose left-hand side is αj is applied, say αj → tj . By
acyclicity we can rearrange the derivation so that αj → tj is only applied after αi → ti for
all i < j. For those αj which do not appear in the derivation we can insert any substitution
without changing the final term so we obtain s = α0[α0\t0] · · · [αn\tn]. J

This lemma entails that |L(G)| ≤
∏n
i=1 |{t | αi → t ∈ P}|, in particular we are dealing

with a finite language. The central questions in this context are (in contrast to the standard
setting in formal language theory) not concerned with representability but with the size of
a representation.

4 Proofs as Grammars

We will now restrict our attention to a certain class of proofs, called simple proofs below.

I Definition 13. A proof π is called simple if it is regular, the end-sequent is of the form
∃x1 · · · ∃xnA with A quantifier-free, and every cut in π whose cut-formula contains a quan-
tifier is of the following form, where B is quantifier-free:

Γ,∃xB
B[x\α],∆
∀xB,∆

∀

Γ,∆ cut
(1)

The above definition requires regularity which is a necessary assumption in the context of
cut-elimination. The restriction of the end-sequent is done for expository purposes only, and
can be extended to arbitrary sequents. The requirement of the ∀-rule being applied directly
above the cut is natural as the rule is invertible. Moreover, any proof which does not fulfill
this requirement can be pruned to obtain one that does, by simply permuting ∀-inferences
down and identifying their eigenvariables when needed. The only significant restriction is
that of disallowing quantifier alternations in the cut formulas. We conjecture that the central
results extend to the general case. However, this will require the development of an adequate
class of grammars.

I Observation 14. Simple proofs have the technically convenient property of exhibiting a
1-1 relationship between eigenvariables and cuts. For an eigenvariable α we will therefore
write ∀α for the inference introducing α and cutα for the corresponding cut.

CSL’12

326 Herbrand-Confluence for Cut Elimination in Classical First Order Logic

I Definition 15. Let π be a proof of ∃x1 · · · ∃xnA and let ψ be a subproof of π. The
Herbrand-set H(ψ, π) of ψ with respect to π is defined as follows. If ψ is an axiom, then
H(ψ, π) = ∅. If ψ is of the form

ψ′

Γ, A[xn\t]
−−−−−−−−−−−− ∃
Γ, ∃xnA

then H(ψ, π) = H(ψ′, π) ∪ {A[x\t]}. If ψ ends with any other unary inference and ψ′ is its
immediate subproof then H(ψ, π) = H(ψ′, π). If ψ ends with a binary rule and ψ′ and ψ′′
are its immediate subproofs, then H(ψ, π) = H(ψ′, π)∪H(ψ′′, π). We write H(π) for H(π, π).

I Definition 16. Let Q be an occurrence of a formula ∃xA in a proof. We define the
set tm(Q) of terms associated with Q as follows: if Q is introduced as the main formula

of a weakening, then tm(Q) = ∅. If Q is introduced by a quantifier rule
Γ, A[x\t]
−−−−−−−−−− ∃
Γ, ∃xA

then

tm(Q) = {t}. If Q is the main formula in the conclusion of a contraction, and Q1 and
Q2 are the two occurrences of the same formula in the premise that are contracted, then
tm(Q) = tm(Q1) ∪ tm(Q2). In all other cases, an inference with the occurrence Q in the
conclusion has a corresponding occurrence Q′ of the same formula in one of its premises,
and we let tm(Q) = tm(Q′).

I Definition 17. Let π be a simple proof, let α ∈ EV(π), and let Q be the occurrence of
the existentially quantified cut-formula in the premise of cutα. Then we write B(α) for the
set { [α\t] | t ∈ tm(Q) } of substitutions and we define B(π) =

⋃
α∈EV(π) B(α).

Structures similar to the above B(π) have been investigated also in [14] and [22] where
they form the basis of proof net like formalisms using local reductions for quantifiers in
classical first-order logic. Our aim in this work is however quite different: we use these
structures for a global analysis of the sequent calculus.

I Definition 18. The grammar of a simple proof π is defined to be the totally rigid grammar
G(π) = 〈NR,Σ, θ, P 〉 with

NR = EV(π) ∪ {θ}
Σ = Σ(π) ∪ {∧,∨}
P = {θ → A | A ∈ H(π)} ∪ {α→ t | [α\t] ∈ B(π)}

where Σ(π) is the signature of π, the rank of ∧ and ∨ is 2, and θ does not occur in π.

I Lemma 19. If π is a simple proof, then G(π) is acyclic.

Proof. By induction on the number of cuts in π. The grammar of a cut-free proof is trivially
acyclic. For the induction step, let r be the lowest binary inference with subproofs π1 and π2
s.t. either (i) r is a cut or (ii) r is not a cut but both π1 and π2 contain at least one cut. Let
P , P1, and P2 be the set of productions induced by the cuts in π, π1, π2, respectively. In case
(ii), ≺P = ≺P1 ∪≺P2 , which is acyclic by induction hypothesis (since EV(π1)∩EV(π2) = ∅).
In case (i), let Pr be the productions induced by the cut r, then ≺P = ≺P1 ∪ ≺P2 ∪ ≺Pr .
By induction hypothesis, ≺P1 and ≺P2 are acyclic and as the cut-formula in r contains at
most one quantifier, also ≺Pr is acyclic. Therefore, a cycle in ≺+

P must be of the form
α1 ≺∗P1

β1 ≺Pr
α2 ≺+

P2
β2 ≺Pr

α1 where α1, β1 ∈ EV(π1) and α2, β2 ∈ EV(π2). However, r
contains only one quantifier and depending on its polarity all productions in Pr lead from
π1 to π2 or from π2 to π1 but not both, so ≺P is acyclic. J

S. Hetzl and L. Straßburger 327

We now come to a central definition of this paper.

I Definition 20. For a simple proof π, we define its Herbrand-content as [[π]] = L(G(π)).

Lemma 19 together with Lemma 12 implies that the Herbrand-content of a simple proof
π with n cuts can be written as

[[π]] = {A[α1\t1] · · · [αn\tn] | A ∈ H(π), [αi\ti] ∈ B(αi)}.

Note that for cut-free π we have [[π]] = H(π), i.e. the Herbrand-content is nothing else
but the Herbrand-disjunction induced by the proof. Furthermore, the Herbrand-content
is a strong invariant: it is not changed by axiom reduction, propositional reduction and
inference permutations as those transformations do not change the grammar. Furthermore,
Lemma 7 shows that [[π]] is not changed by quantifier reduction and Lemma 8 shows that
if π π′ is a step of weakening reduction then [[π′]] ⊆ [[π]]. A more difficult result is that
the Herbrand-content is even invariant under the reduction of a contraction; the following
section is devoted to proving this.

5 Invariance under Duplication

For simplifying the presentation, we assume in the following (without loss of generality) that
the ∀-side is on the right of a cut and the ∃-side on the left. Then, a production β → t in
G(π) corresponds to three inferences in π: a cut, an instance of the ∀-rule, and an instance
of the ∃-rule, that we denote by cutβ , ∀β , and ∃t, respectively, and that are, in general,
arranged in π as shown below.

Γ′, A[x\t]
−−−−−−−−−−− ∃tΓ′,∃xA

...
Γ,∃xA

A[x\β],∆′
−−−−−−−−−−−− ∀β∀xA,∆′

...
∀xA,∆

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cutβΓ,∆

(2)

The additional condition that ∀β is directly above cutβ , as indicated in (1) is only needed
because in the following we make extensive use of Observation 14: there is a one-to-one
correspondence between the cuts and the eigenvariables in π, and thus, the notation cutβ
makes sense.

Furthermore, we say that the instances cutβ , ∀β , and ∃t are on a path P in G(π) if the
production β → t is in P.

I Definition 21. Let π be a proof containing the configuration

...
−−−−−− r1
. . .

...
−−−−− r2

. .
.

−−−−−−−−−−−−−−−−−− r3
...

, where r1, r2,

and r3 are arbitrary rule instances, and r3 is a branching rule, and r1 and r2 might or might
not be branching. Then we say that r1 is on the left above r3, denoted by r1 � r3, and r2 is
on the right above r3, denoted by r3 � r2, and r1 and r2 are in parallel, denoted by r1 �� r2.

I Lemma 22. Let π be a simple proof and P : α1 → t1 3 α2 . . . → tn be a path in
G(π). Then there is a k ∈ {1, . . . , n} s.t. cutαk is lowermost among all inferences on P.
Furthermore, ∀α1 is on the right above cutαk and ∃tn is on the left above cutαk .

Proof. We proceed by induction on n. If n = 1, then n = k = 1. For the induction step
consider a path α1 → t1 3 . . . 3 αn → tn 3 αn+1 → tn+1. As αn+1 ∈ tn we know that ∃tn

CSL’12

328 Herbrand-Confluence for Cut Elimination in Classical First Order Logic

must be on the right above cutαn+1 . By induction hypothesis there is a k ∈ {1, . . . , n} such
that we are in one of the following two situations

...
−−−−− ∃tn+1. . .

...
−−−−− ∃tn. . .

...
−−−−− ∀α1

. .
.

−−−−−−−−−−−−−−−−−−− cutαk
. .
.

−−−−−−−−−−−−−−−−−−−−−−−−−−−− cutαn+1...

or

...
−−−−− ∃tn+1. . .

...
−−−−− ∃tn
. .
.

−−−−−−−−−−−−−−−−−−−−− cutαn+1. . .

...
−−−−− ∀α1

. .
.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cutαk...

In the first case we let l = n+ 1 and in the second we let l = k. In both cases cutαl has the
desired properties. J

I Lemma 23. Let π be a simple proof, G(π) = 〈NR,Σ, θ, P 〉, and β, α ∈ EV(π). If β 99K α
then either cutα � cutβ or cutα � cutβ or cutα �� cutβ.

Proof. Since β 99K α, we have a path β → . . . 3 α → t for some t. By Lemma 22 there
is a γ, such that ∃t � cutγ and cutγ � ∀β , and such that cutα and cutβ are not below cutγ .
Furthermore, cutα must be below ∃t, and cutβ below ∀β . If γ = β, then cutα � cutβ . If
γ = α, then cutα � cutβ . And if γ 6= β and γ 6= α, then cutα �� cutβ . J

I Lemma 24. Let G(π) = 〈NR,Σ, θ, P 〉 be the grammar of a simple proof π, such that there
are two paths

β → t 3 γ0 → s0 3 γ1 → s1 3 . . .→ sn−1 3 γn = α→ sn

β → t 3 δ0 → r0 3 δ1 → r1 3 . . .→ rm−1 3 δm = α→ rm

such that γ0 and δ0 occur at two different positions in t. Then we have one of the following
two cases:
1. we have γi = δj for some 0 ≤ i < n and 0 ≤ j < m, or

2. for all 0 ≤ i < n and 0 ≤ j < m we have cutα � cutγi and cutα � cutδj .

Proof. Note that because of acyclicity of G(π), we have that β 6= γi for all i ≤ n and β 6= δj
for all j ≤ m, in particular β 6= α. Assume, for the moment, that m,n > 0; the case of one
of them being zero will be treated at the very end of the proof. Then γ0 6= α and δ0 6= α.
If γ0 = δ0, we have case 1. So, assume also γ0 6= δ0. As β → t is a production in G(π),
the proof π contains a formula which contains both γ0 and δ0 hence ∀γ0 and ∀δ0 are not
parallel. Since we have cutγ0 � ∀γ0 and cutδ0 � ∀δ0 , we also have that cutγ0 and cutδ0 are not
parallel. Without loss of generality, assume that cutδ0 is below cutγ0 . Then cutδ0 � cutγ0

(since cutγ0 � cutδ0 would entail ∀γ0 ��∀δ0). Since we have δ0 99Kα, we can apply Lemma 23,
giving us three possibilities:

If cutα � cutδ0 then we have the situation

...
−−−−− ∃sn. . .

...
−−−−− ∀α
. .
.

−−−−−−−−−−−−−−−−−−− cutα
. . .

...
−−−−− ∃s0. . .

...
−−−−− ∀γ0

. .
.

−−−−−−−−−−−−−−−−−−− cutγ0

. .
.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cutδ0...

.

By Lemma 22 applied to the path γ0 99K sn we have that cutδ0 must coincide with cutγi
for some 0 ≤ i < n (since π is a tree), so δ0 = γi (by Observation 14), and we are in
case 1.

S. Hetzl and L. Straßburger 329

If cutα � cutδ0 then we are in both of the following two situations:

...
−−−−− ∃sn. . .

. . .

. . .

...
−−−−− ∀γ0

. .
.

−−−−−−−−−−−−−− cutγ0

. .
.

−−−−−−−−−−−−−−−−−−− cutδ0

. .
.

−−−−−−−−−−−−−−−−−−−−−−−−−− cutα
...

and
...

−−−−− ∃rm. . .

. . .

...
−−−−− ∀δ0

. .
.

−−−−−−−−−−−−−− cutδ0

. .
.

−−−−−−−−−−−−−−−−−−−−−−−− cutα
...

Thus, by Lemma 22 applied to the paths γ0 99K sn and δ0 99K rm we know that cutα =
cutγk = cutδl for some 0 ≤ k ≤ n and 0 ≤ l ≤ m hence γk = α = δl. Furthermore k = n

and l = m by acyclicity of G(π). Now consider any γi with 0 ≤ i < n. Since γi 99Kα, we
can apply Lemma 23 and get either cutα � cutγi or cutα � cutγi or cutα �� cutγi . Since by
Lemma 22 cutγi must be above cutα, we conclude cutα � cutγi . With the same reasoning
we can conclude that cutα � cutδj for all 0 ≤ j < m. We are therefore in case 2.
If cutα �� cutδ0 then we are in both of the following two situations:

...
−−−−− ∃sn.

.

−−−−−−−−−−−−−−−−−−− cutα
. . .

. . .

. . .

...
−−−−− ∀γ0

. .
.

−−−−−−−−−−−−−−−−− cutγ0

. .
.

−−−−−−−−−−−−−−−−−−−− cutδ0

. .
.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− r
...

and

...
−−−−− ∃rm.

.

−−−−−−−−−−−−−−−−−−− cutα
. . .

. . .

...
−−−−− ∀δ0

. .
.

−−−−−−−−−−−−−−−−− cutδ0

. .
.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− r
...

By Lemma 22 applied to the paths γ0 → . . . → sn and δ0 → . . . → rm, the rule r
coincides with cutγi and cutδj for some 0 < i < n and 0 < j < m, therefore γi = δj (by
Observation 14), and we are in case 1.

It remains to treat the case n = 0 or m = 0. If m = n = 0 then we are trivially in case 2
(there is no 0 ≤ i < n or 0 ≤ j < m). If n = 0 and m > 0, we can apply Lemma 22 to the
path δ0 → . . .→ rm and obtain an l ∈ {0, . . . ,m} such that we are in the situation

...
−−−−− ∃rm. . .

...
−−−−− ∀α
. .
.

−−−−−−−−−−−−−−−−−−− cutα
. . .

. . .

...
−−−−− ∀δ0

. .
.

−−−−−−−−−−−−−−−−− cutδ0

. .
.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cutδl...

But by the same argument as at the beginning of the proof, we also have that ∀α and
∀δ0 cannot be in parallel (α and δ0 both appear in t), and therefore either cutδ0 � cutα
or cutα � cutδ0 . Since δ0 99K α, the only possibility is cutα � cutδ0 , by Lemma 23. Thus
cutα = cutδl , and therefore l = m and we are in case 2. The case m = 0 and n > 0 is
similar. J

The following is the main result of this section:

I Proposition 25. Let π be a simple proof that contains a subproof ψ, shown on the left
below,

ψ =

ψ1

Γ, A,A
−−−−−−−− c

Γ, A

ψ2

A,∆
−−−−−−−−−−−−−−−−−−−− cut

Γ,∆

;

ψ1

Γ, A,A

ψ2ρ
′

A,∆
−−−−−−−−−−−−−−−−−−−−− cut

Γ,∆, A

ψ2ρ
′′

A,∆
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

Γ,∆,∆
========= c∗

Γ,∆

= ψ′

CSL’12

330 Herbrand-Confluence for Cut Elimination in Classical First Order Logic

and let π′ be the proof obtained from π from replacing ψ by ψ′ shown on the right above, where
ρ′ = [α\α′]α∈EV(ψ2) and ρ′′ = [α\α′′]α∈EV(ψ2) are substitutions that replace all eigenvariables
in ψ2 by fresh copies. Then [[π]] = [[π′]].

Proof. Let us first show [[π]] ⊆ [[π′]]: write P for the productions of G(π) and P ′ for those of
G(π′). Let F ∈ [[π]] = L(G(π)) and D be its derivation. If the duplicated cut is quantifier-
free, then P ′ = Pρ′ ∪ Pρ′′ hence Dρ′ (as well as Dρ′′) is a derivation of F in G(π′). If
the duplicated cut contains a quantifier, let α be its eigenvariable, let t1, . . . , tk be its terms
coming from the left copy of A and tk+1, . . . , tn those from the right copy of A and let
Q = {α→ t1, . . . , α→ tn} ⊆ P . We then have

P ′ = (P \Q)ρ′ ∪ {α′ → t1, . . . , α
′ → tk} ∪ (P \Q)ρ′′ ∪ {α′′ → tk+1, . . . , α

′′ → tn} .

If D does not contain α, then Dρ′ (as well as Dρ′′) is a derivation of F in G(π′). If D

does contain α, then by Lemma 6 we can assume that it uses only one α-production, say
α→ ti. If 1 ≤ i ≤ k, then Dρ′ is a derivation of F in G(π′) and if k < i ≤ n, then Dρ′′ is a
derivation of F in G(π′).

Let us now show [[π′]] ⊆ [[π]]: let F be a formula in [[π′]] = L(G(π′)), and let D ′ be a
derivation of F in G(π′). We construct D = D ′(ρ′)−1(ρ′′)−1 by “undoing” the renaming of
the variables in ψ2. Then D is a derivation for F , using the production rules of G(π), but
possibly violating the rigidity condition.

First, observe that only non-terminals α ∈ EV(ψ2) can violate the rigidity condition in
D : if β /∈ EV(ψ2) violates the rigidity condition then there are β-positions p1, p2 in D with
F |p1 6= F |p2 and as βρ′ρ′′ = β the positions p1, p2 are also β-positions in D ′ and they violate
the rigidity condition in D ′ which is a contradiction to D ′ being a G(π′)-derivation.

Now define for each α ∈ EV(ψ2) the value n(D , α) to be the number of pairs (p1, p2) ∈
Pos(F)× Pos(F) where p1 and p2 are α-positions in D with p1 6= p2 and F |p1 6= F |p2 , and
define n(D) =

∑
α∈EV(ψ2) n(D , α). We proceed by induction on n(D) to show that D can

be transformed into a derivation which does no longer violate rigidity. If n(D) = 0 then D

obeys the rigidity condition, and we are done. Otherwise there is at least one α ∈ EV(ψ2)
with n(D , α) > 0. We now pick one such α which is minimal with respect to ≺∗ (which exists
since G(π) is acyclic). Let p1 and p2 be α-positions in D with p1 6= p2 and F |p1 6= F |p2 , let
p be the maximal common prefix of p1 and p2 and let q be the maximal prefix of p where
a production rule has been applied in D . Due to the tree structure of F , the position q is
uniquely defined, and q is a β-position for some non-terminal β, and some production rule
β → t has been applied at position q in D , and we have two paths:

β → t 3 γ0 → s0 3 γ1 → s1 3 . . .→ sn−1 3 γn = α→ sn

β → t 3 δ0 → r0 3 δ1 → r1 3 . . .→ rm−1 3 δm = α→ rm

where γ0 and δ0 occur at two different positions in t. Thus, we can apply Lemma 24, giving
us the following two cases:

We have γi = δj for some 0 ≤ i < n and 0 ≤ j < m. Say η = γi = δj , and let
pγ and pδ be the positions of γi and δj (respectively) in D . Since η ≺+ α we know
that η does not violate the rigidity condition (we chose α to be minimal), and therefore
F |pγ = F |pδ = F ′. Let Dγ : γi→∗G(π)F

′ and Dδ : δj→∗G(π)F
′ be the two subderivations of

D starting in positions pγ and pδ, respectively. Without loss of generality, we can assume
that n(Dγ) ≤ n(Dδ). Then let D̃ be the derivation obtained from D by replacing Dδ by
Dγ . Then D̃ is still a derivation for F , but n(D̃) < n(D).
For all 0 ≤ i < n and 0 ≤ j < m we have cutα � cutγi and cutα � cutδj . So all inferences
of the path γ0 → . . . → sn−1 as well as all inferences of δ0 → . . . → rm−1 are in ψ2.
Therefore all variables of of these paths are in EV(ψ2). As α violates the rigidity in D

S. Hetzl and L. Straßburger 331

one of p1, p2 must be a α′-position and the other a α′′-position in D ′ because D ′ does
satisfy the rigidity condition. Without loss of generality we can assume that p1 is the
α′-position and p2 the α′′-position. As the paths are contained completely in ψ2 we have
γ0 ∈ EV(ψ2)ρ′ and δ0 ∈ EV(ψ2)ρ′′ which is a contradiction as no term can contain both
a variable from EV(ψ2)ρ′ and one from EV(ψ2)ρ′′. J

6 Herbrand-Confluence

We now turn to cut reduction sequences that start with a simple proof. All the reductions
shown in Figure 1 preserve simplicity, except the following:

· · ·
· · ·

−−−−−−−− ∀α· · ·
−−−−−−−−−−−−−−−−−−−− cutα· · ·

· · ·
−−−−−−−− ∀β· · ·

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cutβ· · ·

;
· · ·

· · ·
−−−−−−−− ∀α· · ·

· · ·
−−−−−−−− ∀β· · ·

−−−−−−−−−−−−−−−−−−−−−−−−−−−− cutβ· · ·
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cutα· · ·

where cutα is permuted down under cutβ (using the bottommost reduction in Fig. 1) and
the cut formula of cutβ has its ancestor on the right side of cutα. So in the following, when
we speak about a reduction sequence of simple proofs we require that the above reduction is
immediately followed by permuting ∀α down as well, in order to arrive at

· · ·

· · ·
· · ·

−−−−−−−− ∀β· · ·
−−−−−−−−−−−−−−−−−−−−−−−− cutβ· · ·

−−−−−−−− ∀α· · ·
−−−−−−−−−−−−−−−−−−−−−−−−−−−− cutα· · ·

which is again simple. Recall that for our result this step is not strictly needed. We only
add it here to simplify the presentation.

Collecting together the results proved in this paper we then obtain the following theorem.

I Theorem 26. If π π′ is a reduction sequence of simple proofs, then [[π]] ⊇ [[π′]].

Proof. By induction on the length of the reduction π π′ making a case distinction on
the applied reduction step. If πi πi+1 is a propositional reduction, an axiom reduction
or a rule permutation, we even have G(πi) = G(πi+1). If it is a quantifier reduction, then
[[πi]] = [[πi+1]] by Lemma 7. If it is the reduction of a contraction, then [[πi]] = [[πi+1]] by
Proposition 25. If it is the reduction of a weakening, then [[πi]] ⊇ [[πi+1]] by Lemma 8. J

I Corollary 27. If π π′ is a reduction sequence of simple proofs and π′ is cut-free, then
H(π′) ⊆ [[π]].

This corollary shows that [[π]] is an upper bound (w.r.t. the subset relation) on the
Herbrand-disjunctions obtainable by cut-elimination from π. Let us now compare this result
with another upper bound that has previously been obtained in [16]. To that aim let G0(π)
denote the regular tree grammar underlying G(π) which can be obtained by setting all non-
terminals to non-rigid. In this notation, a central result of [16], adapted to this paper’s
setting of proofs of non-prenex formulas, is

I Theorem 28. If π π′ and π′ is cut-free, then H(π′) ⊆ L(G0(π)).

While the above theorem 28 applies also to non-simple proofs, Corollary 27 is stronger
in several respects:

First, the size of the Herbrand-content is by an exponential smaller than the size of the
bound given by Theorem 28. Indeed, it is a straightforward consequence of Lemma 12 that

CSL’12

332 Herbrand-Confluence for Cut Elimination in Classical First Order Logic

the language of a totally rigid acyclic tree grammar with n production rules is bound by nn.
On the other hand, there are acyclic regular tree grammars Gn with 2n productions and
|L(Gn)| = nn

n (by encoding in Gn the construction of a tree of depth n and branching degree
n with an independent choice between n constant symbols at each leaf). These grammars
can be obtained from appropriately constructed proofs.

Secondly, the class of totally rigid acyclic tree grammars can be shown to be in exact
correspondence with the class of simple proofs in the following sense. Not only can we use a
totally rigid acyclic tree grammar to simulate the process of cut-elimination, we can also—in
the other direction—use cut-elimination to simulate the process of calculating the language
of a grammar. It is shown in [17] how to transform an arbitrary acyclic totally rigid tree
grammar G into a simple proof that has a normal form whose Herbrand-disjunction is
essentially the language of G.

The third and—for the purposes of this paper—most important difference is that the
bound of Corollary 27 is tight (in a sense that we are going to make precise now). This
property of the Herbrand-content leads naturally to a confluence result for classical logic.

For tightening this bound, a first obvious observation is that there is no mechanism
for deletion in the grammar but there is one in cut-elimination: the reduction of weaken-
ing. So, any cut-elimination strategy that does exactly compute [[π]] must be non-erasing.
Consequently we define the non-erasing cut-reduction ne

 as without the reduction rule
for weakening. Note that a ne

 -normal form π is an analytic proof as well, e.g. H(π) is a
(tautological!) Herbrand-disjunction. In contrast to a -normal form (which might contain
implicit redundancy) a ne

 -normal form might also contain explicit redundancy in the form of
cuts whose cut-formulas are introduced by weakening on one or on both sides. Non-erasing
reduction is also of interest in the context of the λ-calculus where it is often considered in
the form of the λI-calculus and gives rise to the conservation theorem (see Theorem 13.4.12
in [7]). Our situation here is however quite different: neither nor ne

 is confluent and
neither of them is strongly normalizing. Nevertheless we obtain:
I Theorem 29. If π ne

 π′ is a reduction sequence of simple proofs, then [[π]] = [[π′]].
Proof. Inspection of the proof of Theorem 26 shows that the reduction of weakening is the
only step that does not preserve the Herbrand-content. J

I Definition 30 (Herbrand-confluence). A relation −→ on a set of proofs is called Herbrand-
confluent iff π −→ π1 and π −→ π2 with π1 and π2 being normal forms for −→ implies that
H(π1) = H(π2).
I Corollary 31. The relation ne

 is Herbrand-confluent on the set of simple proofs.
How do these results fit together with ne

 being neither confluent nor strongly normaliz-
ing? In fact, note that it is possible to construct a simple proof which permits an infinite ne

reduction sequence from which one can obtain normal forms of arbitrary size by bailing out
from time to time. This can be done by building on the propositional double-contraction
example found e.g. in [11, 12, 26] and in a similar form in [28]. While these infinitely many
normal forms do have pairwise different Herbrand-disjunctions when regarded as multisets,
Corollary 31 shows that as sets they are all the same. This observation shows that the lack
of strong normalization is taken care of by using sets instead of multisets as data structure.
But what about the lack of confluence? Results like [2] and [15] show that the number of
normal forms with different Herbrand-disjunctions can be enormous. On the other hand we
have just seen that ne

 induces only a single Herbrand-disjunction: [[π]]. The relation between
[[π]] and the many Herbrand-disjunctions induced by is explained by Corollary 27: [[π]]
contains them all as subsets.

S. Hetzl and L. Straßburger 333

7 Conclusion

We have shown that non-erasing cut-elimination for the class of simple proofs is Herbrand-
confluent. While there are different and possibly infinitely many normal forms, they all
induce the same Herbrand-disjunction. This result motivates the definition of this unique
Herbrand-disjunction as Herbrand-content of the proof with cut.

As future work, the authors plan to extend this result to arbitrary first-order proofs.
The treatment of blocks of quantifiers is straightforward: the rigidity condition must be
changed to apply to vectors of non-terminals. Treating quantifier alternations is more dif-
ficult: the current results suggest to use a stack of totally rigid tree grammars, each layer
of which corresponds to one layer of quantifiers (and is hence acyclic). Concerning further
generalizations, note that the method of describing a cut-free proof by a tree language is
applicable to any proof system with quantifiers that has a Herbrand-like theorem, e.g., even
full higher-order logic as in [23]. The difficulty consists in finding an appropriate type of
grammars.

Given the wealth of different methods for the extraction of constructive content from
classical proofs, what we learn from our work is this: the first-order structure possesses
(in contrast to the propositional structure) a unique and canonical unfolding. The various
extraction methods hence do not differ in the choice of how to unfold the first-order structure
but only in choosing which part of it to unfold. We therefore see that the effect of the
underspecification of algorithmic detail in classical logic is redundancy.

Acknowledgments

The authors would like to thank Paul-André Melliès for helpful comments on this work.
The first author was supported by a Marie Curie Intra European Fellowship within the 7th
European Community Framework Programme and by the projects I-603 N18 and P22028
of the Austrian Science Fund (FWF).

References
1 Jeremy Avigad. The computational content of classical arithmetic. In Solomon Feferman

and Wilfried Sieg, editors, Proofs, Categories, and Computations: Essays in Honor of
Grigori Mints, pages 15–30. College Publications, 2010.

2 Matthias Baaz and Stefan Hetzl. On the non-confluence of cut-elimination. Journal of
Symbolic Logic, 76(1):313–340, 2011.

3 Matthias Baaz, Stefan Hetzl, Alexander Leitsch, Clemens Richter, and Hendrik Spohr. Cut-
Elimination: Experiments with CERES. In Franz Baader and Andrei Voronkov, editors,
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR) 2004, volume 3452
of Lecture Notes in Computer Science, pages 481–495. Springer, 2005.

4 Matthias Baaz, Stefan Hetzl, Alexander Leitsch, Clemens Richter, and Hendrik Spohr.
CERES: An Analysis of Fürstenberg’s Proof of the Infinity of Primes. Theoretical Computer
Science, 403(2–3):160–175, 2008.

5 Matthias Baaz and Alexander Leitsch. Cut-elimination and Redundancy-elimination by
Resolution. Journal of Symbolic Computation, 29(2):149–176, 2000.

6 Franco Barbanera and Stefano Berardi. A Symmetric Lambda Calculus for Classical Pro-
gram Extraction. Information and Computation, 125(2):103–117, 1996.

7 Hendrik Pieter Barendregt. The Lambda Calculus, volume 103 of Studies in Logic and the
Foundations of Mathematics. Elsevier, 1984.

CSL’12

334 Herbrand-Confluence for Cut Elimination in Classical First Order Logic

8 Ulrich Berger, Wilfried Buchholz, and Helmut Schwichtenberg. Refined Program Extraction
from Classical Proofs. Annals of Pure and Applied Logic, 114:3–25, 2002.

9 H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree Automata: Techniques and Applications. Available on: http:
//www.grappa.univ-lille3.fr/tata, 2007. release October, 12th 2007.

10 Pierre-Louis Curien and Hugo Herbelin. The Duality of Computation. In Proceedings of the
Fifth ACM SIGPLAN International Conference on Functional Programming (ICFP ’00),
pages 233–243. ACM, 2000.

11 Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. A New Deconstructive Logic:
Linear Logic. Journal of Symbolic Logic, 62(3):755–807, 1997.

12 Jean Gallier. Constructive Logics. Part I: A Tutorial on Proof Systems and Typed λ-
Calculi. Theoretical Computer Science, 110(2):249–339, 1993.

13 Ferenc Gécseg and Magnus Steinby. Tree Languages. In G. Rozenberg and A. Salomaa,
editors, Handbook of Formal Languages: Volume 3: Beyond Words, pages 1–68. Springer,
1997.

14 Willem Heijltjes. Classical proof forestry. Annals of Pure and Applied Logic, 161(11):1346–
1366, 2010.

15 Stefan Hetzl. The Computational Content of Arithmetical Proofs. to appear in the Notre
Dame Journal of Formal Logic.

16 Stefan Hetzl. On the form of witness terms. Archive for Mathematical Logic, 49(5):529–554,
2010.

17 Stefan Hetzl. Applying Tree Languages in Proof Theory. In Adrian-Horia Dediu and
Carlos Martín-Vide, editors, Language and Automata Theory and Applications (LATA)
2012, volume 7183 of Lecture Notes in Computer Science. Springer, 2012.

18 Stefan Hetzl, Alexander Leitsch, and Daniel Weller. Towards Algorithmic Cut-Introduction.
In Logic for Programming, Artificial Intelligence and Reasoning (LPAR-18), volume 7180
of Lecture Notes in Computer Science, pages 228–242. Springer, 2012.

19 Florent Jacquemard, Francis Klay, and Camille Vacher. Rigid tree automata. In Adrian Ho-
ria Dediu, Armand-Mihai Ionescu, and Carlos Martín-Vide, editors, Third International
Conference on Language and Automata Theory and Applications (LATA) 2009, volume
5457 of Lecture Notes in Computer Science, pages 446–457. Springer, 2009.

20 Florent Jacquemard, Francis Klay, and Camille Vacher. Rigid tree automata and applica-
tions. Information and Computation, 209:486–512, 2011.

21 Ulrich Kohlenbach. Applied Proof Theory: Proof Interpretations and their Use in Mathe-
matics. Springer, 2008.

22 Richard McKinley. Herbrand expansion proofs and proof identity. In Classical Logic
and Computation (CL&C) 2008, participant’s proceedings, 2008. available at http:
//wwwhomes.doc.ic.ac.uk/~svb/CLaC08/programme.html.

23 Dale Miller. A Compact Representation of Proofs. Studia Logica, 46(4):347–370, 1987.
24 Michel Parigot. λµ-Calculus: An Algorithmic Interpretation of Classical Natural Deduc-

tion. In Andrei Voronkov, editor, Logic Programming and Automated Reasoning (LPAR)
1992, volume 624 of Lecture Notes in Computer Science, pages 190–201. Springer, 1992.

25 Diana Ratiu and Trifon Trifonov. Exploring the Computational Content of the Infinite
Pigeonhole Principle. Journal of Logic and Computation, 22(2):329–350, 2012.

26 Christian Urban. Classical Logic and Computation. PhD thesis, University of Cambridge,
October 2000.

27 Christian Urban and Gavin Bierman. Strong Normalization of Cut-Elimination in Classical
Logic. Fundamenta Informaticae, 45:123–155, 2000.

28 J. Zucker. The Correspondence Between Cut-Elimination and Normalization. Annals of
Mathematical Logic, 7:1–112, 1974.

http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata
http://wwwhomes.doc.ic.ac.uk/~svb/CLaC08/programme.html
http://wwwhomes.doc.ic.ac.uk/~svb/CLaC08/programme.html

	Introduction
	Sequent Calculus and Cut-Elimination
	Regular and Rigid Tree Grammars
	Proofs as Grammars
	Invariance under Duplication
	Herbrand-Confluence
	Conclusion

