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Abstract: In this article, we propose a robust method to compute the output of a fractional
linear system defined through a linear fractional differential equation (FDE) with time-
varying coefficients, where the input can be noisy. We firstly introduce an estimator of the
fractional derivative of an unknown signal, which is defined by an integral formula obtained by
calculating the fractional derivative of a truncated Jacobi polynomial series expansion. We then
approximate the FDE by applying to each fractional derivative this formal algebraic integral
estimator. Consequently, the fractional derivatives of the solution are applied on the used Jacobi
polynomials and then we need to identify the unknown coefficients of the truncated series
expansion of the solution. Modulating functions method is used to estimate these coefficients
by solving a linear system issued from the approximated FDE and some initial conditions. A
numerical result is given to confirm the reliability of the proposed method.
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1. INTRODUCTION

Fractional calculus were introduced in many fields of sci-
ence and engineering long time ago. It was first devel-
oped by mathematicians in the middle of the ninetieth
century [1]. During the past decades, fractional calcu-
lus has gained great interest in several applications [2],
for instance in control engineering [3], signal process-
ing [4], and finance [5], etc. Unlike classical differential
equations, fractional differential equations can better de-
scribe some natural phenomena and especially some dy-
namical systems [6, 7]. This is due essentially to their
memory and hereditary properties. Many studies have
been done in the existence and uniqueness of solutions
to fractional differential equations (see, e.g. [8, 9, 10]).
In the case of disturbed source, the behavior of solution
has been studied in [12]. However, it is in general dif-
ficult to find analytic solutions to fractional differential
equations, reliable approximations and numerical tech-
niques are then essential. One can distinguish two main
categories of methods for solving fractional differential
equations: frequency-domain methods and time-domain
methods. Frequency-domain methods include the popu-
lar Laplace transform method [8] and Fourier transform
method [9]. They usually provide analytical solutions for
fractional differential equations. Concerning time-domain

methods, an increasing number of numerical schemes are
being developed for both linear and nonlinear fractional
differential equations. In nonlinear case, these methods
include Lubich’s difference methods, Diethelm’s method
based on quadrature, Adams-Bashforth-Moulton method,
Homotopy-perturbation method, Adomian’s decomposi-
tion method (see [11]).

During the last few years, many authors applied function
approximation theory to solve linear fractional differen-
tial equations with constant coefficients. Solutions were
approximated by truncated series expansions involving
different bases, such as orthogonal polynomials [13] and
wavelets [14, 15], with unknown coefficients. Thus, the
problem of solving a fractional differential equation was
transformed into a problem of identifying the coefficients
of an equation. Then, different methods were considered
to solve this problem by solving a linear system of alge-
braic equations. These methods include operational matrix
method [14], collocation method [15], and spectral tau
method [13]. Unlike the spectral tau method used in [13],
the operational matrix method in general uses polynomi-
als to approximate the solutions of fractional differential
equations, and the fractional derivatives or the fractional
integrals of these solutions. But the fractional derivatives
and the fractional integrals of a classical polynomial are
not polynomials. Moreover, the collocation method in-



terpolates source functions at collocation points which
are usually not irregularly spaced. This is a constraint
for many applications. Also, the method is not robust
against noisy source functions. Very recently, Legendre
polynomials and spectral tau method were used in [16]
to solve fractional differential equations with time-varying
coefficients. In this paper, we use Jacobi polynomials and
the modulating function method to extend the methods
used in [16].

There are practical situations where the source functions
are measured and corrupted by an additive noise. However,
none of the above methods has considered this case. In
this paper, we are interested in the fractional order dif-
ferentiation by integration with Jacobi polynomials. This
method consists in estimating the fractional derivative of
an unknown signal by an integral formula involving Jacobi
polynomials and the noisy observation of the unknown
signal [17, 18]. It generalizes the method of differentiation
by integration [19, 20] from integer order to fractional
order. Let us recall that the method of differentiation by
integration with Jacobi polynomials is the generalization
of the Lanczos generalized derivative [21] (p. 324) (1956) in
noisy case. The differentiators proposed in [19] were origi-
nally introduced using the algebraic parametric techniques
[22, 23, 24, 25, 26, 27, 28] which exhibited good robustness
properties with respect to corrupting noises without the
need of knowing their statistical properties [29].

One of the methods that have been proposed to solve pa-
rameter identification problems is the modulating function
method. The latter was pioneered by Shinbrot [30] in 1957
to solve the parameter identification problem by using in-
tegral transformation. The idea was motivated by Laplace
and Fourier transforms. Essentially, the use of modulat-
ing functions allows to transform a differential equation,
involving input-output noisy signals on a specified time
interval, into a sequence of algebraic equations. Moreover,
it avoids the derivatives of the noisy signals and annihilates
the effects of initial conditions, thus allows the direct use of
noisy signals in the integral expression. Hence, this method
takes advantage from the low-pass filtering property of
modulating functions integrals [31, 29]. It was used to pa-
rameter identification for nonlinear systems, time-varying
systems and noisy sinusoidal signals [32, 33, 31].

The aim of this paper is to propose a robust method
to find the output of fractional linear systems, defined
through linear fractional differential equations with time-
varying coefficients, where the input can be noisy. For
this purpose, we use the fractional order differentiation by
integration with Jacobi polynomial and the modulating
functions method. The calculus are made from the noisy
input and some initial conditions. This paper is organized
as follows: in Section 2, we recall the method of fractional
order differentiation by integration. It is used in Section 3
to solve fractional differential equations together with the
modulating function method. In Section 4, we apply the
proposed method to an example. Finally, some conclusions
and perspectives are given in Section 5.

2. FRACTIONAL ORDER DIFFERENTIATION BY
INTEGRATION

In this section, we recall the main idea behind fractional
order differentiation by integration [17, 18], which gener-
alizes the method of differentiation by integration with
Jacobi polynomials [19, 20] from the integer order to the
fractional order. Before doing so, we recall the definitions
and some useful properties of the Caputo fractional deriva-
tive and the Jacobi orthogonal polynomials, respectively.

2.1 Caputo fractional derivative

Unlike classical integer order derivatives, there are several
definitions for fractional derivatives which are in general
not equivalent with each others [8, 9]. In this paper, we
use the Caputo fractional derivative.

Let f ∈ Cl(R) with l ∈ N
∗, where Cl(R) denotes the set

of the l-times continuously differentiable functions defined
on R. Then, the Caputo fractional derivative (see [8] p. 79)
of f is defined as follows: ∀ t ∈ R

∗
+,

Dα
t f(·) :=

1

Γ(l − α)

∫ t

0

(t− τ)
l−α−1

f (l)(τ) dτ, (1)

where 0 ≤ l − 1 < α ≤ l, and Γ(z) =
∫∞

0
exp(−x)xz−1 dx

is the Gamma function (see [34] p. 255). Hence, the Caputo
fractional derivative of an nth order polynomial f(t) = tn

can be given as follows (see [8] p. 72): ∀ t ∈ R+,

Dα
t f(·) =







0, if n < α,
Γ(n+ 1)

Γ(n+ 1− α)
tn−α, if n ≥ α.

(2)

In the following are some useful proprieties of the Caputo
fractional derivative: ∀ t ∈ R

∗
+,

• Linearity (see [8] p. 91):

Dα
t {λ1f1(·) + λ2f2(·)} = λ1D

α
t f1(·) + λ2D

α
t f2(·),

(3)
• Scale change (see [2] p. 76):

Dα
λ tf(·) =

1

λα
Dα

t f(λ ·), (4)

where λ ∈ R
∗
+, λ1, λ2 ∈ R and f, f1, f2 ∈ Cl(R).

2.2 Jacobi orthogonal polynomials

The nth order shifted Jacobi orthogonal polynomial (see
[34] p. 775) can be defined on [0, 1] as follows:

P (µ,κ)
n (τ) :=

n
∑

j=0

(

n+ µ

j

)(

n+ κ

n− j

)

(τ − 1)
n−j

τ j , (5)

where µ, κ ∈] − 1,+∞[, and
(

n+µ
j

)

= Γ(n+µ+1)
Γ(n+µ−j+1) Γ(j+1) ,

(

n+κ
n−j

)

= Γ(n+κ+1)
Γ(κ+j+1) Γ(n−j+1) . Let g1 and g2 be two continu-

ous functions defined on [0, 1], then we define the following
scalar product (see [34] p. 774):

〈g1(·), g2(·)〉µ,κ =

∫ 1

0

wµ,κ(τ) g1(τ) g2(τ) dτ, (6)

where wµ,κ(τ) = (1 − τ)µτκ is the associated weighted

function. Thus, the norm of the Jacobi polynomial P
(µ,κ)
n

is given by: ‖P
(µ,κ)
n ‖2µ,κ = Γ(µ+n+1) Γ(κ+n+1)

Γ(µ+κ+n+1) Γ(n+1) (2n+µ+κ+1) .



Then, by applying the linearity (3) to (5) and using (2),
the Caputo fractional derivative of the Jacobi polynomial
can be given in the following lemma.

Lemma 1. The αth (α ∈ R+) order derivative of the nth

order Jacobi orthogonal polynomial P
(µ,κ)
n defined in (5)

is given as follows: ∀ τ ∈ [0, 1],

Dα
τ P

(µ,κ)
n (·) =











0, if n < α,
n
∑

j=0

min(n−j,n−l)
∑

i=0

cµ,κ,n,j,i Γ(n− i+ 1)

Γ(n− i+ 1− α)
τn−i−α, if n ≥ α,

where cµ,κ,n,j,i = (−1)i
(

n+µ
j

)(

n+κ
n−j

)(

n−j
i

)

, and l ∈ N
∗ with

0 ≤ l − 1 < α ≤ l.

2.3 Fractional Jacobi differentiator

Let y ∈ Cl(R), and y̟ be a noisy observation of y on an
interval I = [0, h] ⊂ R+:

∀ t ∈ I, y̟(t) = y(t) +̟(t), (7)

where ̟ is an integrable noise 1 . We are going to estimate
the αth order derivative of y using the observation y̟.

Let us ignore the noise for a moment. By taking the Jacobi
orthogonal series expansion of y(h·) ([36] p. 6), we have:
∀ ξ ∈ [0, 1],

y(hξ) =
+∞
∑

i=0

〈

P
(µ,κ)
i (·), y(h·)

〉

µ,κ

‖P
(µ,κ)
i ‖2µ,κ

P
(µ,κ)
i (ξ). (8)

We take the truncated Jacobi orthogonal series expansion
of y(h·) to approximate y on I by the following N th

(N ∈ N) order polynomial: ∀ ξ ∈ [0, 1],

D
(0)
h,µ,κ,Ny(hξ) :=

N
∑

i=0

λ
(µ,κ)
i P

(µ,κ)
i (ξ), (9)

where λ
(µ,κ)
i =

〈

P
(µ,κ)
i

(·),y(h·)
〉

µ,κ

‖P
(µ,κ)
i

‖2
µ,κ

. Then, we calculate the

fractional derivative of the polynomial D
(0)
h,µ,κ,Ny(·) such

that we can approximate the fractional derivative of y.

We denote the αth order derivative of D
(0)
h,µ,κ,Ny(·) by

D
(α)
h,µ,κ,Ny(·). By applying the scale change property (4)

and the linearity (3), to (9), we obtain: ∀ ξ ∈ [0, 1],

Dα
hξy(·) ≈D

(α)
h,µ,κ,Ny(hξ)

:=Dα
hξ

{

D
(0)
h,µ,κ,Ny(·)

}

=
1

hα
Dα

ξ

{

D
(0)
h,µ,κ,Ny(h·)

}

=
1

hα

N
∑

i=0

λ
(µ,κ)
i Dα

ξ P
(µ,κ)
i (·).

(10)

Consequently, by substituting y by its noisy observation
y̟ in (10) we obtain the following fractional order differ-
entiator: ∀ ξ ∈ [0, 1],

1 More generally, the noise is a stochastic process, which is integrable
in the sense of convergence in mean square (see [35]).

Dα
hξy(·) ≈ D

(α)
h,µ,κ,Ny̟(hξ) :=

1

hα

N
∑

i=0

λ̃
(µ,κ)
i Dα

ξ P
(µ,κ)
i (·),

(11)

where λ̃
(µ,κ)
i =

〈

P
(µ,κ)
i

(·),y̟(h·)
〉

µ,κ

‖P
(µ,κ)
i

‖2
µ,κ

. By expanding the

scalar product 〈·, ·〉µ,κ, we get the following integral form

for D
(α)
h,µ,κ,Ny̟(hξ): ∀ ξ ∈ [0, 1],

D
(α)
h,µ,κ,Ny̟(hξ) =

1

hα

∫ 1

0

Qµ,κ,α,N (τ, ξ) y̟(hτ) dτ, (12)

whereQµ,κ,α,N (τ, ξ) = wµ,κ(τ)

N
∑

i=0

P
(µ,κ)
i (τ)

‖P
(µ,κ)
i ‖2µ,κ

Dα
ξ P

(µ,κ)
i (·).

According to (12), the differentiator D
(α)
h,µ,κ,Ny̟(hξ) uses

an integral involving Jacobi polynomials to estimate the
fractional order derivative of a noisy signal. We call this
differentiator fractional Jacobi differentiator as in [17,
18], and this method fractional order differentiation by
integration.

The estimation error for the fractional Jacobi differentiator
in the noisy case can be divided into two sources: the
truncated term error which is due to the truncated terms
in the Jacobi orthogonal series expansion of y(h·), and the
noise error contribution which is due to the noise ̟. These
errors have been studied in [18]. Moreover, it has been also
showed in [18] how to choose the design parameters N , κ
and µ for the fractional Jacobi differentiator so as to reduce
these errors.

3. APPLICATION TO FRACTIONAL LINEAR
SYSTEMS

3.1 Fractional linear systems

In this section, we consider a fractional linear system
defined by a Fractional Differential Equation (FDE) in
the following form: ∀ t ∈ I = [0, h] ⊂ R+,

L
∑

i=0

ai(t)D
αi

t y(·) =
M
∑

j=0

bj(t)D
βj

t u(·), (13)

where y is the output, u is the input, L,M ∈ N, ai 6= 0,
bj 6= 0 are time-varying coefficients and assumed to be
known. We suppose that αi, βj ∈ R+ are such that 0 ≤
α0 < α1 < · · · < αL and 0 ≤ β1 < β2 < · · · < βM .

Let u̟ be a noisy observation of u on I. The goal is to find
an approximation of the output y by solving the fractional
differential equation defined in (13) with the noisy input
u̟ and the following initial conditions:

y(i)(0) = di ∈ R, for i = 0, . . . , ⌈αL⌉ − 1, (14)

where ⌈αL⌉ denotes the smallest integer greater than or
equal to αL. The existence and uniqueness of solution of
the initial value problem (13)-(14) have been studied in
[10] in noise-free case. We are going to numerically solve
this problem by using the fractional Jacobi differentiator
and the modulation functions method in the noisy case.

3.2 Application of fractional Jacobi differentiator

In order to solve the initial value problem (13)-(14), we use
the polynomial defined in (9) to approximate the solution



y. Moreover, the fractional order derivatives of y can be
approximated by using the fractional Jacobi differentiator
given in (10). On the one hand, the left side of the FDE
(13) can be approximated as follows: ∀ ξ ∈ [0, 1],

L
∑

i=0

ai(hξ)D
αi

hξy(·) ≈
L
∑

i=0

ai(hξ)D
(αi)
h,µ,κ,Ny(hξ)

=
L
∑

i=0

ai(hξ)

hαi

N
∑

j=0

λ
(µ,κ)
j q

(αi)
µ,κ,j(ξ)

=
N
∑

j=0

λ
(µ,κ)
j

L
∑

i=0

ai(hξ)

hαi
q
(αi)
µ,κ,j(ξ),

(15)

where q
(αi)
µ,κ,j(ξ) = Dαi

ξ P
(µ,κ)
j (·). On the other hand,

we denote the right side of the FDE (13) by U(ξ) =
M
∑

j=0

bj(hξ)D
βj

hξu(·). Then, U(·) can be estimated by using

the fractional Jacobi differentiator given in (12) and the
noisy input u̟. Hence, the FDE (13) is approximated by
the following equation:

∀ ξ ∈ [0, 1],
N
∑

j=0

λ
(µ,κ)
j Q

(µ,κ)
j (ξ) = Ũ(ξ), (16)

where Q
(µ,κ)
j (ξ) =

L
∑

i=0

ai(hξ)

hαi
q
(αi)
µ,κ,j(ξ), and Ũ(·) is an esti-

mation of U(·). Consequently, the problem of solving the
FDE (13) is transformed into a problem of identification

of unknown coefficients λ
(µ,κ)
j , for j = 0, 1, . . . , N . We are

going to apply the modulating functions method to solve
this problem.

3.3 Modulating function method for FDEs

Let us define the following subset of the fractional orders in
(13): B := {βj ;βj ∈ N, j = 0, . . . ,M}, and β∗ = max

βj∈B
βj .

If B = ∅, then β∗ = 0. Then, we take a class of functions

{gi}
N+1
i=⌈αL⌉ which satisfy the following conditions:
{

gi ∈ Cβ∗([0, 1]),

g
(j)
i (0) = g

(j)
i (1) = 0, ∀ j = 0, 1, . . . , β∗ − 1.

(17)

These functions are called modulating functions [32].

By multiplying equation (16) by each function gi and by
integrating them on [0, 1], we then obtain the following
system:

N
∑

j=0

λ
(µ,κ)
j

∫ 1

0

gi(ξ)Q
(µ,κ)
j (ξ) dξ =

∫ 1

0

gi(ξ) Ũ(ξ) dξ, (18)

for i = ⌈αL⌉, . . . , N . Then, the right side of (18) is
calculated in the following way:

• If βj ∈ R+\N in (13), then we estimate D
βj

hξu(·) by

the fractional Jacobi differentiator D
(βj)
h,µ,κ,Nu̟(hξ) in

Ũ(ξ).
• If βj ∈ N in (13), then by applying βj times integra-
tion by parts and the property (17) which annihilates
the boundary values, we obtain:

∫ 1

0

gi(ξ) bj(hξ)u
(βj)(hξ) dξ

=
(−1)βj

hβj

∫ 1

0

dβj

dξβj
{gi(ξ) bj(hξ)}u(hξ) dξ.

(19)

Hence, by using the noisy input u̟ we get:
∫ 1

0

gi(ξ) bj(hξ)u
(βj)(hξ) dξ

≈
(−1)βj

hβj

∫ 1

0

dβj

dξβj
{gi(ξ) bj(hξ)}u

̟(hξ) dξ.

(20)

Thus, we avoid the estimation of the integer order
derivative of the noisy signal u̟ in (18). The es-
timation error can be reduced (see [35, 37, 38] for
more details on the error analysis for the integer order
differentiation by integration method).

Consequently, due to the low-pass filtering property of
the fractional Jacobi differentiator and the modulating
function method, the noise effect in the right side of (18)
can be reduced. Now, we take the values of the integer
order derivatives of the approximation polynomial defined
in (9) at ξ = 0 to estimate the initial conditions. By
applying similar calculations than those developed for (10)
we then get:

N
∑

j=0

λ
(µ,κ)
j

q
(i)
µ,κ,j(0)

hi
= di, for i = 0, . . . , ⌈αL⌉ − 1. (21)

Consequently, by using (18) and (21), we can solve the

following linear system to estimate the coefficients λ
(µ,κ)
i :

M
(µ,κ)
N







λ
(µ,κ)
0
...

λ
(µ,κ)
N






=







d0
...

dN






, (22)

where di =
∫ 1

0
gi(ξ) Ũ(ξ) dξ, for i = ⌈αL⌉, . . . , N , and

M
(µ,κ)
N (i, j) =















q
(i)
µ,κ,j(0)

hi
, for 0 ≤ i ≤ ⌈αL⌉ − 1, 0 ≤ j ≤ M,

∫ 1

0

gi(ξ)Q
(µ,κ)
j (ξ) dξ, for ⌈αL⌉ ≤ i ≤ N, 0 ≤ j ≤ M.

4. NUMERICAL RESULTS

In order to demonstrate the reliability of our method, we
consider the following FDE (see [16]):











4
∑

i=0

ai(t)D
αi

t y(·) = f(t),

y(0) = 2, y′(0) = 0,

(23)

where a0(t) = t
1
5 , a1(t) = t

1
4 , a2(t) = t

1
3 , a3(t) = t

1
2 ,

a4(t) ≡ 1, α0 = 0, α1 = 0.333, α2 = 1, α3 = 1.234,
α4 = 2, and y(t) = 2 − 1

2 t
2. We need to choose an input

such that f satisfies (23). The choice of this input is not
unique. In this example, we take u(·) = y(·) such that

f(t) =
4

∑

j=0

aj(t)D
αj

t u(·). Then, we propose to estimate

the output y by using the discrete noisy observation of
the input: u̟(ti) = u(ti) + σ̟(ti), where ti = iTs ∈ [0, 1],
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Fig. 1. The noise-free input and its noisy observation.
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Fig. 2. The exact output and the output estimated.

Ts =
1

2000 , for i = 0, · · · , 2000, the noise ̟(ti) is simulated
from a zero-mean white Gaussian iid sequence, and σ ∈
R

∗
+ is adjusted in such a way that the signal-to-noise ratio

SNR = 10 log10

(
∑

|u̟(ti)|
2

∑

|σ̟(ti)|2

)

is equal to SNR = 30dB.

We can see this discrete noisy input in Figure 1.

Since the noisy input is given in the discrete case, we apply
the trapezoidal rule to approximate the integrals in (12)
and (18). This produces a numerical error in the estimated
output. Since y and u are two polynomials of degree 2, we
take N = 2 in the fractional Jacobi differentiators. Thus,
there is no truncated term errors in the used fractional
Jacobi differentiators. Moreover, we take µ = κ = 0 and
the following modulating function: g2(ξ) = ξ3(1 − ξ)7 for
ξ ∈ [0, 1]. The estimation error in the estimated output
can be divided into two sources: the numerical error and
the noise error contribution. Since y is a polynomial, this
estimation error can also be a polynomial. We can see the
estimated output and the corresponding estimation error
in Figure 2 and Figure 3.

5. CONCLUSION

In this paper, we have proposed a method to determine
the output of a fractional linear system from some initial
conditions, where the input can be noisy. The system
is defined through a linear fractional differential equa-
tion with time-varying coefficients. An integration-based
fractional order differentiation method has been used to
estimate the fractional derivative of noisy signals. It has
been shown that this method exhibits good robustness
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Fig. 3. Absolute estimation error.

properties with respect to a corrupting noise. We have
also shown that with this method, the problem of solving
the linear fractional differential equation becomes a prob-
lem of identifying parameters. We have used modulating
function method for the identification of the parameters
which is suitable for time-varying linear systems involving
input-output noisy signals. Numerical results confirms the
efficiency of the proposed method. In order to reduce the
estimation error with appropriate modulating functions,
we will think to give some error analysis in a future
work. Questions related to observability and parameter
identification for a fractional linear system will also be
considered with such approach.
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