
HAL Id: hal-00691284
https://hal.inria.fr/hal-00691284v3

Submitted on 4 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modular Reasoning about Differential Privacy in a
Probabilistic Process Calculus

Lili Xu

To cite this version:
Lili Xu. Modular Reasoning about Differential Privacy in a Probabilistic Process Calculus. 7th
International Symposium on Trustworthy Global Computing (TGC), Sep 2012, Newcastle upon Tyne,
United Kingdom. pp.198-212. �hal-00691284v3�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49840921?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00691284v3
https://hal.archives-ouvertes.fr

Modular Reasoning about Differential Privacy in a
Probabilistic Process Calculus ?

Lili Xu1,2,3

1 INRIA and LIX, École Polytechnique, France
2 State Key Lab. of Comp. Sci., Institute of Software, Chinese Academy of Sciences

3 Graduate University, Chinese Academy of Sciences
xulili@ios.ac.cn

Abstract. The verification of systems for protecting sensitive and confidential
information is becoming an increasingly important issue. Differential privacy
is a promising notion of privacy originated from the community of statistical
databases, and now widely adopted in various models of computation. We con-
sider a probabilistic process calculus as a specification formalism for concurrent
systems, and we propose a framework for reasoning about the degree of differ-
ential privacy provided by such systems. In particular, we investigate the preser-
vation of the degree of privacy under composition via the various operators. We
illustrate our idea by proving an anonymity-preservation property for a variant of
the Crowds protocol for which the standard analyses from the literature are in-
applicable. Finally, we make some preliminary steps towards automatically com-
puting the degree of privacy of a system in a compositional way.

1 Introduction

The most recent developments and usages of information technologies such as data
profiling in databases, or user tracking in pervasive computing, pose serious threats
to the confidential information of the users. For instance, the social networks Twitter
and Flickr carefully protect their user’s data by anonymization, and yet Narayanan and
Smatikov [20] were able to conceive a de-anonymization algorithm which could re-
identify 30% of the people who have accounts in both of them, with only a 12% error
rate. The verification of systems for protecting sensitive and confidential information is
becoming an increasingly important issue in the modern world.

Many protocols for protecting confidential information have been proposed in the
literature. In order to obfuscate the link between the secret and the public information,
several of them use randomized mechanisms. Typical examples are the DCNets [8],
Crowds [22], Onion Routing [26], Freenet [9] and many others. Another common de-
nominator is that various entities involved in the system to verify occur as concurrent
processes and present typically a nondeterministic behavior. It is therefore natural and
standard to apply process calculi, and the adaptation of the process-algebraic framework

? This work has been jointly supported by the National Natural Science Foundation of China
(Grant No.60833001), the project ANR-09-BLAN-0169-01 PANDA and the INRIA large
scale initiative CAPPRIS.

to specify and reason about security protocols is an active line of research. See e.g. the
CCS approach [18, 11, 5], as well as the Applied pi-calculus approach for security [1],
anonymity [19] and privacy [6]. In this paper, we consider a probabilistic extension of
CCS, which we call CCSp. In addition to the standard parallel composition and nonde-
terministic choice of CCS, CCSp provides also a primitive for the probabilistic choice.

Several formalizations of the notion of protection have been proposed in the litera-
ture. Among those based on probability theory, there are strong anonymity and condi-
tional anonymity [8, 15, 4] and probable innocence [22]. Different from the previous
notions providing only true-or-false properties, the concepts from Information The-
ory [10] based on entropy, notably mutual information and capacity, express the degree
of protection in a quantitative way.

Differential privacy [12, 14, 13] is a promising definition of confidentiality that has
emerged recently from the field of statistical databases. It provides strong privacy guar-
antees, and requires fewer assumptions than the information-theoretical approach. We
say that a system is ε-differentially private if for every pair of adjacent datasets (i.e.
datasets which differ in the data of an individual only), the probabilities of obtaining a
certain answer differ at most by a factor eε. Differential privacy captures the intuitive
requirement that the (public) answer to a query should not be affected too much by
the (private) data of each singular individual. In this paper we consider a version of
differential privacy using a generic notion of adjacency, which provides the basis for
formalizing also other security concepts, like anonymity.

The main contribution of this work is to investigate differential privacy for con-
current systems in the context of a probabilistic process calculus (CCSp). We present
a modular approach for reasoning about differential privacy, where the modularity is
with respect to the constructs of CCSp. More specifically, we show that the restriction
operator, the probabilistic choice, the nondeterministic choice and a restricted form of
parallel composition are safe under composition, in the sense that they do not decrease
the privacy of a system. Compositionality plays an important role in the construction
and analysis of security systems: Rather than analyzing a complex system as a whole,
the safe constructs allow us to split the system in parts, analyze the degree of privacy of
each part separately, and combine the results to obtain the global degree of privacy.

We illustrate our compositionality results by proving an anonymity-preservation
property for an extension of the Crowds protocol [22]. Crowds is an anonymity protocol
which allows Internet users to perform web transactions without revealing their private
identity. This is achieved by using a chain of forwarders, chosen randomly, rather than
sending the message directly to the final recipient. In the standard Crowds all members
have the same probability of being used as forwarders, which gives the protocol a sym-
metric structure (cf. equations (13) and (14) in [7]). In practice, however, the protocol
can be asymmetric, because a sender may trust some agents (as forwarders) more than
others, or may prefer those which are geographically closer, or more stable, in order to
achieve a better performance. In this paper, our extension of Crowds consists in allow-
ing each member to have a set of trusted users to which they can forward the message.
This breaks the symmetry properties of the original protocol, thus making the standard
analyses of [22] inapplicable. In contrast, our compositional method gives a very simple
proof.

Finally, we make some preliminary steps towards automatically computing the de-
gree of privacy of a CCSp process in a compositional way. In this paper, we only con-
sider the case of finite processes in which the secret choices are all at the top level. We
leave the general case for future work.

Nowadays differential privacy is widely adopted in many models of computation,
for instance, it has been investigated in the context of a SQL-like language [17], a linear
type system [21], a relational Hoare logic [3], in MapReduce for cloud computing [23],
and in probabilistic labeled transition systems for interactive systems [27]. To the best
of our knowledge, this paper is the first to investigate differential privacy within the
setting of a process algebra.
Summary of Contributions Our contributions are three-fold. We present a modular ap-
proach for reasoning about differential privacy for protocols expressed in a probabilistic
process algebra (CCSp). We apply our compositionality method to prove an anonymity-
preservation property for an extended version of Crowds, i.e. with member-wise trusted
forwarders. We show an algorithm for computing the degree of privacy of a finite pro-
cess.
Plan of the paper In Sections 2 - 4 we review the preliminary notions of CCSp and dif-
ferential privacy. In Section 5 we investigate the compositionality of differential privacy
with respect to CCSp constructs. In Section 6, we apply our compositionality result to
Crowds with trust. In Section 7, we present the algorithm for computing the degree of
privacy. Finally, Section 8 and 9 discuss further related work and conclude. Detailed
proofs of the theorem in Section 5 are in the Appendix.
Acknowledgments The author gratefully acknowledges the contributions of Catuscia
Palamidessi and Kostas Chatzikokolakis. Discussions with them helped the author to
substantially improve the paper.

2 Preliminaries

2.1 Probabilistic automata

We recall the formalism of probabilistic automata [25], to be used as the operational
semantics for the probabilistic CCS.

We denote the set of all discrete probability distributions over a set X by Disc(X).
For x ∈ X , we denote by δ(x) (the Dirac measure on x) the probability distribution
that assigns probability 1 to {x}.

A (simple) probabilistic automaton is a tuple M = (P, Pinit ,Act , T) where P
is a set of states, Pinit ∈ P is the initial state, Act is a set of labels and T ⊆ P ×
Act × Disc(P) is a transition relation. Informally, if (P, a, µ) ∈ T then there is a
transition from the state P performing a label a and then leading to a distribution µ
over a set of states instead of a single state. Intuitively, the idea is that the transition
in T is chosen nondeterministically, and the target state among the ones allowed by µ
is chosen probabilistically. A fully probabilistic automaton is a probabilistic automaton
without nondeterminism, at each state only one transition can be chosen.

An execution α of a probabilistic automaton is a (possibly infinite) sequence of
alternating states and labels Pinita0P1a1P2a2P3 · · · , such that for each i, there is a

transition (Pi, ai, µi) ∈ T with µi(Pi+1) > 0. We will use exec∗(M) to represent the
set of all the finite executions ofM, exec(M) to represent the set of all the executions
ofM, and lst(α) to denote the last state of a finite execution α ∈ exec∗(M).

The execution tree ofM, denoted by etree(M), is an automatonM′ = (P ′, P ′init,Act , T ′)
such thatP ′ ⊆ exec(M),P ′init = Pinit , and (α, a, µ′) ∈ T ′ if and only if (lst(α), a, µ) ∈
T for some µ and µ′(αaP) = µ(P) for all P . Intuitively, etree(M) is produced by
unfolding all the executions ofM.

A scheduler of a probabilistic automationM is a function ζ : exec∗(M)→ T such
that ζ(α) = (P, a, µ) ∈ T implies that P = lst(α). (We omitM when it is clear from
the context.) The idea is that a scheduler resolves the nondeterminism by selecting a
transition among the ones available in T , based on the history of the execution.

The execution tree of M relative to a scheduler ζ, denoted by etree(M, ζ), is
a fully probabilistic automatonM′′ = (P ′′, P ′′init,Act , T ′′), obtained fromM′ by re-
moving all the transitions in T ′ that are not chosen by the scheduler, that is, (α, a, µ′′) ∈
T ′′ if and only if ζ(α) = (lst(α), a, µ) for some µ and µ′′(αaP) = µ(P) for all P .
Intuitively, etree(M, ζ) is produced from etree(M) by resolving all nondeterministic
choices using ζ. Note that etree(M, ζ) is a simple and fully probabilistic automaton.

3 Probabilistic CCS

In this section, we present a probabilistic version of Milner’s CCS [18], that allows for
both nondeterministic and probabilistic choice. Following [5] we make a distinction be-
tween observable and secret labels, for applications to security systems and protocols.

We consider a countable set Act of labels a, partitioned into a set Sec of secrets s,
a set Obs of observables o, and the silent action τ . For each o ∈ Obs , we assume a
complementary label o ∈ Obs with the convention that o = o. The syntax of CCSp is:

P ::= process term
|

⊕
i piPi probabilistic choice

|
�
i si.Pi secret choice (si ∈ Sec)

|
�
i ri.Pi nondeterministic choice (ri ∈ Obs ∪ {τ})

| P |P parallel composition
| (νa)P restriction
| !P replication

The term
⊕

i piPi, in which the pis are positive rationals that sum up to one, repre-
sents a blind probabilistic choice, in the sense that the choice of the branch is decided
randomly (according to the corresponding probabilities) and there is no visible label
associated to the decision. We use the notation P1⊕p P2 to represent a binary sum with
p1 = p and p2 = 1 − p. Similarly, we use a1.P1

�
a2.P2 to represent a binary secret

or nondeterministic choice. Finally the term 0, representing the terminated process, is
syntactic sugar for an empty (secret or nondeterministic) choice.

The operational semantics of a CCSp term P is a probabilistic automaton whose
states P are the processes reachable from P , and whose transition relation is defined

PROB ⊕
i pi Pi

τ−→
∑
i pi δ(Pi)

ACT
j ∈ I�

Iai.Pi
aj−→ δ(Pj)

PAR1
P1

a−→ µ

P1 |P2
a−→ µ |P2

PAR2
P2

a−→ µ

P1 |P2
a−→ P1 |µ

REP
P | !P a−→ µ

!P
a−→ µ | !P

COM
P1

a−→ δ(P ′1) P2
a−→ δ(P ′2)

P1 |P2
τ−→ δ(P ′1 |P ′2)

RES
P

b−→ µ b 6= a, a

(νa)P
b−→ (νa)µ

Table 1: The semantics of CCSp.

according to the rules in the Table 1, where we use P a−→ µ to represent the transition
(P, a, µ). We denote by µ |P the measure µ′ such that µ′(P ′ |P) = µ(P ′) for all
processes P ′ ∈ P and µ′(P ′′) = 0 if P ′′ is not of the form P ′ |P . Similarly (νa)µ = µ′

such that µ′((νa)P) = µ(P). A transition of the form P
a−→ δ(P ′), having for target a

Dirac measure, corresponds to a transition of a non-probabilistic automaton. From the
rule PROB, we know that all transitions to non-Dirac measures are silent.

Following [5] we assume the secret labels to be the inputs of the system. Secrets
are given in input to the scheduler and determine completely the secret choices. The
scheduler then has to resolve the residual nondeterminism, which is originated by the
nondeterministic choice and the parallel operator. From the observer’s point of view,
only the nondeterministic choices can be observed.

The definition of a scheduler of a CCSp term is specified more precisely as follows.
The notationX ⇀ Y represents the partial functions fromX to Y , and α|Sec represents
the projection of α on Sec.

Definition 1. Let P be a process in CCSp andM be the probabilistic automaton gen-
erated by P . A scheduler is a function ζ : Sec∗ → exec∗(M) ⇀ T such that if:

(i) s = s1s2 . . . sn and α|Sec = s1s2 . . . sm with m < n, and
(ii) there exists a transition (lst(α), a, µ) such that a ∈ Sec ⇒ a = sm+1

then ζ(s)(α) is defined as one of such transitions. We will write ζs(α) for ζ(s)(α).

We now define the execution tree of a CCSp term, in a way similar to what is done in
the probabilistic automata. The main difference is that in our case the execution tree
depends not only on the scheduler, but also on the secret input.

Definition 2. Let M = (P, Pinit ,Act , T) be the probabilistic automaton generated
by a CCSp process P . Given an input s and a scheduler ζ, the execution tree of P ,
denoted by etree(P, s, ζ), is a fully probabilistic automatonM′ = (P ′, Pinit ,Act , T ′)
such that:

(i) P ′ ⊆ exec(M),
(ii) (α, a, µ′) ∈ T ′ iff ζs(α) = (lst(α), a, µ) for some µ and µ′(αaP) = µ(P)

Process terms as channels We now show how CCSp terms can be used to specify
systems manipulating confidential information.

A system can be seen as an information-theoretic channel [10]. Sequences of se-
cret labels constitute the secret information (or secrets), given in input to the channel,
and sequences of observable labels constitute the public information (or observables),
obtained as output from the channel. We denote secrets and observables by S and O,
and we assume that they have finite cardinality m and n, respectively. We also assume
that each sequence in S ∪ O is finite. Thus, S ⊆fin Sec∗ and O ⊆fin Obs∗. This is
usually enough to model the typical security systems, where each session is supposed
to terminate in finite time.

Given an input s ∈ S, a run of the system will produce each o ∈ O with a certain
probability p(o|s) which depends on s, on the randomized operations performed by
the system, and also on the scheduler resolving the nondeterminism. The probabilities
p(o|s), for a given scheduler ζ, constitute a m× n array Mζ which is called the matrix
of the channel, where the rows are indexed by the elements of S and the columns are
indexed by the elements of O. (See some examples of channel matrix in Section 7.2.)

Definition 3 ([5]). Given a term P and a scheduler ζ : S → exec∗ ⇀ T , the matrix
Mζ(P) associated to P under ζ is defined as the matrix such that, for each row s ∈ S
and column o ∈ O, the element at their intersection, pζ(o|s), is the probability of the
set of the maximal executions in etree(P, s, ζ) whose projection in Obs is o.

4 Differential Privacy

Differential Privacy [12] captures the idea that a query on a dataset does not provide too
much information about a particular individual, regardless of whether the individual’s
record is in the dataset or not. In order to achieve this goal, typically some probabilistic
noise is added to the answer. The formal definition is the following (where κ denotes the
randomized answer, Pr the probability measure, and ε a finite non-negative number):

Definition 4 (Differential Privacy, [12]). A mechanism κ provides ε-differential pri-
vacy iff for all datasets D1 and D2 differing in only one record, and for all S ⊆
Range(κ),

Pr[κ(D1) ∈ S] ≤ eε Pr[κ(D2) ∈ S]

Clearly, the smaller the value ε is, the higher is the confidentiality protection provided
by the mechanism.

We now adapt the notion of differential privacy to our framework. We consider
a symmetric adjacency relation ∼ between secrets, which extends the dataset-based
notion of “differing for only one record” to more general settings. The confidential
data can be complex information like sequences of keys or tuples of individual data
(see Example 2). Consider complex secrets composed of n elements , for instance

(s1, s2, . . . , sn), and denote the adjacency relation between them by ≈. Without loss
of generality, we assume that,

If (s1, s2, . . . , sn) ≈ (s′1, s
′
2, . . . , s

′
n), then s1 ∼ s′1, s2 ∼ s′2, . . . , sn ∼ s′n.

Example 1 (Anonymity). In the case of anonymity, the confidential data S are the agents’
identities. Since the identities are just names without any particular structure, it is natu-
ral to assume that each name is adjacent to any other. Hence (S,∼) is a clique, i.e. for
all s1, s2 ∈ S we have s1 ∼ s2.

Example 2 (Geolocation). In the case of geolocation, the confidential data are the co-
ordinates (latitude, longitude) of a point on the earth’s surface. If the purpose is to
protect the exact location, a good definition of adjacency is: two points are adjacent if
their Manhattan distance is 1, i.e. (x1, y1) ∼ (x2, y2) iff |x2−x1| = 1 or |y1−y2| = 1.

It can be proved that if the set of answers is discrete (which is our case) Definition 4
can be equivalently stated in terms of singleton S’s. This leads to the following:

Definition 5. A process P provides ε-differential privacy iff for all schedulers ζ, for all
secret inputs s1, s2 ∈ S such that s1 ∼ s2, and for all observable o ∈ O,

pζ(o|s1) ≤ eε pζ(o|s2)

We use dpζJP K to denote the smallest ε such that the process term P , under the sched-
uler ζ, provides ε-differential privacy. Furthermore we define

dpJP K = sup
ζ

dpζJP K

Note that if there are both zero and non-zero probabilities occurring in the same
column of the channel matrix, when the respective secrets are connected by ∼, then the
process does not provide differential privacy for any ε.

Relation between differential privacy and strong anonymity Strong anonymity for
purely probabilistic systems was formalized by Chaum [8] as the property that the ob-
servation o does not change the probabilistic knowledge of the culprit’s identity s, i.e.
p(s|o) = p(s). This notion was extended in [4] to probabilistic and nondeterminis-
tic systems, essentially by requiring that the equation holds under any scheduler. Next
proposition is an immediate consequence of the characterization given in [4].

Proposition 1. An anonymity system P is strongly anonymous iff dpJP K = 0.

Relation between differential privacy and probable innocence Probable innocence
was defined in [22] as the property that, to the eyes of an observer, each user is more
likely to be innocent rather than culpable (of having initiated the message). In [7] it was
shown that this is equivalent to requiring (m − 1)p(o|xi) ≥ p(o|xj) for all o, i and
j, where m is the number of anonymous users, and p(o|xi) denotes the probability of
detecting o given that the initiator is i. It is straightforward to see the following:

Proposition 2. An anonymity systemP provides probable innocence iff dpJP K ≤ ln(m−
1).

5 Modular Reasoning

In this section we investigate the compositional properties of CCSp constructs with
respect to differential privacy and state our first main result. We start by introducing the
notions of safe component and sequential replication. The latter can be used to represent
a sequence of sessions re-executing the same protocol. .

Definition 6. Consider a process P , and observables o1, o2, . . . , ok, we say that
(νo1, o2, . . . , ok)P is a safe component if

(i) P does not contain any secret label, and
(ii) all the observable labels of P are included in o1, o2, . . . , ok.

Definition 7. Given a process term P assumed to terminate by performing a specific
action done , the sequential replication of P n times is defined as

�n P = (νdone)(P | !ndone.P)

where
!0P = 0 and !n+1P = P | !nP

We now show that the nondeterministic choice, the probabilistic choice, the restric-
tion operator and a restricted form of parallel composition are safe, in the sense that
combining components in a safe construct does not compromise the privacy of the sys-
tem, while the sequential replication degrades the privacy in proportion to the number
of replication times.

Theorem 1. Consider a set of processes {Pi}i, for i = 1, 2, . . ., and assume that for
each i, dpJPiK = εi. Then:

(1) dpJ
�
i oi.PiK ≤ max

i
{εi} ;

(2) dpJ
⊕

i piPiK ≤ max
i
{εi};

(3) dpJ(νo)PiK ≤ εi ;
(4) Assume that (νo1, o2, . . . , ok)Pi is a safe component, that Pi and Pj can commu-

nicate with each other only via the labels of the set {oh, . . . , ok}, with 1 ≤ h ≤ k,
and that dpJ(νo1, . . . , oh−1)Pj)K = εj . Then dpJ(νo1, o2, . . . , ok) (Pi |Pj)K ≤ εj .

(5) dpJ�n PiK ≤ n εi.

Properties (1) and (2) point out that the degree of privacy of a system, consisting
of some subsystems in a nondeterministic or probabilistic choice, is determined by the
subsystem with the lowest degree of privacy. Properties (3) and (4) intuitively say that,
turning an observable label to be unobservable, and paralleling with a safe component,
maintain the level of privacy. Property (5) means that the degree of privacy of a process
degrades through multiple runs, since more information may be exposed.

Unfortunately the secret choice and the unrestricted form of parallel composition
do not preserve the privacy, essentially due to the presence of nondeterminism. This is
illustrated by the following counterexamples taken from [5]. (In Examples 3 - 5, we use
the original definition of the adjacency relation, that is, the difference in only one label.)

Example 3 (For the secret choice). Let Sec = {s1, s2} and assume that S does not con-
tain the empty sequence. Consider the process P = o1.0

�
o2.0. Clearly, P provides

0-differential privacy, because for every sequence s ∈ S we have p(o1|s) = p(o2|s).
Consider now a new process P ′ = s1.P

�
s2.P , and the scheduler ζ for P ′ which

selects o1 if the secret is s1, and o2 if the secret is s2. The resulting matrix under
ζ does not preserve differential privacy, since p(o1|s1s) = p(o2|s2s) = 1 while
p(o1|s2s) = p(o2|s1s) = 0.

Example 4 (For the need of condition (i) in Def. 6). Let Sec and S be as in Example 3.
Define P1 = s1.0

�
s2.0 and P2 = o1.0

�
o2.0. Clearly, P2 provides 0-differential

privacy. Consider now the parallel term P1 |P2 and define a scheduler that first executes
a secret label s in P1 and then, if s is s1, it selects o1, while if s is s2, it selects o2. The
rest proceeds like in Example 3.

Example 5 (For the need of condition (ii) in Def. 6). Let Sec and S be as in Example 3.
Define P1 = o.0 and P2 = s1.(o1.0 ⊕.5 o2.0)

�
s2.(o1.0 ⊕.5 o2.0). It is easy to see

that P2 provides 0-differential privacy. Consider the term P1 |P2 and define a scheduler
that first executes a secret label s in P2 and then, if s is s1, it selects first P1 and then the
continuation of P2, while if s is s2, it selects first the continuation of P2 and then P1.
Hence, under this scheduler, for every sequence s ∈ S, p(oo1|s1s) = p(oo2|s1s) = 0.5
and also p(o1o|s2s) = p(o2o|s2s) = 0.5 while p(oo1|s2s) = p(oo2|s2s) = 0 and
p(o1o|s1s) = p(o2o|s1s) = 0. Therefore s1 and s2 are disclosed.

Intuitively, the existence of free observables (i.e. o of P1 in this example) may create
different interleavings, which can be used by the scheduler to mark different secrets.

6 A case study: the Crowds protocol

In this section, we apply the compositionality result (4) in Theorem 1 to prove the
anonymity-preservation property of an extended Crowds protocol with member-wise
trusted forwarders. The novelty of our proof is that it is simple. Moreover, it does not
require the symmetry property that is usually made in the literature in order to simplify
the analysis.

Crowds is an anonymity protocol which allows Internet users to send messages
without revealing their identity. More specifically, a crowd is a group of n participants
constituted by m honest members and c (= n−m) corrupted members (the attackers).
The destination of messages is named the server. The protocol works as follows:

- When a member, called the initiator, wants to send a message to the server, instead
of sending it directly to the server, she randomly selects a member (possibly herself)
in the crowd and she forwards the message to this member.

- Every member who receives the message, either
– with probability 1− pf , delivers the message to the server, or
– with probability pf , randomly selects another member (possibly herself) in the

crowd as the new forwarder and relays the message to this new forwarder to
repeat the same procedure again.

In this way, even if the message is caught by an attacker, the attacker cannot be sure
whether the previous forwarder is the initiator or just a forwarder on behalf of somebody
else. Members (including attackers) are assumed to have only access to messages routed
through them, so that they only know the identities of their immediate predecessors and
successors in the path, and of the destination server.

6.1 The Crowds with member-wise trusted forwarders

The above standard Crowds protocol implicitly requires the symmetry conditions (see
[7]), in the sense that a new forwarder is chosen among all the members in the crowd
with uniform probability. In this context, it has been proved in [22] that Crowds can
satisfy probable innocence under certain conditions.

In this paper, we consider a member-wise trusted forwarders scenario, in which the
member currently holding the message selects a forwarder only among the members
which she thinks are trustable. We also consider the case of reputed initiators. The
idea is that a new member has the right to initiate requests only when she has acquired a
certain level of reputation. This is motivated by some kinds of social networks in which,
when a new agent wants to join a web conversation, her behavior needs to be examined
for a while until she becomes a totally legal member.

The standard Crowds protocol expressed in CCSp is stated in the Table 2. For sim-
plicity, we introduce a notation for value-passing in CCSp, following standard lines.

Input x(i).P =
�
j xj .P [j/i]

Output x̄〈i〉 = x̄i

We use H, Hr and A to denote the set of honest members, of reputed honest members
and of attackers, respectively. C = H ∪ A representing the set of all participants in
Crowds. We use x1, x2, . . . , xn to range over C, and

⊕U to represent an uniform dis-
tribution. For simplicity we assume that once an attacker receives a message from an
honest member, it will terminate after reporting the detection through the observable
detect . The reason is that by forwarding the message after the first detection, attack-
ers can not gain more useful information. Hence at most one honest member can be
detected. Precisely, the set of secret labels is { acti |xi ∈ Hr} and the set of observ-
able labels is { detect〈i〉 |xi ∈ H} ∪ {S }. We denote by Ti the subset of Crowds
members which the ith honest member trusts. Then the process terms for Crowds with
member-wise trusted forwarders are similar to the terms showed in Table 2, except that
the process Initiator and the process honest i are modified as shown in Table 3.

An anonymity-preservation property Consider the scenario in which there exists a
Crowds with nmembers (shown in Table 2). Assume that a new honest agent is allowed
to join the crowd but she does not enjoy the reputation to be an initiator right away. Old
members in Crowds can decide by themselves to trust the agent or not, which means
that there is no restriction of how the new agent is added, thus resulting in a Crowds
with member-wise trusted forwarders. Applying the compositionality theory in Section
5, we show that the privacy level of Crowds with n + 1 members can be estimated by
the value of privacy of a simplified Crowds, obtained by considering the non-reputed

Initiator =
⊕U

xi∈Hr
pi.acti.(

⊕U
xj∈C pj .x̄j〈i〉)

honest i = xi.((
⊕U

xj∈C pj .x̄j〈i〉.done)⊕pf ser .done)

Honest i = � honest i

Attacker i = xi(j).detect〈j〉

Server = ser .S

crowdn = Server | Initiator |
∏
xi∈HHonest i|

∏
xj∈AAttacker j

Crowdn = (νser)(νx1, x2, . . . , xn)crowdn

Table 2: The CCSp code for standard Crowds (i.e. with the symmetry conditions).

Initiator =
⊕U

xi∈Hr
pi.acti.(

⊕U
xj∈Ti

pj .x̄j〈i〉)

honest i = xi.((
⊕U

xj∈Ti pj .x̄j〈i〉.done)⊕pf ser .done)

Table 3: The new definitions for Crowds with member-wise trusted forwarders.

agent as an attacker and therefore ignoring her following trust links to successors. The
fact is supported by the following theorem.

Theorem 2. dpJCrowdn+1K ≤ dpJCrowdnK.

Proof. The addition of a new honest agent to a Crowds with n participants is presented
in Table 4. Basically, it is a parallel composition of the process term crowdn of old
crowd, and the process term Honestn+1 of the new agent. In crowdn, although there
is no entity of Honestn+1, we assume that the identity xn+1 is already available in the
set C as a free label, to be selected as a forwarder.

Consider the term Crowdn+1. Remove the term Honestn+1 and the corresponding
restriction operators. Note that the free labels through which old Crowds communicates
with the new agent are {ser} ∪ {xj |xj ∈ Tn+1} ∪ {x̄n+1〈i〉|xi ∈ Sn+1}, where Sn+1

is the subset of Crowds members who trust the new agent. The label x̄n+1〈i〉 behaves
like an attacker, because it can reveal the identity of member (e.g. xi) who is sending
the request. Since this new agent is known not to be an initiator (because she is not
reputed). Her presence will not induce an addition of the secret label actn+1. In the
sense that the process Honestn+1 does not contain any secret labels. Clearly,

(νser)(νx1, x2, . . . , xn+1)Honestn+1

is a safe component. By Theorem 1(4), Crowdn+1 provides at least as much privacy as
Crowdn.

crowdn+1 = crowdn |Honestn+1

Crowdn+1 = (νser)(νx1, x2, . . . , xn+1)crowdn+1

Table 4: Specification of the addition of the n+ 1th agent.

7 Computing the degree of privacy

In this section, we study the possibility of computing the degree of privacy in CCSp in
a fine-grained way. We make a first step by considering finite processes in which the
secret choices are only at the top-level. We produce the channel matrix in a bottom-up
fashion, from which we obtain its degree of privacy, and we give some toy examples to
illustrate the approach.

7.1 The algorithm

Consider a process term T =
�
i si.Ti starting with a secret choice. For simplicity,

in this paper, we assume that there is no secret choice inside any of Ti, and no oc-
currence of ! , (while considering ! is a real difficult problem, the restriction about the
secret choice can be lifted by using more complicated definitions of how to combine
the schedulers of the components. We however leave them for future work). We also as-
sume that every occurrence of the parallel operator is removed by using the expansion
law [18]. We construct the set of all possible schedulers for a process P , denoted by
∆(P). We denote its size by |∆(P)|. Thus the residual constructs possibly occurring in
Ti are the following cases:

- Case P =
⊕

i piPi : Intuitively, P ’s scheduler selects for each Pi a scheduler from
∆(Pi). Hence, |∆(P)| = O(

∏
i |∆(Pi)|).

- Case P =
�
i ri.Pi : P ’s scheduler first resolves the top nondeterministic choice

and then proceeds the continuation of the process corresponding to the selected label.
Thus, |∆(P)| = O(

∑
i |∆(Pi)|).

- Case P ′ = (νo)P : Intuitively, a scheduler of P ′ is obtained from a scheduler in
∆(P) by removing the assignments of the executions containing o. Hence, |∆(P ′)| =
O(|∆(P)|).

- Case P ′ =�n P : Intuitively, a scheduler of P ′ selects for each run of P a scheduler
from ∆(P), and use them in a sequential way. Hence, |∆(P ′)| = O(|∆(P)|n).

For every term Ti in T , we are able to obtain the scheduler set ∆(Ti). The corre-
sponding matrix under each scheduler in ∆(Ti) is computed in a bottom-up way (see
Appendix). We now turn to the construction of the matrix of T . For every secret la-
bel si, T ’s scheduler ζ chooses a scheduler ζi from the set ∆(Ti). Let pζ(o|sis) (resp.
piζi(o|s)) be the probability in the matrix M(T)ζ (resp. Mζi(Ti)). Hence

pζ(o|sis) = piζi(o|s).

By the definition of differential privacy we get:

dpζJT K = min{ε | s ∼ s′ ⇒ ∀o ∈ O. pζ(o|s) ≤ eεpζ(o|s′)}

and
dpJT K = max

ζ∈∆(T)
dpζJT K.

Complexity Analysis The time complexity of the above algorithm is determined by
the size of the set of all possible schedulers, that is, the time complexity is O(|∆(T)|).
However we can make it more efficient in the case in which differential privacy does
not hold: Whenever we find a scheduler ζi in ∆(Ti) producing an observable o which
is not included in the set of observables generated by a previous scheduler ζj in ∆(Tj)
(with j < i and si ∼ sj), then we can halt the algorithm and claim that T does not
provide differential privacy for any ε. In fact, assigning the scheduler ζi (resp. ζj) to
the secret si (resp. sj) differentiates the two secrets by producing a non-null (resp. null)
probability in the column of o.

7.2 Some toy examples

Here we give some simple examples to illustrate the above algorithm.

Example 6. Let Sec = {s1, s2},Obs = {o1, o2}, and consider the following processes:
P1 = o1.0⊕0.3o2.0, P2 = o1.0⊕0.5o2.0, P3 = o1.0⊕0.8o2.0, P = P1

�
P2
�
P3

and P ′ = s1.P
�
s2.P .

For the term P1, we have ∆(P1) = {∅} and M(P1) =
o1 o2

0.3 0.7
.

For the term P2, we have ∆(P2) = {∅} and M(P2) =
o1 o2

0.5 0.5
.

For the term P3, we have ∆(P3) = {∅} and M(P3) =
o1 o2

0.8 0.2
.

For the term P , we have ∆(P) = {ζ1, ζ2, ζ3} with ζi representing the choice
of Pi. The corresponding matrices are: Mζ1(P) = M(P1), Mζ2(P) = M(P2) and
Mζ3(P) = M(P3).

For the term P ′ we can define the scheduler ζ ′ which selects ζ1 and ζ3 for the secret

s1 and s2, respectively. The corresponding matrix is Mζ′(P
′) =

o1 o2

s1 0.3 0.7
s2 0.8 0.2

, which

gives (ln 3.5)-differential privacy.

Example 7. Let Sec = {s1, s2},Obs = {o, o1, o2}, and consider the processes P1 =
o1.0⊕0.3 o2.0, P2 = o.0, P = P1 |P2, and P ′ = s1.P

�
s2.P .

First we use the expansion law to rewrite P into (o1.o.0⊕0.3 o2.o.0)
�

(o.o1.0⊕0.3

o.o2.0). Through steps similar to the above example, we can find a scheduler producing

a matrix breaking the differential privacy, for example
o1o o2o oo1 oo2

s1 0.3 0.7 0 0
s2 0 0 0.3 0.7

.

Example 8 (A discussion about the recursion operator). Furthermore, for a process in-
cluding the replication operator while not producing infinite observables, we show a
computation of the degree of privacy in this case. To facilitate the analysis, here we use
a fixpoint construct [18], i.e. µX.P where the agent variable X may occur in P . Note
that !P can be obtained by the definition µX.(P |X).

Let Sec and Obs be as in Example 6. Consider the processes P = µX.((0.4o1 ⊕
0.2o2⊕0.4X)

�
(o1⊕0.3o2)

�
(o1⊕0.5o2)) and P ′ = s1.P

�
s2.P . We have∆(P ′) =

∆(P) = {ζ1, ζ2, ζ3}, where the respective matrices areMζ1(P) =
o1 o2 X
0.4 0.2 0.4

,Mζ2(P) =

o1 o2

0.3 0.7
and Mζ3(P) =

o1 o2

0.5 0.5
. It can be proved that using the scheduler ζ1 finitely

many times generates the highest (resp. lowest) probability of observing o1 (resp. o2),
which is 0.67 (resp. 0.33). Using the scheduler ζ2 generates the lowest (resp. highest)
probability of observing o1 (resp. o2), which is 0.3 (resp. 0.7). Thus P ′ enjoys (ln 2.22)-

differential privacy, determined by the matrix
o1 o2

s1 0.67 0.33
s2 0.3 0.7

.

8 Related work

- Compositionality properties of probabilistic process calculi for security protocols.
In [11] Deng et al. used the notion of relative entropy to measure privacy. In [5]
Braun et al. proved that the safety measured by Bayes risk is maintained under the
composition of CCSp constructs with a restricted form of parallel composition and
without the secret choice. The compositionality results in our paper are closely re-
lated to those of [5], although we use a different measure of protection (differential
privacy).

- Compositionality of Differential Privacy. As stated in the introduction, there is a vast
body of work on formal methods for differential privacy. Compositional methods, as
one of the most important features, have been intensively investigated in the field of
statistical databases [17] and programs [3, 21]. These works investigate the so-called
sequential and parallel compositions of queries (programs), which, in their context,
mean a sequence of queries (programs) applied to the same dataset and to disjoint
parts of the dataset, respectively. Under this setting, they have proved that the se-
quential composition decreases the privacy, and the parallel composition maintains
the privacy. Our result about the sequential replication and the parallel composition
in CCSp are reminiscent of the above results. But the context is different. In par-
ticular, the parallel composition concerned in this paper is different from the above
one, in that the parallel operator here represents interactions of concurrent agents.
Our restrictions on the parallel composition are incomparable with those of [17, 3,
21] (disjointness of databases).

- Other extensions on the Crowds protocol. In [16] Hamadou et al. have taken into
account that attackers usually gather additional information correlated to the anony-
mous agents before attacking the protocol. In [24] Sassone et al. extended Crowds by

allowing the possibility for members to turn corrupt, and by considering a trust esti-
mation over participants, which is expressed by a known probability distribution over
participants. Note that, this kind of trust estimation is shared among all members,
which implies that the level of a member’s reliability is the same from all members’
points of view and therefore can still be thought of as the symmetry condition. We
consider a more realistic scenario in which users have the right to choose to commu-
nicate only with the users they consider reliable, which is the most common case in
web transactions in the real world.

9 Conclusion and Future Work

In this paper, we have defined the degree of differential privacy for concurrent sys-
tems expressed in a probabilistic process calculus, and investigated how the privacy
is affected under composition of the CCSp constructs. We have applied our approach
to give a simple proof for the anonymity-preservation of an extended Crowds proto-
col with member-wise trusted forwarders. Finally, we have presented an algorithm for
computing the degree of differential privacy for a finite process.

Fine-grained methods for computing the channel matrix have been studied in [2].
In future work, we plan to optimize our current algorithm, extend it to more general
processes, more precisely, develop an approach that can deduce the global property of
differential privacy from local information, w.r.t. the adjacency relation. Another inter-
esting problem is the applicability of our approach to the problem of preserving privacy
in geolocation-related applications. More specifically, we intend to use (a possibly ex-
tended version of) our probabilistic process calculus to express systems of concurrent
agents moving in space and time, and interacting with each other in ways that depend
on the adjacency relation. We believe that our compositional method will provide a way
to synthesize differentially private mechanisms in a (semi-)automatic way.

References

1. Martı́n Abadi and Andrew D. Gordon. A calculus for cryptographic protocols: The spi
calculus. Inf. and Comp., 148(1):1–70, 1999.

2. Miguel E. Andrés, Catuscia Palamidessi, Peter van Rossum, and Geoffrey Smith. Computing
the leakage of information-hiding systems. In Proc. of TACAS, volume 6015 of LNCS, pages
373–389. Springer, 2010.

3. Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Z. Béguelin. Probabilistic rela-
tional reasoning for differential privacy. In Proc. of POPL. ACM, 2012.

4. Mohit Bhargava and Catuscia Palamidessi. Probabilistic anonymity. In Proc. of CONCUR,
volume 3653 of LNCS, pages 171–185. Springer, 2005.

5. Christelle Braun, Konstantinos Chatzikokolakis, and Catuscia Palamidessi. Compositional
methods for information-hiding. In Proc. of FOSSACS, volume 4962 of LNCS, pages 443–
457. Springer, 2008.

6. Mayla Brusò, Konstantinos Chatzikokolakis, and Jerry den Hartog. Formal verification of
privacy for RFID systems. In CSF, pages 75–88, 2010.

7. Konstantinos Chatzikokolakis and Catuscia Palamidessi. Probable innocence revisited.
Theor. Comp. Sci., 367(1-2):123–138, 2006.

8. David Chaum. The dining cryptographers problem: Unconditional sender and recipient un-
traceability. Journal of Cryptology, 1:65–75, 1988.

9. Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong. Freenet: A distributed
anonymous information storage and retrieval system. In Proc. of DIAU, volume 2009 of
LNCS, pages 44–66. Springer, 2000.

10. Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. J. Wiley & Sons,
Inc., 1991.

11. Yuxin Deng, Jun Pang, and Peng Wu. Measuring anonymity with relative entropy. In Proc.
of the 4th Int. Worshop on Formal Aspects in Security and Trust, volume 4691 of LNCS,
pages 65–79. Springer, 2006.

12. Cynthia Dwork. Differential privacy. In Automata, Languages and Programming, 33rd
International Colloquium, ICALP 2006, Proceedings, Part II, volume 4052 of LNCS, pages
1–12. Springer, 2006.

13. Cynthia Dwork. A firm foundation for private data analysis. Communications of the ACM,
54(1):86–96, 2011.

14. Cynthia Dwork and Jing Lei. Differential privacy and robust statistics. In Proc. of the 41st
Annual ACM Symposium on Theory of Computing (STOC), pages 371–380. ACM, 2009.

15. Joseph Y. Halpern and Kevin R. O’Neill. Anonymity and information hiding in multiagent
systems. J. of Comp. Security, 13(3):483–512, 2005.

16. Sardaouna Hamadou, Catuscia Palamidessi, Vladimiro Sassone, and Ehab ElSalamouny.
Probable innocence in the presence of independent knowledge. In Postproceedings of the
6th Int. Workshop on Formal Aspects in Security and Trust, volume 5983 of LNCS, pages
141–156. Springer, 2010.

17. Frank McSherry. Privacy integrated queries: an extensible platform for privacy-preserving
data analysis. In Proc. of the ACM SIGMOD Int. Conf. on Management of Data, pages
19–30. ACM, 2009.

18. Robin Milner. Communication and Concurrency. Series in Comp. Sci. Prentice Hall, 1989.
19. Aybek Mukhamedov and Mark D. Ryan. Identity escrow protocol and anonymity analysis

in the applied pi-calculus. ACM Trans. Inf. Syst. Secur., 13(4):41, 2010.
20. Arvind Narayanan and Vitaly Shmatikov. De-anonymizing social networks. In Proc. of S&P,

pages 173–187. IEEE, 2009.
21. Jason Reed and Benjamin C. Pierce. Distance makes the types grow stronger: a calculus for

differential privacy. In Proceeding of the 15th ACM SIGPLAN international conference on
Functional programming (ICFP), pages 157–168. ACM, 2010.

22. Michael K. Reiter and Aviel D. Rubin. Crowds: anonymity for Web transactions. ACM
Trans. on Information and System Security, 1(1):66–92, 1998.

23. Indrajit Roy, Srinath T. V. Setty, Ann Kilzer, Vitaly Shmatikov, and Emmett Witchel. Airavat:
security and privacy for MapReduce. In Proc. of the 7th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), pages 297–312. USENIX Association, 2010.

24. Vladimiro Sassone, Ehab ElSalamouny, and Sardaouna Hamadou. Trust in crowds: Prob-
abilistic behaviour in anonymity protocols. In Proc. of the Fifth Int. Symposium on Trust-
worthly Global Computing, volume 6084 of LNCS, pages 88–102. Springer, 2010.

25. Roberto Segala. Modeling and Verification of Randomized Distributed Real-Time Systems.
PhD thesis, 1995. Tech. Rep. MIT/LCS/TR-676.

26. Paul F. Syverson, David M. Goldschlag, and Michael G. Reed. Anonymous connections and
onion routing. In Proc. of S&P, pages 44–54, 1997.

27. Michael C. Tschantz, Dilsun Kaynar, and Anupam Datta. Formal verification of differential
privacy for interactive systems (extended abstract). Electron. Notes Theor. Comput. Sci.,
276:61–79, September 2011.

10 Appendix

10.1 Proof of Theorem 1

1. Let P =
�
i oi.Pi. Consider an arbitrary scheduler ζ of P , according to the transi-

tion rule ACT in Table 1, ζ resolves the top nondeterministic choice by arbitrarily
choosing a label oj , j ∈ {1, 2, . . . , h}. Let ζj be the projection of ζ obtained by
removing the first state and the following observation oj from the execution frag-
ments. Observe that, the scheduler ζj is compatible with process term Pj , that is,
ζj is one of Pj’s schedulers. For every conditional probability p(ojo|s) in Mζ(P),
there exists a corresponding element pj(o|s) in Mζj (Pj), such that

p(ojo|s) = pj(o|s).

From the differential privacy that Pj gives, we derive

dpζJP K = dpζj JPjK ≤ εj ≤ max
i
{εi}

which concludes the proof in this case.
2. Let P =

⊕
i piPi. Consider an arbitrary scheduler ζ for P . After one subprocess is

randomly chosen according to its probability, ζ must be compatible with this sub-
process, resolving all the nondeterminism in it. It holds that the conditional proba-
bility p(o|s) in the resulting matrix Mζ(P) and the corresponding one pi(o|s) in
each matrix Mζ(Pi) satisfy the following relation.

p(o|s) =
∑
i

pi · pi(o|s)

It is easy to see that for all secret inputs s, s′ such that s ∼ s′,

p(o|s)

p(o|s′)
=

∑
i pi · pi(o|s)∑
i pi · pi(o|s′)

≤
∑
i pi · eεipi(o|s′)∑
i pi · pi(o|s′)

(since Mζ(Pi) gives εi-d.p.)

≤ emaxi{εi}

∑
i pi · pi(o|s′)∑
i pi · pi(o|s′)

= emaxi{εi}

which concludes the proof in this case.
3. Let P = (νo)P1. According to the rule RES of restriction construct in Table 1,

the process P is not able to perform the label o. Its execution tree etree(P) can be
obtained from etree(P1) by removing all transitions with the label o and the whole
subtrees following those o−→ transitions. Let p(o|s) denote the conditional proba-
bility in the matrixMζ(P1). LetO′ denote the set of observables of P . Consider an

arbitrary scheduler ζ ′ of P . Observe that there exists a scheduler ζ of the process
P1, such that, for every conditional probability p′(o′|s) in Mζ′(P), the following
equation holds.

p′(o′|s) =
∑

f(o)=o′

p(o|s)

where the function f(o) with o = o1, o2, . . . , ok is

f(o) =

o if the label o does not appear in the

sequence o

o1, o2, . . . , oi if the label o first occurs in the sequence
o at the position i+ 1 with i < k.

(1)

It’s easy to get that for all secret inputs s1, s2 ∈ S such that s1 ∼ s2, and for all
observable o′ ∈ O′,

p′(o′|s1)

p′(o′|s2)
=

∑
f(o)=o′ p(o|s1)∑
f(o)=o′ p(o|s2)

≤
∑
f(o)=o′ eε1p(o|s2)∑
f(o)=o′ p(o|s2)

= eε1

which shows that Mζ′(P) enjoys ε1-differential privacy.

4. Let P = (νo1, o2, . . . , ok) (P1 |P2). The proof proceeds by reducing the execution
tree of P relative to an arbitrary scheduler ζ to a new one etree ′(P, ζ). This new
tree enjoys a level of differential privacy which is less safe than the one of the orig-
inal etree(P, ζ), while it is isomorphic to the execution tree of (νo1, . . . , oh−1)P2

relative to a certain scheduler ζ2. We derive,

dpJetree(P, ζ)K ≤ dpJetree ′(P, ζ)K = dpJetree((νo1, . . . , oh−1)P2, ζ2)K ≤ ε2

which proves that the process P enjoys ε2-differential privacy.
The reduction from etree(P, ζ) to etree ′(P, ζ) is described as follows. First we
give the definitions of P1’s positions and P2’s positions. Consider an arbitrary state
α in etree(P, ζ), and let (νo1, o2, . . . , ok) (P ′1 |P ′2) be the generic process term of
lst(α). From the assumption that (νo1, o2, . . . , ok)P1 is a safe component, there
are three possible kinds of transitions performable from the state according to the
operational semantics.
(a-step) (νo1, o2, . . . , ok) (P ′1 |P ′2)

a−→ (νo1, o2, . . . , ok) (µ |P ′2) due to a transi-
tion P ′1

a−→ µ. In this case, a must be τ , because P1 does not contain
secret labels and all its observable labels are included in {o1, o2, . . . , ok}.
Assume that µ =

∑
i pi δ(P

′
1i). Then we have (νo1, o2, . . . , ok) (µ |P ′2) =∑

i pi δ((νo1, o2, . . . , ok) (P ′1i |P ′2)).
(b-step) (νo1, o2, . . . , ok) (P ′1 |P ′2)

a−→ (νo1, o2, . . . , ok) (P ′1 |µ) due to a transi-
tion P ′2

a−→ µ, with a not included in {o1, o2, . . . , ok}.
(c-step) (νo1, o2, . . . , ok) (P ′1 |P ′2)

τ−→ (νo1, o2, . . . , ok) δ(P ′′1 |P ′′2) due to the
transitions P ′1

a−→ δ(P ′′1) and P ′2
ā−→ δ(P ′′2). As assumed in the condi-

tion, a must be an observable in {oh, oh+1, . . . , ok}.

We define P1’s positions (resp. P2’s positions) as the set of states in etree(P, ζ)
where the transition of type (a) (resp. the transition of type (b) or (c)) is chosen
by ζ. The tree etree ′(P, ζ) is obtained by replacing each P1’s position with its
subtree etree(ατ(νo1, o2, . . . , ok) (P ′1m |P ′2), ζ) which gives the maximal value of
differential privacy among all its subtrees, that is,

dpJetree(ατ(νo1, o2, . . . , ok) (P ′1m |P ′2), ζ)K
=

max
i
{dpJetree(ατ(νo1, o2, . . . , ok) (P ′1i |P ′2), ζ)K}

By simple induction on the depth of the tree, we obtain that dpJetree(P, ζ)K is an
increasing function of its subtrees. Then by the previous result about the probabilis-
tic choice, we have

dpJetree(P, ζ)K ≤ dpJetree ′(P, ζ)K

Note that after the process P1’s impact on the safety is resolved, all states left in
etree ′(P, ζ) are P2’s positions. It is easy to find a corresponding scheduler ζ2 for
the execution tree of (νo1, . . . , oh−1)P2 such that
- for every b-step in etree ′(P, ζ), ζ2 chooses the same transition in
etree((νo1, . . . , oh−1)P2, ζ2), i.e. P ′2

a−→ µ with a /∈ {o1, o2, . . . , ok},
- for every c-step in etree ′(P, ζ), ζ2 chooses the same transition in
etree((νo1, . . . , oh−1)P2, ζ2), i.e. P ′2

ā−→ δ(P ′′2) with a ∈ {oh, oh+1, . . . , ok}.
Observe now that etree ′(P, ζ) is isomorphic to etree((νo1, . . . , oh−1)P2, ζ2), which
concludes the proof in this case.

5. Rerun the process P1 n times. Let s1, s2, . . . , sn and o1,o2, . . . ,on be the n
times replications’ secret inputs and observables, respectively. Because of the as-
sumption that the new process starts after the current one terminates, for all in-
puts sequences (s1, s2, . . . , sn) and (s′1, s

′
2, . . . , s

′
n) such that (s1, s2, . . . , sn) ≈

(s′1, s
′
2, . . . , s

′
n), we have

p(o1,o2, . . . ,on|s1, s2, . . . , sn)

= p(o1|s1, s2, . . . , sn)p(o2|o1, s1, s2, . . . , sn)

· · · p(on|o1,o2, . . . ,on−1, s1, s2, . . . , sn)

= p(o1|s1)p(o2|s2) · · · p(on|sn) (sequential replication)

≤ eε1p(o1|s′1)eε1p(o2|s′2) · · · eε1p(on|s′n) (since Mζ(P1) gives ε1-d.p.)

= enε1p(o1|s′1)p(o2|s′2) · · · p(on|s′n)

= enε1p(o1,o2, . . . ,on|s′1, s′2, . . . , s′n)

which concludes the proof.

10.2 Computing the channel matrix

We now show the detailed combination of matrices of subprocesses under the non-
deterministic choice, the probabilistic choice,the restriction and the sequential replica-
tion. Let pζ(o|s) (resp. piζ(o|s)) be the probability in the matrixMζ(P) (resp.Mζ(Pi)).

- Case P =
⊕

i piPi : Intuitively, P ’s scheduler selects for each Pi a scheduler from
∆(Pi). Hence ∆(P) = {

⋃
i ζi | ζi ∈ ∆(Pi)}, and |∆(P)| =

∏
i |∆(Pi)|.

For the scheduler ζ =
⋃
i ζi, where ζi ∈ ∆(Pi),

pζ(o|s) =
∑
i

pi · piζi(o|s).

- Case P =
�
i ri.Pi : Let ∆i(P) be the set of all the possible schedulers for P when

ri.Pi is chosen to resolve the nondeterminism. It is easy to see that ∆i(P) = { {ζ |
ζ(ε) = ri ∧ ζ(riα) = ζi(α) } | ζi ∈ ∆(Pi) }. Thus ∆(P) =

⋃
i∆i(P), and

|∆(P)| =
∑
i |∆(Pi)|.

For the scheduler ζ = {ζ(ε) = ri ∧ ζ(riα) = ζi(α)}, where ζi ∈ ∆(Pi),

pζ(rio|s) = piζi(o|s).

- Case P ′ = (νo)P : Intuitively, the scheduler ζ|o is obtained from ζ by removing the
assignments of the executions containing o. Hence ∆(P ′) = { ζ|o | ζ ∈ ∆(P)}, and
|∆(P ′)| = |∆(P)|.
For the scheduler ζ ′ = ζ|o, where ζ ∈ ∆(P),

p′ζ′(o
′|s) =

∑
f(o)=o′

pζ(o|s)

where the function f(o) is shown in the formula (1).
- Case P ′ =�n P : Intuitively, the scheduler ζ1; ζ2; · · · ; ζn selects for each run of
P a scheduler from ∆(P), and use them in a sequential way. Hence ∆(P ′) =
{ζ1; ζ2; · · · ; ζn | ζi ∈ ∆(P)}, and |∆(P ′)| = |∆(P)|n.
Let s1, s2, . . . , sn and o1,o2, . . . ,on be the n times replications’ secret inputs and
observables, respectively. For the scheduler ζ ′ = ζ1; ζ2; · · · ; ζn, where ζi ∈ ∆(P)
for all i,

p′ζ′(o1,o2, . . . ,on|s1, s2, . . . , sn) = pζ1(o1|s1)pζ2(o2|s2) · · · pζn(on|sn).

