
HAL Id: hal-00761073
https://hal.inria.fr/hal-00761073

Submitted on 5 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Behavioural Semantics for Asynchronous Components
Rabéa Ameur-Boulifa, Ludovic Henrio, Eric Madelaine, Alexandra Savu

To cite this version:
Rabéa Ameur-Boulifa, Ludovic Henrio, Eric Madelaine, Alexandra Savu. Behavioural Semantics for
Asynchronous Components. [Research Report] RR-8167, INRIA. 2012, pp.58. �hal-00761073�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49840745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00761073
https://hal.archives-ouvertes.fr

IS
S

N
0

2
4

9
-6

3
9

9
IS

R
N

IN
R

IA
/R

R
--

8
1

6
7

--
F

R
+

E
N

G

RESEARCH

REPORT

N° 8167
December 2012

Project-Team Oasis

Behavioural Semantics

for Asynchronous

Components

Rabéa Ameur-Boulifa, Ludovic Henrio, Eric Madelaine, Alexandra

Savu

RESEARCH CENTRE

SOPHIA ANTIPOLIS – MÉDITERRANÉE

2004 route des Lucioles - BP 93

06902 Sophia Antipolis Cedex

Behavioural Semantics for Asynchronous

Components

Rabéa Ameur-Boulifa∗, Ludovic Henrio†, Eric Madelaine†,

Alexandra Savu†

Project-Team Oasis

Research Report n° 8167 � December 2012 � 61 pages

Abstract: Software components are a valuable programming abstraction that enables a compo-
sitional design of complex applications. In distributed systems, components can also be used to
provide an abstraction of locations: each component is a unit of deployment that can be placed
on a di�erent machine. In this article, we consider this kind of distributed components that are
additionally loosely coupled and communicate by asynchronous invocations.
Components also provide a convenient abstraction for verifying the correct behaviour of systems:
they provide structuring entities easing the correctness veri�cation. This article aims at providing
a formal background for the generation of behavioural semantics for asynchronous components.
We use the pNet intermediate language to express the semantics of hierarchical distributed compo-
nents communicating asynchronously by a request-reply mechanism. We also formalise two crucial
aspects of distributed components: recon�guration and one-to-many communications. This article
both demonstrates the expressiveness of the pNet model and formally speci�es the complete pro-
cess of the generation of a behavioural model for a distributed component system. The behavioural
models we build are precise enough to allow veri�cation by �nite instantiation and model-checking,
but also to use veri�cation techniques for in�nite systems.

Key-words: Behavioural speci�cation, software components, asynchronous communications,
futures

This work was partially funded by the ANR Blanc International project MCorePhP, and by the FUI project
CloudForce

∗ Institut Telecom, Telecom ParisTech, LTCI CNRS, Sophia-Antipolis, France
† INRIA-I3S-CNRS, University of Nice Sophia Antipolis, France

Sémantique Comportementale pour Composants

Asynchrones

Résumé : Les composants logiciels fournissent une abstraction de programmation intéres-
sante pour la conception modulaire d'applications complexes. Dans les systèmes répartis, les
composants peuvent également être utilisés pour fournir une abstraction de la localisation des
processus: chaque composant est une unité de déploiement qui peut être placée sur une machine
di�érente. Dans cet article, nous considérons ce type de composants distribuées, faiblement
couplés et communiquant par des appels asynchrones.

Les composants fournissent également une abstraction commode pour véri�er le bon com-
portement des systèmes: ils fournissent un concept structurant qui facilite la véri�cation de ses
propriétés. Cet article vise à fournir un support formel pour la génération de la sémantique
comportementale des composants asynchrones. Nous utilisons le formalisme intermédiaire pNet
pour exprimer la sémantique des composants hiérarchiques distribués communiquant de manière
asynchrone par un mécanisme de requêtes. Nous formalisons également deux aspects fonda-
mentaux des composants distribués: la recon�guration et les communications de groupe. Cet
article d'une part démontre l'expressivité du modèle pNet et d'autre part spéci�e formellement
le processus complet de la génération du modèle comportemental d'un système de composants
distribués. Les modèles de comportement que nous construisons sont su�samment précis pour
permettre la véri�cation par instanciation �nie et model-checking, mais aussi pour utiliser des
techniques de véri�cation de systèmes in�nis.

Mots-clés : Spéci�cations comportementales, composants logiciels, communications asyn-
chrones, futures

Behavioural Semantics for Asynchronous Components 3

1 Introduction

Ensuring the safety of distributed applications is a challenging task. Not only the network and
the underlying infrastructure are not reliable, but already without failures, applications are more
complicated to design because of the multiple execution paths possible. To ensure the safety of
distributed applications, we propose to use formal methods to be able to verify the correct be-
haviour of distributed applications. In order to verify properties of programs, it is necessary to
choose a programming abstraction that is convenient enough to program, but also that provides
enough information to be able to check the properties of the program. We adopt a program-
ming model that is expressive enough to program complex distributed applications but with
some constraints enabling the behavioural veri�cation of these application. Component models
provide a structured programming paradigm, and ensure a very good re-usability of programs.
Indeed in component applications, dependencies are de�ned together with provided functional-
ities by means of provided/required ports; this improves the program speci�cation and thus its
re-usability. Several e�ective distributed component models have been speci�ed, developed, and
implemented in the last years [22, 33, 11, 10] ensuring di�erent kinds of properties to their users.
Component models have been chosen as the target programming model for many developments in
formal methods, mostly because additionally to the valuable software engineering methodology
they ensure, components also provide structural informations that facilitate the use of formal
methods: the architecture of the application is de�ned statically.

However, de�ning statically the exact structure of the application is sometimes too restrictive.
Indeed, especially in a distributed setting, applications must evolve at runtime in order to adapt
to changes in the execution environment or to provide improved functionalities. Some component
models keep a trace at runtime of the component structure and their dependencies. Knowing how
components are composed and being able to modify this composition at runtime provides great
adaptation capabilities: the application can be adapted by changing some of the components
taking part in the composition or changing the dependencies between the involved components.
Recon�gurations consist in changing at runtime the component structure, by adding or removing
components in the system, or by changing the way components are bound together. In distributed
systems, recon�guration can also be used at runtime to discover services and use the most e�cient
service available. Also, as some distributed components will naturally migrate from one location
to another, they will change their execution environment and may have to adapt to the new
execution platform they are moved to. Concerning formal veri�cation, keeping trace of the
component structure when building the model of the application not only allows us to build the
model in a compositional manner, but also allows us to encode recon�guration procedures and
to verify the properties of the system when some recon�gurations occur.

In this work, we focus on one distributed component model, the GCM (Grid Component
Model [10]). This component model originates from the Grid computing community, it is partic-
ularly targeted at composing large-scale distributed applications. Its reference implementation
GCM/ProActive relies on the notion of active objects, and ensures that, during execution, each
thread is isolated in a single component. Because of active objects, components that usually
structure the application composition also provide the structure of the application at runtime, in
terms of location and thread (a single applicative thread manipulates the state of the component).
We call this kind of components asynchronous components because they are loosely coupled enti-
ties communicating by an asynchronous request-reply mechanism. All those aspects facilitate the
use of formal methods for ensuring safe behaviour of applications, but they also require speci�c
developments to produce a formal model of an application built from such components.

This article formalises the construction of a behavioural model for ProActive/GCM compo-
nents. It describes formally how we can generate a behavioural model in terms of parameterised

RR n° 8167

4 Boulifa, Henrio, Madelaine & Savu

Networks of synchronised automata (pNets) [6] from the description of the architecture of a
GCM/ProActive application and the description of the behaviour of each service method im-
plemented by the programmer. In other words we formalise the automatic construction of the
behavioural model for communication, management, and composition aspects.

Our behavioural models are parameterised : they can be viewed as a structured composition
of labelled transition systems (LTS) that can use parameters/variables. Each pNet is either
formed of other pNets or is a single LTS. Parameters can be used as local variables inside a
LTS; but they can also be used to de�ne families of pNets of variable size, and to specify the
way events occurring in di�erent pNets are synchronised. Once the parameterised behavioural
model generated, we can for example generate a �nite instance of the model that can be checked
against correctness formulas using a model-checking tool. But our behavioural model is richer
than what can be checked by �nite-state model-checkers and other veri�cation techniques could
also be used.

For specifying the interaction between the service methods, we generate behavioural models
encoding the following features:

� Futures: futures are frequently used in active object languages, they are place-holders
for results of asynchronous invocations, called requests here. We encode in our models
the mechanisms for dealing with futures (Section 4.1.5) and the transmission of futures
references between components (Section 5.1).

� Component composition: from an ADL (architecture description language), we generate the
synchronisations corresponding to the communications that can occur between the di�erent
components. We distinguish two cases: primitive components which are the leaves of the
composition tree and composite components that are built from other components.

� Primitive components: at the leaves of the hierarchy, from the de�nition of the service
methods, we specify a component able to receive requests and serve each of them one after
the other. When a request service terminates, a reply is sent back to the component that
emitted the request. The crucial parts composing the model of a primitive component are:
the request queue, the handling of communications for sending requests and replies, the
futures and their management (Section 4.1).

� Composite components (composites, for short): as our component model is hierarchical,
a component can be built from the composition of other components; as composites are
instantiated at runtime, it is necessary to specify their behaviour in our model too (see
Section 4.2). Each composite is in fact implemented as an active object and thus the
internal structure of a composite is very similar to the one of a primitive component.

� Recon�guration: as stated earlier, recon�guration plays a major role in distributed systems.
This article also provides a behavioural model for recon�gurable components (Section 5.2).
To enable the veri�cation of component recon�guration, we rely on an extended ADL
de�ning all the con�gurations that will be taken into account in our model.

� One-to-many communications: distributed systems often rely on some form of multicast
communications between one emitter and a set of registered receivers. For encoding such
cases, the GCM component model de�nes multicast interfaces. We also formalise the
generation of models for these patterns of communication in Section 5.3.

This article is built upon previous works of the authors. The de�nition of pNets has already
been formalised in [6]; in this article we provide a more concise and simpler de�nition so that this
article is self-contained. Concerning the modelling of component features, modelling of primitive

Inria

Behavioural Semantics for Asynchronous Components 5

and composite components, and of binding controllers has been described in [6]; [20] provides
a study of behavioural models for �rst-class futures; multicast communications were modelled
in [2, 15]. Compared to those previous works, this article �rst proposes a model aggregating all
those features of the GCM component model. More important, this article fully formalises the
modelling process, which is a necessary step for the automatic generation of behavioural models
for component systems. Also this article is the �rst one to propose a model for handling of futures
in composite components. Overall this article builds upon the individual use-cases studied in
our previous works to fully formalise the generation of behavioural models for asynchronous
components.

Our behavioural speci�cation is particularly adapted to the reasoning on GCM components
but our approach is also applicable to other component and programming models. The compo-
nent structure of GCM is quite similar to the one of Fractal [16] and SCA [11]; the runtime be-
haviour of components uses active objects/actor-like computations, which is similar to Creol [29],
AmbiantTalk [24], and JCobox [35]. The generation of behavioural models for those frameworks
can be adapted from the results of this article. Consequently, this article also shows that the
pNets formalism is adapted to the behavioural speci�cation of systems using those framework.

This article is organised as follows. Section 2 gives a brief overview of the GCM component
model de�ned in [10] and its implementation inside the ProActive library; it also gives the
abstract syntax we use for the de�nition of component systems and de�nes the set of components
we consider as well-formed in Section 2.3. Section 3 provides a de�nition of the pNets formalism
[6]. Then Sections 4 and 5 contain the main contribution of the paper; they present respectively
the basic behavioural model for GCM components and more complex features, namely �rst-class
futures, recon�gurations, and one-to-many interfaces. This paper concludes with an example
of building the model of a use-case in Section 6, a comparison with related works in Section 7
and a conclusion. Appendices describe the semantics of pNets, a summary of main behavioural
semantic functions, and some details on the model of the example use-case.

2 The Grid Component Model: GCM

GCM has been proposed in the CoreGrid Network of Excellence, it is an extension of the Fractal
component model [17, 18] to better address large-scale distributed computing. GCM builds
above Fractal and thus inherits its hierarchical structure, the enforcement of separation between
functional and non-functional concerns, its extensibility, and the separation between interfaces
and implementation.

Figure 1 shows the basic component structure provided by GCM. It introduces most of the
terminology used to describe GCM components and their composition. Interfaces are annotated
with the type of their methods. Among the notions presented in the �gure only multicast
interfaces interfaces are speci�c to GCM.

Fractal does not impose any granularity for the components, but the existence of composite
bindings and some of the features of the model suggest a rather �ne grained implementation: a
primitive component should contain a small number of objects. Overall, the GCM has been con-
ceived with a granularity that is somehow in the middle between small grain Fractal components
and coarse grain component models, like CCM where a component is of a size comparable to an
application or a service. Somehow, GCM has been conceived thinking of components of the size
of an MPI process, though it can be used to de�ne much �ner or coarser grain components. In
ProActive/GCM the primitive components (and the composite ones too) have this intermediate
size: they contain an activity, i.e. an active object, its dependencies, a request queue, and a
thread. Somehow, this paper relies on the fact that components are used as structuring enti-

RR n° 8167

6 Boulifa, Henrio, Madelaine & Savu

m2: Ty2 −> Ty

m1: Ty1 −> Ty

m4: Ty5 −> Ty6

m0: Ty3 −> Ty4
Primitive Component

Multicast Interface

Client Interface

Binding

Content

Membrane

Server Interface

Figure 1: A typical GCM assembly

ties that specify the di�erent threads of the applications and the set of objects manipulated by
each of those threads. It is very interesting and convenient to use formal methods to check the
properties of GCM applications, as the component structure gives crucial informations on the
concurrency that occurs at runtime.

GCM and Fractal come with an ADL (architecture description language) providing a textual
(XML-based) way of describing component assembly. Such a description of the application
architecture (either textual or graphical) is the starting point of our work. Starting from the
architecture description and the description of the behaviour of each component, we build a
formal description of the behaviour of the whole application.

2.1 A reference implementation for GCM

ProActive/GCM is a reference implementation of the GCM component model. It is based on the
ProActive Java library and relies on the notion of active objects. It is important to note that
each component corresponds at runtime to an active object and consequently each component
can easily be deployed on a separate JVM and can be migrated. Of course, this implementation
relies on design and implementation choices relatively to the purely structural de�nition provided
by the model.

One of the main advantages of using active objects to implement components is their adap-
tation to distribution. Indeed, by nature active objects provide a natural way to provide loosely
coupled components. By loose coupled components, we mean components responsible for their
own state and evaluation, and only communicating via asynchronous communications. Asyn-
chronous communications increase and automate parallelism; and absence of sharing eases the
design of concurrent systems. Additionally, loose coupling reduces the impact of latency, and
limits the interleaving between components. Finally, independent components also ease the auto-
nomic management of component systems, enabling systems to be more dynamic, more scalable
and easily adaptable to di�erent execution contexts. That is why we think that a distributed
component system should rely on such loosely coupled asynchronous components. That is thus
the reason why we think active objects are particularly adapted to implement a distributed
component model.

Inria

Behavioural Semantics for Asynchronous Components 7

2.2 Informal semantics of asynchronous components

This section describes brie�y an informal semantics of GCM/ProActive components. The gen-
eral principle is that interaction between components is limited to communications, and more
precisely to a request/reply mechanism. A more formal and general semantics can be found in
[27].

Communications The basic communication paradigm we consider is asynchronous message
sending: upon a communication the message is enqueued at the receiver side in a queue. To
prevent shared memory between components, messages can only transmit parameters which are
copied at the receiver side; no object or component can be passed by reference. This communica-
tion semantics is similar to messages in an actor model. We call requests messages sent between
components. References to components cannot be passed as request parameters.

We call our component model asynchronous because communication does not trigger com-
putation on the receiver side immediately, it just enqueues a request. To allow for transparent
asynchronous requests with results, we use transparent �rst-class futures. The promise for a
reply to a request is created automatically when the request is sent, we call it a future. For
accessing the value of a future, the caller must wait until the request is treated and the result
sent. When the request is �nished, the result is automatically sent to replace all the references
to the corresponding future. Futures are said to be �rst-class if they can be transmitted between
components.

Component behaviour The primitive components encapsulate the business code. They gen-
erally serve requests in the order they arrived, providing answer for all the requests they receive.
They can call other components by emitting a request on one of the client interfaces.

In ProActive/GCM, each component is mono-threaded: a single request is served at a time
and no internal concurrency occurs inside a component. However, a component always accepts
the reception of a future value or of a request.

While primitive components contain the application logic, composite components have a pre-
de�ned behaviour because they are only used as composition tools and the programmer expects
them to only transmit the requests according to the speci�ed composition. Composites serve
requests in a FIFO order, delegating requests to the bound components or to the external ones.
Globally, a request emitted by the client interface of a primitive component will be sent un-
changed to the server interface of the primitive component that is bound to it, following one
or several bindings (several bindings are used when the bounding of a composite is crossed). A
composite performs no computation: it only delegates requests.

Collective interfaces GCM components mostly use three kinds of interfaces: singleton, mul-
ticast, and gathercast. Singleton interfaces are used to perform one-to-one communications as
described above; a singleton client interface must be bound to a single server interface. Multicast
interfaces allow one component to be bound to several others, with a con�gurable communica-
tion semantics; in general, a call from a multicast client interface is broadcasted to all the server
interfaces bound from it. Gathercast interfaces are somehow symmetrical to multicast ones; they
allow many components to be bound to a server interface and come with a synchronisation pat-
tern: when all the client interfaces bound to a gathercast interface have emitted a request, those
requests are collected and transmitted as a single one to the component having the gathercast
interface.

Components featuring the semantics de�ned above are loosely coupled; they are better
adapted to a distributed setting and easier to program safely by the limited concurrency they

RR n° 8167

8 Boulifa, Henrio, Madelaine & Savu

allow. However, the semantic of such components rely on several notions, like for example re-
quest queues and futures, that have to be speci�ed when building a behavioural model for those
components. This article speci�es how those notions can be formally de�ned as pNets, and how
those de�nitions can be used to build the behavioural model of a component-based application.

2.3 Component De�nition

This section de�nes a hierarchical structure for representing components, we de�ne a syntax
for describing the di�erent elements of a GCM component assembly. We also de�ne a set of
auxiliary functions that will help us manipulate the component structure, and �nally we de�ne
what component systems we consider to be well-formed, these are the systems for which we are
able to build a behavioural model.

The de�nitions below rely on several prede�ned structures. Type represents a type, we have
several kind of names (even if there is no need to distinguish them strictly): Name is an interface
name, CName and C are component names, MName is a method name.

2.3.1 Syntax and Notations

In the following de�nitions, we extensively use indexed structures (maps) over some countable
indexed sets. The indexes will usually be integers, bounded or not. Such an indexed family
is denoted as follows: ai∈I

i is a family of elements ai indexed over the set I. Such a family is
equivalent to the mapping (i7→ai)

i∈I . To specify the set over which the structure is indexed,
indexed structures are always denoted with an exponent of the form i ∈ I (arithmetic only
appears in the indexes if necessary). Consequently, ai∈I

i de�nes �rst I the set over which the
family is indexed, and then ai the elements of the family.

For example ai∈{3} is the mapping with a single entry a at index 3; exceptionally, such
mappings with only a few entries will also be denoted (37→a) in the following. When this is not
ambiguous, we shall use abusive vocabulary and notations for sets, and typically write �indexed
set over I� when formally we should speak of multisets, and still better write �x ∈ Ai∈I

i � to mean

∃i ∈ I. x = Ai. An empty family is denoted [] (it can be de�ned as ai∈∅
i).

Let ⊎ (disjoint union) be a union operator on indexed sets requiring that the two sets are
indexed over disjoint sets, we do not worry here on set re-indexing that could be performed to
avoid collisions. The elements of the union are thus accessed by using an index of one of the two
joined families.

2.3.2 Interfaces

Let SItf be the description of a service interface, it is characterised by the interface name, the
interface cardinality and the signature of one or more service methods. In the same way, CItf is
the description of a client interface, containing one or more client methods. We use Itf to range
over interfaces that can be either client or server ones.

SItf ::= (Name,Card,MSignaturei∈I
i)S (1)

CItf ::= (Name,Card,MSignaturei∈I
i)C (2)

Itf ::= SItf | CItf (3)

Concerning cardinalities, client interfaces can be either singleton (which means the client
interface of the current component is bound to one server interface of another component), or

Inria

Behavioural Semantics for Asynchronous Components 9

multicast (meaning that the client interface is bound to more than one components through ser-
vice interfaces on these components). In GCM, interfaces can also be of cardinality �gathercast�
but this case is not treated in this article.

Card ::= singleton | multicast

A method signature, MSignature, consists of a method name, an argument type1, and a
return type:

MSignature ::= MName : Type→ Type

A method de�nition consists of a MSignature and the behaviour of this method, which is a
pNet (pNets will be de�ned in Section 3). Mi range over method de�nitions. Signature(Mi)
returns the signature.

2.3.3 Components

From those de�nitions we de�ne components, which can be either primitive or composite ones.

Comp ::= CName < SItfi∈I
i ,CItfj∈J

j , Mk∈K
k >

|CName < SItfi∈I
i ,CItfj∈J

j ,Compk∈K
k ,Bindingl∈L

l >

A primitive component consists of a name CName, a set of Server Interfaces SItf , a set of
Client Interfaces CItf , and a set of method de�nitions Mk∈K

k , where Mk ∈ MSignature× pNet.
Figure 2 illustrates a simple con�guration of a primitive component. It exposes two service

interfaces, which can receive requests. It has also a single client interface showing 2 client
methods. The corresponding pNet system will be drawn in Figure 4.

m5: Ty5 −> Ty

m4: Ty4 −> Ty
m2: Ty2 −> Ty

m1: Ty1 −> Ty

m3: Ty3 −> Ty

Figure 2: Simple Primitive Component

A composite component (a composite, for short) consists of a set of sub-components exporting
some server interfaces, some client interfaces, and bindings. A binding connects two interfaces of
two components, either sub-components of the same composite, or one is a sub-component and
the other is the composite. A binding is thus a pair of quali�ed names. Each quali�ed name is
made of two parts, the �rst one is either the name of a (sub)component plus the name, or This
to mean the considered composite component, the second one is the name of an interface.

In the composite component de�nition, the interfaces are the external ones, the ones visible
by the outside world.

Binding ::= (QName, QName) (4)

QName ::= This.Name | CName.Name (5)

1it is not restrictive to consider methods with a single arguments as we have no restriction on type complexity

RR n° 8167

10 Boulifa, Henrio, Madelaine & Savu

Figure 1 shows a composite component containing two inner composite components. For
example (A.C1,This.M) is one of the bindings of this component. The interface M is a multicast
interface, it can emit two kinds of requests: m1 and m2, with the types de�ned in the �gure.

We de�ne a function Interfaces that given a component returns the indexed set of its interfaces,
and a function Name that returns the name of its argument that can be a component, a method,
or an interface.

Membrane and internal interfaces In Fractal and GCM, the frontier of a composite com-
ponent is called a membrane and can intercept incoming calls; it deals with the component
management; additionally GCM provides the capacity to specify the content of a membrane as a
component composition. Roughly, for each server interface of a composite component accessible
from the outside, there is an internal client interface. Here we chose to have no membrane and
not specify explicit internal interfaces, more precisely the membrane has no content and the
internal interfaces match exactly the external ones. For each interface declared in the compos-
ite component de�nition, a symmetric internal interface is created with the same name and a
symmetric role (server or client) as illustrated in Figure 3. By convention, a server interface of
cardinality multicast stands for a single server interface, associated with an internal multicast
interface.

Figure 3: Abbreviations for matching external/internal interfaces

2.3.4 Auxiliary functions

We �rst de�ne an auxiliary function that takes the symmetric of an interface. It takes an interface
and returns the same interface with a symmetric role:

Symm : Itf → Itf

Symm(Name,Card,MSignaturei∈I
i)S = (Name,Card,MSignaturei∈I

i)C

Symm(Name,Card,MSignaturei∈I
i)C = (Name,Card,MSignaturei∈I

i)S

We then rely on an auxiliary function Get that returns the interface inside a composite
component that corresponds to a quali�ed name. If the quali�ed name is of the form CN.IN,
then Get returns the external interface named IN of the inner component of name CN. Else, the
quali�ed name is of the form This.IN; then the inner interface of the composite component is
returned, it is the symmetric of the external interface of name IN.

Get : QName × Comp → Itf

Inria

Behavioural Semantics for Asynchronous Components 11

k ∈ K Name(Compk) = CN Itf ∈ Interfaces(Compk) Name(Itf) = IN

Get(CN.IN,CName < SItfi∈I
i ,CItfj∈J

j ,Compk∈K
k ,Bindingl∈L

l >) = Itf

i ∈ I SItfi = (IN,Card,MSignaturel∈L
l)S

Get(This.IN,CName < SItfi∈I
i ,CItfj∈J

j ,Compk∈K
k ,Bindingl∈L

l >) = Symm(SItfi)

j ∈ J CItfj = (IN,Card,MSignaturel∈L
l)C

Get(This.IN,CName < SItfi∈I
i ,CItfj∈J

j ,Compk∈K
k ,Bindingl∈L

l >) = Symm(CItfj)

2.3.5 Well-formed components

In our semantics, we only want to deal with components that are correctly formed, for this we
de�ne a predicate WF that indicates whether a component is well-formed. We suppose there is
a sub-typing relation E, and that this relation is classically extended to method signatures, and
to families of method signatures. In practice, WF is slightly more restrictive than what could
be expected of a correct component de�nition, or what can be found in [28]; this is because we
prevent bindings from having the same component as source and destination, and we prevent
two bindings originating from the same multicast interface from having the same destination
component. Building the behavioural models in those two cases is slightly more complicated; we
will come back on this restriction and how to overcome it in Section 5.4.

We �rst de�ne the predicate UniqueItfNames that takes a set of server interfaces and a set
of client interfaces and returns true if no two of these interfaces have the same name.

UniqueItfNames(SItf i∈I
i ,CItf j∈J

j)⇔

8

<

:

∀i, i′ ∈ I. i 6= i′ ⇒ Name(SItfi) 6= Name(SItfi′) ∧
∀j, j′ ∈ J. j 6= j′ ⇒ Name(CItfj) 6= Name(CItfj′) ∧
∀i ∈ I, j ∈ J. Name(SItfi) 6= Name(CItfj)

Then a primitive component is well-formed if all its interfaces have distinct names and all
the interfaces declared in the server interfaces have a corresponding method de�nition (modulo
sub-typing).

WF(CName <SItf i∈I
i ,CItf j∈J

j , M
k∈K
k >)⇔

8

<

:

UniqueItfNames(SItf i∈I
i ,CItf j∈J

j) ∧

∀i ∈ I. if SItfi = (Name,Card,MSignaturel∈L
l)S

then ∀l∈L. ∃k∈K.Signature(Mk) E MSignaturel

Finally a composite component is well-formed if all its sub-components are well-formed, all the
bindings de�ned bind an existing client to an existing server interface of a compatible type2, all
sub-components have distinct names, and no two bindings start from the same client interface
except if this interface is multicast. We additionally require that no binding has the same
component as source and destination: there is no binding looping back directly to the same
component. Finally, no two bindings can have the same multicast3 interface as source and the
same component as destination. The two last conditions of the de�nition are the ones speci�c
to our model, they are not generally required by the GCM model.

2Those interfaces are found thanks to the Get function: they are either interfaces of sub-components or internal
interfaces of the composite component.

3the fact that the interface must be multicast follows one of the preceding requirements

RR n° 8167

12 Boulifa, Henrio, Madelaine & Savu

WF(CName < SItf i∈I
i ,CItf j∈J

j ,Compk∈K
k ,Bindingl∈L

l >)⇔
8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

UniqueItfNames(SItf i∈I
i ,CItf j∈J

j) ∧

∀k, k′ ∈ K. k 6= k′ ⇒ Name(Compk) 6= Name(Compk′) ∧
∀k ∈ K.WF(Compk) ∧

∀(Src,Dst) ∈ Bindingl∈L
l .

∃Name, Name′, Card, Card′, M, M ′, MSignaturel∈M
l , MSignature′

l∈M′

l .
`

Get(Src) = (Name,Card,MSignaturel∈M
l)C ∧

Get(Dst) = (Name′,Card′,MSignature′
l∈M′

l)S ∧

MSignature′
l∈M′

l E MSignaturel∈M
l ∧

Card 6= Multicast⇒ ∄Dst′.Dst′ 6= Dst ∧ (Src,Dst′) ∈ Bindingl∈L
l

´

∧

∀(C.CI, C′.SI) ∈ Bindingl∈L
l .C 6= C′ ∧

∀C,CI, C′, C′′,SI,SI′.(C.CI, C′.SI) ∈ Bindingl∈L
l ∧ (C.CI, C′′.SI′) ∈ Bindingl∈L

l ⇒ C′ 6= C′′

3 pNets: a formalism for de�ning behavioural semantics

3.1 Term algebra

Our models rely on the notion of parametrized actions. We leave unspeci�ed the constructors
of the algebra that will allow building actions and expressions used in our models, let us denote
Σ the signature of those constructors. Let TP be the term algebra of Σ over the set of variables
P . We suppose that we are able to distinguish inside TP a set of action terms (over variables of
P) denoted AP (parametrized actions), a set of expression terms (disjoint from actions) denoted
EP , and, among expressions, a set of boolean expressions (guards) denoted BP . For each term
t ∈ TP we de�ne fv(t) the set of free variables of t. For α ∈ AP we also suppose that there is a
function iv(α) that returns a subset of fv(α) which are the input variables of α, i.e. the variables
newly de�ned by reception of their value during the action α.

We also allow countable indexed sets to depend upon variables, and denote IP the set of
indexed sets using variables of P . There must exist an inclusion relationship ⊆ over the indexed
sets of IP , with the natural guarantee that this operation ensures set inclusion when one replaces
variables by their values. In practice we will mostly use intervals for which the upper bound
depends on the variables of P : IP = [1..n] where n is an integer.

For example the actions of Milner's Value-passing CCS [32] correspond to the following alge-
bra: terms are τ , a(x) for input actions, a(v) for output actions. Then fv(a(x)) = iv(a(x)) = {x},
whereas iv(a(v)) = ∅.

3.2 The pNets Model

The �rst comprehensive de�nition of pNets was published in [6]. The de�nition we give below
is simpler because it does not include transducers and each hole contains a single pNet. The
semantics given here is thus shorter but exhaustive; it provides a rigorous formal basis for ex-
pressing the semantics of the GCM features. In this section, we de�ne the structure of pLTSs,
pNets and Queues, and de�ne their operational semantics.

A pLTS is a labelled transition system with variables; a pLTS can have guards and assignment
of variables on transitions. Variables can be manipulated, de�ned, or accessed inside states,
actions, guards, and assignments. A pLTS is formally de�ned as follows.

De�nition 1 (pLTS) A parametrized LTS is a tuple pLTS , 〈〈P, S, s0, L,→〉〉 where:

Inria

Behavioural Semantics for Asynchronous Components 13

• P is a �nite set of parameters, from which we construct the term algebra TP , with the
parametrized actions AP , the parametrized expressions EP , and the boolean expressions
BP .

• S is a set of states. For each state s ∈ S, variables of s are global to the pLTS.

• s0 ∈ S is the initial state.

• L is the set of labels of the form 〈α, eb, (xj := ej)
j∈J〉, where α ∈ AP is a parametrized

action, eb ∈ BP is a guard, and the variables xj ∈ P are assigned the expressions ej ∈
EP . Variables in iv(α) are assigned by the action, other variables can be assigned by the
additional assignments.

• →⊆ S × L× S is the transition relation.

Note that we make no assumption on �niteness of S or of branching in →.

pNets are constructors for hierarchical behavioural structures: a pNet is formed of other
pNets, or pLTSs at the bottom of the hierarchy tree. Message queues can also appear in leaves of
a pNet system. A composite pNet consists of a set of pNets exposing a set of actions, each of them
triggering internal actions in each of the sub-pNets. The synchronisation between global actions
and internal actions is given by a synchronisation vector : a synchronisation vector synchronises
one or several internal actions, and exposes a single resulting global action.

De�nition 2 (pNets) A pNet is a hierarchical structure where leaves are pLTSs (or queues
de�ned below): pNet , pLTS | Queue(M) | 〈〈P,L, pNeti∈I

i ,SVk∈K
k 〉〉 where

• P is a �nite set of parameters, from which we construct the term algebra TP , with parametrized
actions AP .

• L ⊆ AP is the set of labels of global actions of the pNet.

• I ∈ IP is the set over which sub-pNets are indexed, I 6= ∅.

• pNeti∈I
i is the family of sub-pNets.

• SVk∈K
k is a set of synchronisation vectors (K ∈ IP). ∀k ∈ K,SVk = α

j∈Jk

j → α′
k. Each

synchronisation vector veri�es: α′
k ∈ L, Jk ∈ IP , ∅ ⊂ Jk ⊆ I, and ∀j∈Jk. αj ∈Sort(pNetj).

For each pNet, we de�ne a function sort (Sort : pNet→ AP). The sort of a pNet is its signature:
the set of actions that a pNet can perform, that is to say the set of labels of its transitions, more
formally:

Sort(〈〈P, S, s0, L,→〉〉) = L Sort(〈〈P,L, pNeti∈I
i ,SVk∈K

k 〉〉) = L

A pNet composes sub-pNets and expresses by its synchronisation vectors how the di�erent
sub-entities are synchronised. SVk = α

j∈J
j → α′

k means that each of the sub-pNets can performs
synchronously the action αj ; this results in a global action labels α′

k.

When I = [1..n] we denote the pNet as 〈〈P,L, pNet1, . . . , pNetn,SV〉〉, and each synchronisation
vector as: 〈α1, . . . , αn〉 → α. In that case, elements not taking part in the synchronisation are
denoted − as in: 〈−,−, α,−,−〉→α.

RR n° 8167

14 Boulifa, Henrio, Madelaine & Savu

Queues We also de�ne a particular pNet called Queue(M); it models the behaviour of a
FIFO queue. It can be considered as an in�nite pLTS with a set of actions depending on the
chosen term algebra and of the set of enqueue-able elements M ⊆ TP . We suppose that the
term algebra has two speci�c constructors ?Q and !Serve4 such that for all set of variables P ,
∀mi ∈ M. !Serve_mi ∈ AP ∧ ?Q_mi ∈ AP . Then the queue pNet o�ers the following actions:
L = {?Q_mi|mi ∈ M} ∪ {!Serve_mi|mi ∈ M}. The behaviour of a queue is only FIFO
en-queueing/de-queueing of messages.

Sort(Queue(M)) = {?Q_mi|mi ∈M} ∪ {!Serve_mi|mi ∈M}

Whenever pNets will be encoded by (ultimately �nite) automata structures for model-checking,
pNet Queues will naturally be represented by �nite automata. However, in order to be able to
address more general approaches, and in particular speci�c model-checking algorithms for un-
bounded channels, we need to keep a high-level representation of Queues. From these abstract
Queues, we will be able to generate both regular representation (for unbound queues), and �nite
representation (for explicit-state model-checking).

More notations We de�ne a constructor for a pNet made of an indexed family of pNets.
←−−−−−−−→
〈〈P, PN i∈I

i 〉〉 takes a family of pNets indexed over a set I ∈ IP , and a parameter set P , and
produces a global pNet. The synchronisation vectors for this family will be expressed at the level
above, consequently we �export� all the possible synchronisation vectors that the family could
o�er, only some of them will be used.

←−−−−−−→
〈〈P,PNi∈I

i 〉〉, 〈〈P,V,PNi∈I
i , {αj∈J

j → α
j∈J
j |αj∈J

j ∈ V}〉〉

where V = {αj∈J
j |J⊆I ∧ ∀j ∈ J. αj ∈ Sort(PNj)}

This supposes that the elements of V belong to the term algebra and more precisely are action
terms.

If all the elements of the family are identical, then we simply write
←−−−−−→
〈〈P,PN I〉〉.

In fact, the de�nition of pNets shown here is a �simpli�ed� version of pNets [6] that is con-
venient for providing a concise formal de�nition of both pNets themselves and the component
speci�cation in terms of pNets. Especially concerning families of pNets, it is not reasonable, in
practice, to de�ne all the possible synchronisation vectors inside a family. In [6], we de�ned a
version of pNets where the families are �attened in the enclosing pNet and only the used synchro-
nisations are instantiated. Though more e�cient in practice this notation was more complex,
that is why a simpler de�nition is presented in this paper. Section 6 will show an optimised
instantiation of the produced pNet structure and synchronisation vectors.

An operational semantics for pNets is given in Appendix A.

3.3 Assumptions on the term algebra

Let us consider several aspects of the term algebra we might use in the description below, those
aspects are not related to the pNets semantics but rather to the way we use it.

In our term algebra, we have three basic kinds of actions: input actions of the form ?a(x1, ..., xn)
where xi are input variables, output actions of the form !a(v1, .., vn), where vi are values (expres-
sions), and synchronised actions of the form a only used for observation purposes. Our actions

4We chose constructors coherent with the term algebra we will use in this paper to simplify notations.

Inria

Behavioural Semantics for Asynchronous Components 15

can also be parameterized by one or several arguments thus they can be of the form a(arg) or
a(arg, p).

In order to express synchronisation vectors of families of pNets, we must allow families of
actions to be considered as actions themselves. More precisely, if a and ai are actions, then
actions can be of the form i7→a to allow the sub-pNet at index i to perform an action, also we
use i ∈ I 7→ai to express the family of actions ai∈I

i triggering a synchronous action on all the
sub-pNets indexed in I, or i7→a, j 7→b to synchronise two elements of the family.

Synchronised actions (pre�xed neither by ! nor by ?) are not meant to be used anymore
for synchronisation purposes, they should just be visible at the top-level of the pNet hierarchy.
Consequently, we de�ne an operator that takes an indexed set of pNets and returns the synchro-
nisation vectors that should be included in the parent pNets to allow the visibility of synchronised
actions:

Observe(pNeti∈I
i) = {(i7→α)|i ∈ I ∧ α ∈ Sort(pNeti) ∧ α synchronised action}

In the following, those synchronisation vectors dedicated to observation will be implicitly
included as synchronisation vectors of all our pNets. This means that for all pNets written in the
following of this paper, Observe(pNeti∈I

i) is considered to be included in the set of synchronisation
vectors of the considered pNets (where pNeti∈I

i is the set of sub-pNets of the new pNet).
In this paper, we do not use explicitly internal action (τ transition). If the action algebra

contains τ transitions, then we would use weak bisimulation notions to deal e�ciently with
the pNets. More precisely, upon composition of pNets, a sub-pNet will be allowed to perform
additional (invisible) τ transitions. In other words, τ would behave similarly to the synchronised
actions de�ned above.

4 Behavioural semantics for GCM components

This section de�nes formally the behavioural semantics for the component model de�ned in
Section 2.3. It shows how to build pNets from the speci�cation of a hierarchy of components. We
organise this section as follows. We �rst give a behavioural semantics for primitive components
including simple future proxies, and the behaviour and synchronisation of the di�erent elements of
the primitive component. We then describe the behavioural semantics for composite components,
which compose the semantics of their sub-components synchronising the request and replies of
the sub-components between themselves and with the external components. For that, we will
need to de�ne a new kind of future proxies for handling the delegation mechanism that occurs
in the composite components.

Term algebra The term algebra we use is a set of parameterised actions; actions will typically
be of the form Serve_m for m a method label as de�ned below. Parameters will be either values
(method parameters denoted arg or computed results denoted val), or future identi�ers (denoted
either p, or f , or �d). We suppose a set P is given, it is the set of all parameters potentially used
in the di�erent pNets; it will be used in all the pNets expressed in the rest of this paper.

In all this document, we use, as action parameters, two variables arg and val that (implicitly)
range over the set of values, this set of values being purposely unde�ned. In an object-oriented
language, those values should be an abstraction of objects (potentially containing other objects).
It could be de�ned depending on the type of the value but we will not consider this aspect here.
In our previous works, the abstract domain for values could be reduced to a few elements in
order to generate a �nite instantiation of the pNet and verify its behaviour by model-checking
techniques.

RR n° 8167

16 Boulifa, Henrio, Madelaine & Savu

We rely on a prede�ned set Labels, the set of action labels that can be used in our pNets,
it should depend on the term algebra (it is possible to generate this set from the labels used in
each pNet).

Labels for identifying methods Inside our actions, we need identi�ers for methods that
are more precise than simple method names. We de�ne thus MethodLabels as a set of method
labels, where a method label encompasses a method name, a signature, and the interface the
method belongs to, plus possibly other meta-informations. Most of the following can be read as
if MethodLabels were just method names, however at some speci�c points and to disambiguate
di�erent methods, the other informations encoded in MethodLabels are also necessary. mi range
over such method labels.

A function MethLabel : Itf→ P(MethodLabels) is de�ned, where MethLabel(Itfi) returns the
set of MethodLabels corresponding to the methods of interface Itfi. MethLabel is also de�ned
for sets of interfaces (union of method labels for each interface). Conversely, for a given method
label m, Itf(m) returns the interface of the method.

Behavioural semantics The behavioural semantics of components is expressed under the
form JComponentK. It relies on the use of several auxiliary functions for expressing the semantics
of speci�c parts of the components: the behaviour of the service of one request (for a primitive
component), the behaviour of the body of the component serving requests one after the other,
a proxyManager for managing the available future proxies, the behaviour of each future proxy,
and �nally a delegation behaviour used when a composite component delegates the service of a
request to another component. The signature of all these functions is summarised in Appendix B.

4.1 Semantics of primitive components

Primitive components are the leaves of the hierarchy; they contain the applicative code from
which more complex components, and thus more complex behaviours can be built. This section
gives a behavioural semantics for GCM primitive components, able to receive requests, to serve
them in a FIFO order by executing a service method, and to send requests to the external
world. Additionally to the global structure of a primitive component and the synchronisation of
its sub-entities, this section de�nes pLTSs describing the behaviour of a FIFO service policy, of
proxies for handling futures, and of managers for pools of future proxies. Considering the features
we model, we think that our work provides a reliable basis for the behavioural speci�cation of
asynchronous components communicating by asynchronous requests and futures. This section
also shows that pNets provide a convenient abstraction for modelling this behaviour.

4.1.1 Illustrative Example

We �rst illustrate and explain the structure of the behavioural semantics of primitive components
based on the component shown in Figure 2. Figure 4 illustrates the structure of the pNet
expressing the semantics of the component. It illustrates both the global structure of the pNets
represented by boxes, and the synchronisation vectors represented by arrows (an ellipse is used
when a synchronisation vector involves more than two processes). Note that the direction of
an arrow is purely conventional, but goes, as much as possible, from an emission action to a
reception action, intuitively following the data �ow.

A primitive component can receive incoming requests (?Q_mi) that are stored in the Queue
pNet and then served by the Body pLTS. The service consists in triggering a Call_mi to the

Inria

Behavioural Semantics for Asynchronous Components 17

M1 M3

PM m5

PM m4

Body

...

Call m*(arg)!R m1(fid1, val)
!R m2(fid2, val)
!R m3(fid3, val)

Primitive Example 1

!R m*(fid∗)

!R *(val)

?Q m3(fid3, arg)
?Q m2(fid2, arg)
?Q m1(fid1, arg)

?R m5(p5, val)

?R m4(p4, val)

!Q m5(p5, arg)

!Q m4(p4, arg)

GetValue m5(p5, val)

New m5(p5)

G
e
tP

ro
x
y

m
*

New m4(p4)

!Recycle m5(p5)
!Recycle m4(p4)

GetValue m4(p4, val)

P1.1

P1.2
Serve m*(fid∗, arg)

P1.4

P2.1
P1.3

P2.2 P2.6

P2.4

P2.3

P2.5

Queue Proxy m5[p5]

Proxy m4[p4]

Figure 4: pNet for the Simple Primitive Component from Figure 2

adequate service method, calledMi in the �gure. Once a result is computed for the request, a
!R_mi action is emitted with the right future identi�er �d and result value val.

The service method can call external components through client interfaces. Each method of
each client interface is equipped with a proxy manager PM_mi on which the caller can perform a
GetProxy. Upon request, a fresh future proxy Proxy_mi is allocated and returned by a New_mi

action that acts as a response to the GetProxy ; there is a family of future proxies for each method
of each client interface. Then the outgoing call is emitted with the reference to the corresponding
proxy sent as parameter (!Q_mi). Finally when a result is computed the reply ?R_mi is received
by the adequate proxy and the result can be accessed by GetValue_mi actions performed by
some service methods. Then, service methods can emit Recycle actions that are sent to the
adequate proxy and proxy manager.

4.1.2 pNets and Synchronisation Vectors

This section formalises and generalises the principles depicted in the previous section. Primi-
tive components encode the business code of the application. Consequently, the behaviour of
primitive components include the behaviour of �service methods�: those methods represent the
code written by the programmer, it is the only part for which we do not specify the generation
of the behavioural model. We suppose that for each service method ml, for a set of methods
Mk∈K

k de�ned by the component, Jml, M
k∈K
k Kservice provides a pNet expressing the behaviour

of this service method. Concerning the rest of the behaviour of a primitive component below, it
is computed by the rules shown in this section.

RR n° 8167

18 Boulifa, Henrio, Madelaine & Savu

ml∈L
l = MethLabel(SItf i∈I

i)

Q = Queue(ml∈L
l ∪NF) B = Jml∈L

l ,NFKbody ∀l ∈ L.SMl = Jml, M
k∈K
k Kservice

∀j ∈ J. let mn∈N
n = MethLabel(CItfj) in

for all n ∈ N let Fn =
←−−−−−−−−−−→
〈〈P, JmnK

N

proxy〉〉 in

Pj =
←−−−−−−→
〈〈P,Fn∈N

n 〉〉 and PMj =
←−−−−−−−−−−−−−−−−→
〈〈P, JmnKn∈N

proxyManager〉〉

SV = SVS(ml∈L
l) ∪ SVC(CItf j∈J

j , L)

JCName < SItf i∈I
i ,CItf j∈J

j , Mk∈K
k >K =

〈〈P,Labels,Q,B,
←−−−−−−−→
〈〈P,SMl∈L

l 〉〉,
←−−−−−−−→
〈〈P,PMj∈J

j 〉〉,
←−−−−−→
〈〈P,Pj∈J

j 〉〉, SV 〉〉

Note that P and Labels are �xed sets de�ned globally above. The pNet corresponding to a
primitive component is made of:

� A queue able to receive incoming requests: it can enqueue a request on a method label
of one of the server interfaces, we use here a pNet queue constructor. The queue is also
given a set of method labels NF, it contains the set of non-functional requests that can be
accepted by the component; we will use this set in Section 5.2 and 5.3. For the moment,
NF = ∅.

� A body that will serve all the requests that can reach the queue, it will delegate the

treatment of the request to the service methods
←−−−−−−−→
〈〈P,SMl∈L

l 〉〉, the body constructor is also
given the set NF.

� Service methods: there is one service method for each method label of a server interface,
it encodes the business logic of the component.

� A family PM of proxy managers indexed both over the set of client interfaces and over
the methods of those interfaces: those managers are responsible for allocating a new proxy
when requested, and activating those newly created proxies.

� A family P of future proxies indexed over the set of client interfaces (J), the methods
of those interfaces (N), and proxy indexes, i.e. integers (N): a proxy is responsible for
receiving the result of a request made towards another component; when the value of the
result is needed by a service method, this method asks for the value to the adequate proxy.

Note the construct ml∈L
l = MethLabel(SItf i∈I

i) that de�nes both the value of each method
label ml and the set L over which it is indexed. This kind of constructs will be massively used
in the rest of this paper.

The set of synchronisation vectors for a primitive component is built by two functions: SVS

that provides the set of synchronisation vectors corresponding to the server interfaces, and SVC

for the client interfaces. Each of those sets is de�ned as the smallest set verifying the constraints
given in Table 1. Remember the synchronisation vector set also implicitly includes observation
vectors de�ned in Section 3.3.

Let us explain brie�y what are the synchronisation vectors generated by the inference rules,
more precisely, we focus on the synchronisation vectors for the GetProxy_mi actions, rule [P2.1].
One synchronisation vector for GetProxy_mi is generated for each l ∈ L, for each j ∈ J , and for

Inria

Behavioural Semantics for Asynchronous Components 19

Table 1: Server and client-side synchronisation vectors for primitive components.
The synchronised sub-pNets occur in the following order:
〈〈Queue,Body,ServiceMethods,ProxyManagers,Proxies〉〉

i ∈ L �d ∈ N

{〈?Q_mi(�d, arg),−,−,−,−〉 →?Q_mi(�d, arg), [1]
〈!Serve_mi(�d, arg), ?Serve_mi(�d, arg),−,−,−〉 → Serve_mi(�d, arg), [2]
〈−, !Call_mi(arg), i 7→?Call_mi(arg),−,−〉 → Call_mi(arg), [3]
〈−, !R_mi(�d), i 7→!R_mi(val),−,−〉 →!R_mi(�d, val)} [4]

⊆ SVS(mi∈L
i)

P1

j ∈ J l ∈ L m
i∈I
i = MethLabel(CItfj) i ∈ I p ∈ N

{〈−,−, l 7→!GetProxy_mi, j 7→i7→?GetProxy_mi,−〉 → GetProxy_mi, [1]
〈−,−, l 7→?New_mi(p), j 7→i7→!New_mi(p), j 7→i7→p7→?New_mi〉→New_mi(p), [2]
〈−,−, l 7→!Q_mi(p, arg),−,−〉 →!Q_mi(p, arg), [3]
〈−,−,−,−, j 7→i7→p7→?R_mi(val)〉 →?R_mi(p, val), [4]
〈−,−, l 7→?GetValue_mi(p, val),−, j 7→i7→p7→!GetValue_mi(val)〉 → GetValue_mi(p, val), [5]
〈−,−, l 7→!Recycle_mi(p), j 7→i7→?Recycle_mi(p), j 7→i7→p7→?Recycle_mi〉 → Recycle_mi(p) } [6]

⊆ SVC(CItf j∈J
j , L)

P2

each i ∈ I. Each synchronisation vector synchronises one action l 7→!GetProxy_mi
5 of the sub-

pNet containing the family of service methods, with one action j 7→i7→?GetProxy_mi of the sub-
pNet containing the family of proxy managers (for each interface). As each of the synchronisation
vectors of families of pNets triggers the action on the indexed element of the family, this line
allows one action !GetProxy_mi of one service method (indexed by l) to be synchronised with
the action ?GetProxy_mi of the proxy manager indexed by i of the interface indexed by j. The
action is globally visible as GetProxy_mi and will be (implicitly) observable in all the hierarchy
of pNets containing this one.

The set of service synchronisation vectors SVS de�ned in rule [P1] encodes the following
synchronisations: en-queueing an incoming request [P1.1], service of a request by the body [P1.2],
the body calling a service method to serve a request [P1.3], and the service method providing a
result for this served request [P1.4]. In the last case the result both noti�es the body process and
is returned to the outside of the primitive component. In all the actions, the method argument
or the returned value is used as parameter, plus when necessary the identi�er of the concerned
future (�d).

The set of client synchronisation vectors SVC is de�ned in rule [P2]; it encodes the following
synchronisations:

� obtaining a new future proxy which involves a call to the proxy manager [P2.1] and another
action [P2.2] for returning a fresh proxy identi�er and activating the corresponding future
proxy,

� the sending of a request from a service method to an external components [P2.3],

� the reception of a result by the future proxy [P2.4],

� the access to a future value [P2.5] from a service method, the future value is stored in the
future proxy,

5j 7→i7→a should be read j 7→(i7→a)

RR n° 8167

20 Boulifa, Henrio, Madelaine & Savu

� the eventual recycling of a future proxy [P2.6].

The function SVC receives as argument the set L of indexes over which service methods range.
This argument is necessary because all service methods can perform some of the actions, like
GetValue_mi.

Remember the interface called is encoded as part of the method label mi, consequently the
index of the concerned interface can be inferred from the MethLabel of the invoked method.
Note the indexing of proxy managers (by interfaces and methods) and of proxies (by interfaces,
methods, and proxy identi�er).

4.1.3 Body

The body is a pLTS modelling the service of the di�erent requests: for each service method, the
body can dequeue a request corresponding to this method, delegate the service to the appropriate
service method, wait for the computation of a result, and �nally return this result before de-
queueing a new request. It can be generated automatically from the set of service methods mi∈I

i

and the set of non-functional method m′
k

k∈K
. For simplicity, we suppose here methods m′

k have

a single argument. Jmi∈I
i , m′k∈K

k Kbody = 〈〈P, S, s0, L,→〉〉 where:

� S = {s0} ∪
⋃

i∈I

{si(�d, arg)} ∪
⋃

i∈I

{s′i(�d)} ∪
⋃

k∈K

{s′′k(i)}

� L =
⋃

i∈I

{?Serve_mi(�d, arg), !Call_mi(arg), !R_mi(�d)} ∪
⋃

k∈K

{?Serve_m′
k(i), !m′

k(i)}

� →=
⋃

i∈I

{s0
?Serve_mi(�d,arg)
−−−−−−−−−−−−−−→ si(�d, arg)} ∪

⋃

i∈I

{si(�d, arg)
!Call_mi(arg)
−−−−−−−−−−→ s′i(�d)}

∪
⋃

i∈I

{s′i(�d)
!R_mi(�d)
−−−−−−−−→ s0}

∪
⋃

k∈K

{s0
?Serve_m′

k(i)
−−−−−−−−−−→ s′′k(i)} ∪

⋃

k∈K

{s′′k(i)
!m′

k(i)
−−−−→ s0}

For each method m, the body pLTS can always perform the three actions ?Serve_m, then
!Call_m and then !R_m. It also includes the services of the non-functional requests, which after
the ?Serve_m′ action, only triggers a m′ action. This body encodes a mono-threaded component
behaviour where no two requests are served at the same time. This corresponds indeed to the
behaviour of the ProActive/GCM framework, and more generally to the behaviour of active-
objects or actors. Allowing the body to serve multiple requests at the same time would be quite
easy but the resulting behaviour would be much more complex.

Figure 5 provides a graphical de�nition for the pLTS of the body de�ned above (in the rest of
this paper we will express pLTSs graphically). The graph shows a body able to serve three func-
tional requests (m0, m1, and m2) and two non-functional ones (bind_Itf(i) and unbind_Itf(i)).
Those are the two kinds of non-functional requests that will be used for dealing with recon�gu-
ration in Section 5.36.

4.1.4 Service Methods

The behaviour for each service method is expressed by a pNet, used when serving the corre-
sponding request. This behaviour is either obtained by source code analysis, or provided by the

6Non-functional requests used in Section 5.2 are similar except that unbind_Itf has no parameter.

Inria

Behavioural Semantics for Asynchronous Components 21

BodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBody

?Serve_m0(fid,arg)?Serve_m0(fid,arg)?Serve_m0(fid,arg)?Serve_m0(fid,arg)?Serve_m0(fid,arg)?Serve_m0(fid,arg)?Serve_m0(fid,arg)?Serve_m0(fid,arg)?Serve_m0(fid,arg)?Serve_m0(fid,arg)?Serve_m0(fid,arg)?Serve_m0(fid,arg)?Serve_m0(fid,arg)?Serve_m0(fid,arg)?Serve_m0(fid,arg)?Serve_m0(fid,arg)?Serve_m0(fid,arg)

?Serve_m1(fid,arg)?Serve_m1(fid,arg)?Serve_m1(fid,arg)?Serve_m1(fid,arg)?Serve_m1(fid,arg)?Serve_m1(fid,arg)?Serve_m1(fid,arg)?Serve_m1(fid,arg)?Serve_m1(fid,arg)?Serve_m1(fid,arg)?Serve_m1(fid,arg)?Serve_m1(fid,arg)?Serve_m1(fid,arg)?Serve_m1(fid,arg)?Serve_m1(fid,arg)?Serve_m1(fid,arg)?Serve_m1(fid,arg)
?Serve_m2(fid,arg)?Serve_m2(fid,arg)?Serve_m2(fid,arg)?Serve_m2(fid,arg)?Serve_m2(fid,arg)?Serve_m2(fid,arg)?Serve_m2(fid,arg)?Serve_m2(fid,arg)?Serve_m2(fid,arg)?Serve_m2(fid,arg)?Serve_m2(fid,arg)?Serve_m2(fid,arg)?Serve_m2(fid,arg)?Serve_m2(fid,arg)?Serve_m2(fid,arg)?Serve_m2(fid,arg)?Serve_m2(fid,arg)

!Call_m0(arg)!Call_m0(arg)!Call_m0(arg)!Call_m0(arg)!Call_m0(arg)!Call_m0(arg)!Call_m0(arg)!Call_m0(arg)!Call_m0(arg)!Call_m0(arg)!Call_m0(arg)!Call_m0(arg)!Call_m0(arg)!Call_m0(arg)!Call_m0(arg)!Call_m0(arg)!Call_m0(arg)

!Call_m1(arg)!Call_m1(arg)!Call_m1(arg)!Call_m1(arg)!Call_m1(arg)!Call_m1(arg)!Call_m1(arg)!Call_m1(arg)!Call_m1(arg)!Call_m1(arg)!Call_m1(arg)!Call_m1(arg)!Call_m1(arg)!Call_m1(arg)!Call_m1(arg)!Call_m1(arg)!Call_m1(arg)

!Call_m2(arg)!Call_m2(arg)!Call_m2(arg)!Call_m2(arg)!Call_m2(arg)!Call_m2(arg)!Call_m2(arg)!Call_m2(arg)!Call_m2(arg)!Call_m2(arg)!Call_m2(arg)!Call_m2(arg)!Call_m2(arg)!Call_m2(arg)!Call_m2(arg)!Call_m2(arg)!Call_m2(arg)!R_m0(fid)!R_m0(fid)!R_m0(fid)!R_m0(fid)!R_m0(fid)!R_m0(fid)!R_m0(fid)!R_m0(fid)!R_m0(fid)!R_m0(fid)!R_m0(fid)!R_m0(fid)!R_m0(fid)!R_m0(fid)!R_m0(fid)!R_m0(fid)!R_m0(fid)

!R_m1(fid)!R_m1(fid)!R_m1(fid)!R_m1(fid)!R_m1(fid)!R_m1(fid)!R_m1(fid)!R_m1(fid)!R_m1(fid)!R_m1(fid)!R_m1(fid)!R_m1(fid)!R_m1(fid)!R_m1(fid)!R_m1(fid)!R_m1(fid)!R_m1(fid) !R_m2(fid)!R_m2(fid)!R_m2(fid)!R_m2(fid)!R_m2(fid)!R_m2(fid)!R_m2(fid)!R_m2(fid)!R_m2(fid)!R_m2(fid)!R_m2(fid)!R_m2(fid)!R_m2(fid)!R_m2(fid)!R_m2(fid)!R_m2(fid)!R_m2(fid)

?Serve_Unbind_Itf(i)?Serve_Unbind_Itf(i)?Serve_Unbind_Itf(i)?Serve_Unbind_Itf(i)?Serve_Unbind_Itf(i)?Serve_Unbind_Itf(i)?Serve_Unbind_Itf(i)?Serve_Unbind_Itf(i)?Serve_Unbind_Itf(i)?Serve_Unbind_Itf(i)?Serve_Unbind_Itf(i)?Serve_Unbind_Itf(i)?Serve_Unbind_Itf(i)?Serve_Unbind_Itf(i)?Serve_Unbind_Itf(i)?Serve_Unbind_Itf(i)?Serve_Unbind_Itf(i)

!Unbind_Itf(i)!Unbind_Itf(i)!Unbind_Itf(i)!Unbind_Itf(i)!Unbind_Itf(i)!Unbind_Itf(i)!Unbind_Itf(i)!Unbind_Itf(i)!Unbind_Itf(i)!Unbind_Itf(i)!Unbind_Itf(i)!Unbind_Itf(i)!Unbind_Itf(i)!Unbind_Itf(i)!Unbind_Itf(i)!Unbind_Itf(i)!Unbind_Itf(i)

?Serve_Bind_Itf(i)?Serve_Bind_Itf(i)?Serve_Bind_Itf(i)?Serve_Bind_Itf(i)?Serve_Bind_Itf(i)?Serve_Bind_Itf(i)?Serve_Bind_Itf(i)?Serve_Bind_Itf(i)?Serve_Bind_Itf(i)?Serve_Bind_Itf(i)?Serve_Bind_Itf(i)?Serve_Bind_Itf(i)?Serve_Bind_Itf(i)?Serve_Bind_Itf(i)?Serve_Bind_Itf(i)?Serve_Bind_Itf(i)?Serve_Bind_Itf(i)

!Bind_Itf(i)!Bind_Itf(i)!Bind_Itf(i)!Bind_Itf(i)!Bind_Itf(i)!Bind_Itf(i)!Bind_Itf(i)!Bind_Itf(i)!Bind_Itf(i)!Bind_Itf(i)!Bind_Itf(i)!Bind_Itf(i)!Bind_Itf(i)!Bind_Itf(i)!Bind_Itf(i)!Bind_Itf(i)!Bind_Itf(i)

Figure 5: Graphical representation of the behaviour of the Body

user. It can for example be composed of the execution of several LTSs expressing the behaviour
of each local method

4.1.5 Modelling of the Future Proxies

Communicating by asynchronous requests allows each component to execute asynchronously from
the others. However it is commonly necessary to obtain a result for some of those asynchronous
invocations. A convenient abstraction for dealing with response to asynchronous requests is
the notion of futures. Technically, a future is often implemented by a proxy that represents
the result and is accessible both locally to know whether the result came back, and remotely
by the invoked component that wants to return the result. We represent those notions in our
behavioural models. Such future proxies have to be instantiated upon need; thus, to allocate
fresh futures, we use proxy managers that will be invoked before performing an asynchronous
request. Finally, we leave the opportunity for the service methods to inform the manager that a
future proxy is no longer useful and can be recycled; this behaviour is also encoded in our future
proxies and managers.

Remember future proxies are families indexed by client interface index, method index, and
future identi�er; proxy managers are indexed by client interface index and method index. We
propose a speci�cation of manager and future proxy in Figure 6.

The behavioural semantics of the proxy manager is de�ned by the pLTS ProxyManager_m
shown on the right side of Figure 6; it is denoted by JmKproxyManager. It maintains a list of

available proxies and returns a fresh future (by a New action), or if there is no more fresh future,
raises an error NoMoreProxy. Indeed, in our speci�cation, we let future identi�ers be indexed
by N but if one wants to perform �nite model-checking, a bound should be chosen on the size of
each future proxy family, and in each proxy manager, Max_Proxy should be set to the chosen
bound (which could be di�erent for each manager).

Each proxy has a much simpler behaviour; JmKproxy is de�ned by the pLTS Proxy_m shown
on the left side of Figure 6. Once activated by a New_m action, it waits for the corresponding
reply (?R_m(val)). At this point, the proxy can be accessed to know the result of the request
invocation, it continuously sends the result to the service methods by a !GetValue_m(val) output
action until the proxy is recycled.

The proxies in Figure 6 are endowed with a Recycle_m transition, bringing back the proxy
in its initial state. This is useful when information can be computed, e.g., by static analysis
techniques, that the proxy will not be used anymore, so it can be made available again in the
proxy pool of the ProxyManager. The Recycle_m event should be sent by the LTS modelling a

RR n° 8167

22 Boulifa, Henrio, Madelaine & Savu

Proxy_mProxy_mProxy_mProxy_mProxy_mProxy_mProxy_mProxy_mProxy_mProxy_mProxy_mProxy_mProxy_mProxy_mProxy_mProxy_mProxy_m
val:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultType

?R_m(val)?R_m(val)?R_m(val)?R_m(val)?R_m(val)?R_m(val)?R_m(val)?R_m(val)?R_m(val)?R_m(val)?R_m(val)?R_m(val)?R_m(val)?R_m(val)?R_m(val)?R_m(val)?R_m(val)

!GetValue_m(val)!GetValue_m(val)!GetValue_m(val)!GetValue_m(val)!GetValue_m(val)!GetValue_m(val)!GetValue_m(val)!GetValue_m(val)!GetValue_m(val)!GetValue_m(val)!GetValue_m(val)!GetValue_m(val)!GetValue_m(val)!GetValue_m(val)!GetValue_m(val)!GetValue_m(val)!GetValue_m(val)

?Recycle_m?Recycle_m?Recycle_m?Recycle_m?Recycle_m?Recycle_m?Recycle_m?Recycle_m?Recycle_m?Recycle_m?Recycle_m?Recycle_m?Recycle_m?Recycle_m?Recycle_m?Recycle_m?Recycle_m
?New_m?New_m?New_m?New_m?New_m?New_m?New_m?New_m?New_m?New_m?New_m?New_m?New_m?New_m?New_m?New_m?New_m

ProxyManager_mProxyManager_mProxyManager_mProxyManager_mProxyManager_mProxyManager_mProxyManager_mProxyManager_mProxyManager_mProxyManager_mProxyManager_mProxyManager_mProxyManager_mProxyManager_mProxyManager_mProxyManager_mProxyManager_m
Pool_Proxy:array[1..Max_Proxy]Pool_Proxy:array[1..Max_Proxy]Pool_Proxy:array[1..Max_Proxy]Pool_Proxy:array[1..Max_Proxy]Pool_Proxy:array[1..Max_Proxy]Pool_Proxy:array[1..Max_Proxy]Pool_Proxy:array[1..Max_Proxy]Pool_Proxy:array[1..Max_Proxy]Pool_Proxy:array[1..Max_Proxy]Pool_Proxy:array[1..Max_Proxy]Pool_Proxy:array[1..Max_Proxy]Pool_Proxy:array[1..Max_Proxy]Pool_Proxy:array[1..Max_Proxy]Pool_Proxy:array[1..Max_Proxy]Pool_Proxy:array[1..Max_Proxy]Pool_Proxy:array[1..Max_Proxy]Pool_Proxy:array[1..Max_Proxy]
p:natp:natp:natp:natp:natp:natp:natp:natp:natp:natp:natp:natp:natp:natp:natp:natp:nat

?GetProxy_m?GetProxy_m?GetProxy_m?GetProxy_m?GetProxy_m?GetProxy_m?GetProxy_m?GetProxy_m?GetProxy_m?GetProxy_m?GetProxy_m?GetProxy_m?GetProxy_m?GetProxy_m?GetProxy_m?GetProxy_m?GetProxy_m
p:=0p:=0p:=0p:=0p:=0p:=0p:=0p:=0p:=0p:=0p:=0p:=0p:=0p:=0p:=0p:=0p:=0

[Pool_Proxy(p).free=False][Pool_Proxy(p).free=False][Pool_Proxy(p).free=False][Pool_Proxy(p).free=False][Pool_Proxy(p).free=False][Pool_Proxy(p).free=False][Pool_Proxy(p).free=False][Pool_Proxy(p).free=False][Pool_Proxy(p).free=False][Pool_Proxy(p).free=False][Pool_Proxy(p).free=False][Pool_Proxy(p).free=False][Pool_Proxy(p).free=False][Pool_Proxy(p).free=False][Pool_Proxy(p).free=False][Pool_Proxy(p).free=False][Pool_Proxy(p).free=False]

[p=Max_Proxy][p=Max_Proxy][p=Max_Proxy][p=Max_Proxy][p=Max_Proxy][p=Max_Proxy][p=Max_Proxy][p=Max_Proxy][p=Max_Proxy][p=Max_Proxy][p=Max_Proxy][p=Max_Proxy][p=Max_Proxy][p=Max_Proxy][p=Max_Proxy][p=Max_Proxy][p=Max_Proxy]
!Error(NoMoreProxy)!Error(NoMoreProxy)!Error(NoMoreProxy)!Error(NoMoreProxy)!Error(NoMoreProxy)!Error(NoMoreProxy)!Error(NoMoreProxy)!Error(NoMoreProxy)!Error(NoMoreProxy)!Error(NoMoreProxy)!Error(NoMoreProxy)!Error(NoMoreProxy)!Error(NoMoreProxy)!Error(NoMoreProxy)!Error(NoMoreProxy)!Error(NoMoreProxy)!Error(NoMoreProxy)

[p<Max_Proxy][p<Max_Proxy][p<Max_Proxy][p<Max_Proxy][p<Max_Proxy][p<Max_Proxy][p<Max_Proxy][p<Max_Proxy][p<Max_Proxy][p<Max_Proxy][p<Max_Proxy][p<Max_Proxy][p<Max_Proxy][p<Max_Proxy][p<Max_Proxy][p<Max_Proxy][p<Max_Proxy]
p++p++p++p++p++p++p++p++p++p++p++p++p++p++p++p++p++

[Pool_Proxy(p).free=true][Pool_Proxy(p).free=true][Pool_Proxy(p).free=true][Pool_Proxy(p).free=true][Pool_Proxy(p).free=true][Pool_Proxy(p).free=true][Pool_Proxy(p).free=true][Pool_Proxy(p).free=true][Pool_Proxy(p).free=true][Pool_Proxy(p).free=true][Pool_Proxy(p).free=true][Pool_Proxy(p).free=true][Pool_Proxy(p).free=true][Pool_Proxy(p).free=true][Pool_Proxy(p).free=true][Pool_Proxy(p).free=true][Pool_Proxy(p).free=true]
!New_m(p)!New_m(p)!New_m(p)!New_m(p)!New_m(p)!New_m(p)!New_m(p)!New_m(p)!New_m(p)!New_m(p)!New_m(p)!New_m(p)!New_m(p)!New_m(p)!New_m(p)!New_m(p)!New_m(p)
Pool_Proxy(p).free:=falsePool_Proxy(p).free:=falsePool_Proxy(p).free:=falsePool_Proxy(p).free:=falsePool_Proxy(p).free:=falsePool_Proxy(p).free:=falsePool_Proxy(p).free:=falsePool_Proxy(p).free:=falsePool_Proxy(p).free:=falsePool_Proxy(p).free:=falsePool_Proxy(p).free:=falsePool_Proxy(p).free:=falsePool_Proxy(p).free:=falsePool_Proxy(p).free:=falsePool_Proxy(p).free:=falsePool_Proxy(p).free:=falsePool_Proxy(p).free:=false

?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)
Pool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=true

?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)
Pool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=true

?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)
Pool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=true

Figure 6: pLTSs for the Future Proxies and Proxy Managers

service method. When such an event is received by the ProxyManager, this sets the corresponding
entry in the Pool_Proxy to free. For generality, the proxy manager accepts Recycle_m transitions
in every state, even if for mono-threaded GCM components, this action can only be received when
the proxy manager is in its initial state.

4.1.6 Dealing with stateful components

The semantics we presented here does not allow to store a state for the components, however it is
easy to add component variables in our speci�cation. Indeed it is su�cient to add an additional
sub-pNet to the pNet of the primitive component that stores the value of the variables and accepts
set and get actions. Those actions will be triggered by the service methods so synchronisation
vectors for those setters and getters are also necessary, they relate service methods and the new
sub-pNet dedicated to state management.

Such a state management pNet can also be used to express the behaviour of an attribute
controller. In Fractal, an attribute is a con�gurable property of a component, it can be accessed
and modi�ed by setter and getter functions, exposed outside the component as a non-functional
interface. The attribute controller interface is a non-functional interface exposed by the compo-
nent. Attributes that can be stored and modi�ed can be expressed in pNets by adding the getter
and setter functions to the requests that can be enqueued, and by adding synchronisation vectors
from the body to the sub-pNet dedicated to state management for getter and setter actions.

In the case of composite components (de�ned in the next section), a state management
pNet can be necessary to con�gure the non-functional aspects (a composite component has no
functional internal state). It can be expressed similarly.

4.2 Semantics of composite components

Hierarchical component models, like GCM, allow the speci�cation of new components, based on
the composition of others. Such a composition abstraction is very convenient when building large
applications. We start from the hypothesis that composite components are de�ned statically by

Inria

Behavioural Semantics for Asynchronous Components 23

some form of ADL (architecture description language) as de�ned in Section 2.3. The ADL
is used to synchronise the emission and reception of communication actions between the sub-
components. Additionally, a composite has a request queue for receiving requests coming from
the outside or the inside of the component, it treats each of those requests by sending it to the
adequate component or emitting a request to the outside world. For this the composite has
future proxies but as the requests only transit through the component, we implement special
future proxies that perform future redirection: when a future proxy is created, it receives the
identi�er for another future f ′ and when the reply will come back, it will be immediately re-sent
as a reply for the future f ′.

4.2.1 Illustrative Example

Figure 7 shows the pNets structure corresponding to the composite component of Figure 1. It
illustrates the structure of the pNets we generate for specifying the behaviour of a composite
component. We use it here to illustrate how we are able to generate behavioural models for GCM
components.

A B

Composite Example 1

Body

CPM m0

CPM m1

CPM m2

CProxy m1[p]

CProxy m2[p]

CProxy m4[p]

?R m4(p, val)

?R m2(p, val)

?R m1(p, val)

CPM m4

CProxy m0[q]

!Q m4(fb, arg)

!R m0(q, val)

?Q m0(f, arg)

!R m0(f, val)

?Q {m1,m2,m4}(f, arg)

?R m4(fb, val)

!New m0(f, q)

Deleg m0

!Q m1(p, arg)

!Q m2(p, arg)

!Q m4(p, arg)

!New m1(fa, p)

!New m2(fa, p)

!New m4(fb, p)

?R m1(fa, val)
?R m2(fa, val)

!R m1(fa)

!R m2(fa)

!R m4(fb)

?Recycle m(p)

!R m0(f)

C3

C4.2

C5.2

C6.1

C4.2

C6.2

C7.2

C7.1

C2.1
Serve *(f, arg)

C1.1

C4.1

!GetProxy m0(f)

Q m3(f, arg)

R m3(f, val)

!Call m0(f, arg)

Deleg m
!Call m(f, arg)

C2.2

!R m2(f)

C5.1

C2.2

∀m in {m1,m2,m4}

!R m0(f)

C4.1
!GetProxy m(f)

∀m in {m1,m2,m4}

!Q m2(fa, arg)
!Q m1(fa, arg)

!R m1(f) !R m3(f)

?Recycle m0(q)

Queue

Queue

?Q m0(q, arg)

Figure 7: pNet for the Composite Component from Figure 1

Two sub-pNets A and B represent the behaviour of sub-components A and B. A queue pNet
receives ?Q_m0(f,arg) requests where f is the future corresponding to the request and arg the
value passed as argument. Serve* communications allow the body to retrieve those requests,
which will then be treated by the Deleg_m0 pNet, this pNet receives Call communications from
the body and delegates the request to an inner component (here, A); during this process, a future
proxy is created by the proxy manager (process CPM_m0), the proxy (process CProxy_m0[q]) is
responsible for receiving the reply when A has �nished the request treatment and for forwarding
this result to the outside of the composite component: R_m0(q,val) that becomes R_m0(f,val).

RR n° 8167

24 Boulifa, Henrio, Madelaine & Savu

Note that this proxy encodes some basic form of �rst-class future: the future q corresponds to
the same result as the future f.

Similarly, requests emitted by the inner components arrive in the queue (we draw two Queue
boxes, but they correspond to the same element), they are then delegated to the outside world
by a similar mechanism: a Deleg_m pNet delegates the call, and creates a future proxy, which
will be responsible for sending back the result to the appropriate inner component. Here again
the proxy manages the fact that both the future q and the future fa (or fb) represent the same
result.

Finally, note the proxy structure we adopt: there is one proxy manager CPM* for each
method of each interface (proxy managers are both indexed over interfaces and over methods).
Then each of those manager itself manages a family of proxies CProxy*. Performing model-
checking on those structures then requires a precise de�nition and optimisation of the number
and size of those families.

All the communications expressed above, but also the communication channels between the
di�erent inner components � requests Q_m3 and the corresponding replies R_m3 � correspond
to synchronisation vectors of the pNet of the composite. Each box is a pLTS or a family of
pLTSs, except inner components that are more complex pNets.

4.2.2 Global structure

The semantics of a composite component is described below; the �rst di�erence compared to the
semantics of primitive components is that it does not rely on service method speci�cation, instead
it delegates requests to sub-components, some of the sub-pNets of a composite component's pNet
correspond to the behaviour of the sub-components. Like primitive components, the behaviour of
composite components include a proxy manager and proxy families, but in the case of composites,
we also need one future proxy family for each method of each server interface. Indeed the service
of requests received on a server interface will be delegated to a sub-component, and thus a future
is necessary to represent the result of such a delegated request. Note the use of the Symm
function to take the symmetrical role of an interface and to transform those server interfaces into
client ones. For similar reasons, the request queue can receive requests on all methods of all the
interfaces of the composite component, both server and client (i.e., internal server) ones.

To delegate a request to an inner component or from an inner component to an external one,
�delegation methods� are used, they are denoted DM. Delegation methods transform a request
into another and a special proxy for future is used in order to remember the relationship between
the original future and the future of the new delegated request.

m
l∈L
l =

]

j∈J

MethLabel(SItfj) ⊎
]

i∈I

MethLabel(CItfi) Q=Queue(ml∈L
l ∪NF)

B=Jml∈L
l ,NF Kbody ∀l∈L.DMl =JmlKdelegate Itfh∈H

h =(CItf i∈I
i) ⊎ (Symm(SItfj)

j∈J)

∀h∈H. let m
n∈N
n = MethLabel(Itfh) in

for all n ∈ N let Fn =
←−−−−−−−−−−→
〈〈P, JmnKN

proxy〉〉 in

Ph =
←−−−−−−→
〈〈P,Fn∈N

n 〉〉 and PMh =
←−−−−−−−−−−−−−−−−→
〈〈P, JmnKn∈N

proxyManager〉〉

SV = SVS(MethLabel(SItf i∈I
i), MethLabel(CItf i∈I

i)) ∪ SVC(CItf j∈J
j , Itfh∈H

h)

∪ SVB(Bindingb∈B
b ,SItf i∈I

i ,CItf j∈J
j ,Compk∈K

k)

JCName < SItf i∈I
i ,CItf j∈J

j ,Compk∈K
k ,Bindingb∈B

b >K =

〈〈P,Labels,Q,B,
←−−−−−−−→
〈〈P,DMl∈L

l 〉〉,
←−−−−−−−−→
〈〈P,PMh∈H

h 〉〉,
←−−−−−−→
〈〈P,Ph∈H

h 〉〉,
←−−−−−−−−−−−→
〈〈P, JCompkKk∈K〉〉,SV〉〉

The body and the queue are similar to the ones of primitive components.

Inria

Behavioural Semantics for Asynchronous Components 25

4.2.3 Future Proxies

The behaviour of future proxies for composite component is slightly di�erent from the one of
primitive ones, as illustrated in Figure 8: the process CProxy_m in the �gure gives the new value
of the proxy semantics JmKproxy. The delegation methods create those proxy to remember the
identi�er of the future that the delegation method should serve. Consequently, the future proxy
receives a future identi�er and will return it upon need. The future proxy thus �rst receives a
New action with a future identi�er as parameter and then emits an !R_m(f). Such a proxy is
somehow automatically recycled as, by construction, we know it is only used once.

4.2.4 Delegation Methods

The Deleg_m process, also shown in Figure 8 expresses the generation of delegate methods:
JmKdelegate is given by the pLTS Deleg_m. This delegation process receives a Call invocation

from the body, creates a future proxy, launches a remote invocation (either to an inner or to an
external component) and �nishes its execution. This way the composite component can continue
its execution and serve another request, but the process of the future proxy is still running in
order to redirect the reply towards the right future identi�er. The proxyManager for composite
component is not shown, indeed it is a direct adaptation of the primitive one (Figure 6): it behaves
exactly the same except that the GetProxy action receives a future identi�er as parameter, this
parameter is then passed as argument in the New emission action (it will be used by the future
proxy).

CProxy_mCProxy_mCProxy_mCProxy_mCProxy_mCProxy_mCProxy_mCProxy_mCProxy_mCProxy_mCProxy_mCProxy_mCProxy_mCProxy_mCProxy_mCProxy_mCProxy_m
f:natf:natf:natf:natf:natf:natf:natf:natf:natf:natf:natf:natf:natf:natf:natf:natf:nat

?New_m(f)?New_m(f)?New_m(f)?New_m(f)?New_m(f)?New_m(f)?New_m(f)?New_m(f)?New_m(f)?New_m(f)?New_m(f)?New_m(f)?New_m(f)?New_m(f)?New_m(f)?New_m(f)?New_m(f)!R_m(f)!R_m(f)!R_m(f)!R_m(f)!R_m(f)!R_m(f)!R_m(f)!R_m(f)!R_m(f)!R_m(f)!R_m(f)!R_m(f)!R_m(f)!R_m(f)!R_m(f)!R_m(f)!R_m(f)

Deleg_mDeleg_mDeleg_mDeleg_mDeleg_mDeleg_mDeleg_mDeleg_mDeleg_mDeleg_mDeleg_mDeleg_mDeleg_mDeleg_mDeleg_mDeleg_mDeleg_m
arg:argTypearg:argTypearg:argTypearg:argTypearg:argTypearg:argTypearg:argTypearg:argTypearg:argTypearg:argTypearg:argTypearg:argTypearg:argTypearg:argTypearg:argTypearg:argTypearg:argType
p,f:natp,f:natp,f:natp,f:natp,f:natp,f:natp,f:natp,f:natp,f:natp,f:natp,f:natp,f:natp,f:natp,f:natp,f:natp,f:natp,f:nat

?Call_m(f,arg)?Call_m(f,arg)?Call_m(f,arg)?Call_m(f,arg)?Call_m(f,arg)?Call_m(f,arg)?Call_m(f,arg)?Call_m(f,arg)?Call_m(f,arg)?Call_m(f,arg)?Call_m(f,arg)?Call_m(f,arg)?Call_m(f,arg)?Call_m(f,arg)?Call_m(f,arg)?Call_m(f,arg)?Call_m(f,arg)

!GetProxy_m(f)!GetProxy_m(f)!GetProxy_m(f)!GetProxy_m(f)!GetProxy_m(f)!GetProxy_m(f)!GetProxy_m(f)!GetProxy_m(f)!GetProxy_m(f)!GetProxy_m(f)!GetProxy_m(f)!GetProxy_m(f)!GetProxy_m(f)!GetProxy_m(f)!GetProxy_m(f)!GetProxy_m(f)!GetProxy_m(f)

?New_m(p)?New_m(p)?New_m(p)?New_m(p)?New_m(p)?New_m(p)?New_m(p)?New_m(p)?New_m(p)?New_m(p)?New_m(p)?New_m(p)?New_m(p)?New_m(p)?New_m(p)?New_m(p)?New_m(p)

!Q_m(p,arg)!Q_m(p,arg)!Q_m(p,arg)!Q_m(p,arg)!Q_m(p,arg)!Q_m(p,arg)!Q_m(p,arg)!Q_m(p,arg)!Q_m(p,arg)!Q_m(p,arg)!Q_m(p,arg)!Q_m(p,arg)!Q_m(p,arg)!Q_m(p,arg)!Q_m(p,arg)!Q_m(p,arg)!Q_m(p,arg)

Figure 8: Auxiliary processes proxy and delegate of composite components

4.2.5 Synchronisation Vectors

Synchronisation vectors are now organised into three sets: server-side (SVS), client-side (SVC),
and binding-related (SVB) synchronisation vectors. The set of server and client synchronisa-
tion vectors is the smallest set verifying the rules given in Table 2 (and including the implicit
observation synchronisation vectors).

The server-side synchronisation vectors are de�ned by rules [C1] and [C2]. [C1] allows external
components to enqueue a request in the queue, for each method of a server interface of the
composite (given as �rst argument of SVS). Note that replies (!R_m) are not part of this rule
because they depend on the bindings of the component; consequently they are treated among the
binding synchronisation vectors. Rule [C2] uses a bigger set of methods as it takes into account
requests of the server interfaces and the client interfaces of the composite; indeed, remember
client interfaces have an associated internal server interface accessible by the sub-components

RR n° 8167

26 Boulifa, Henrio, Madelaine & Savu

Table 2: Server and client-side synchronisation vectors.
The synchronised sub-pNets occur in the following order:
〈〈Queue,Body,DelegationMethods,ProxyManagers,Proxies,Subcomponents〉〉

i ∈ L f ∈ N

〈?Q_mi(f, arg),−,−,−,−〉 →?Q_mi(f, arg) ∈ SVS(ml∈L
l , m

′
l
l∈L′

)
C1

(i ∈ L ∧m = mi) ∨ (i ∈ L
′ ∧m = m

′
i) f ∈ N

{〈!Serve_m(f, arg), ?Serve_m(f, arg),−,−,−〉 → Serve_m(f, arg), [1]
〈−, !Call_m(f, arg), i 7→?Call_m(f, arg),−,−〉 → Call_m(f, arg) } [2]

⊆ SVS(ml∈L
l , m

′
l
l∈L′

)

C2

j ∈ J m
k∈K
k = MethLabel(CItfj) k ∈ K f, p ∈ N

〈−, !R_mn(f), k 7→!Q_mk(p, arg),−,−,−〉 →!Q_mk(p, arg) ∈ SVC(CItf j∈J
j , Itf h∈H

h)
C3

h ∈ H m
k∈K
k = MethLabel(Itfh) k ∈ K f, p ∈ N

{〈−,−, k 7→!GetProxy_mk(f), h 7→k 7→?GetProxy_mk(f),−,−〉 → GetProxy_mk(f), [1]
〈−,−, k 7→?New_mk(p), h 7→k 7→!New_mk(p, f), h 7→k 7→p7→?New_mk(f),−〉→New_mk(p, f)} [2]

⊆ SVC(CItf j∈J
j , Itf h∈H

h)

C4

of the composite. This second rule uses the second argument of SVS , i.e., the list of client and
server interfaces of the component. It deals with request service [C2.1], and subsequent calls
[C2.2] to delegation pNets.

Client-side synchronisation vectors are expressed by rules [C3] and [C4] of Table 2. Similarly
to the server case, [C3] is speci�c to external client interfaces (given as �rst argument of SVC),
whether [C4] is applicable to both external and internal client interfaces (the second argument
of SVC). Remember the internal client interfaces are the symmetric of server interfaces of the
composite component. The �rst rule exports request sending (Q_m) sent by delegate methods
to the external components. Note that delegate methods are indexed by the method labels of the
interfaces: in the pNet de�nition ml∈L

l = MethLabel(SItf j∈J
j) ⊎MethLabel(CItf i∈I

i), and thus
each l ∈ L is considered as equal to a method index k of a single interface i. Consequently, the
request sending action (!Q_mk) is always issued by the delegate method indexed by k. Rule
[C4] allows delegation methods to instantiate new proxies (by calls to the proxy manager and
to the future proxies). Compared to the case of the primitive component, note the additional
argument f passed to the proxy manager. This future identi�er allows the future proxy (indexed
p) to remember that the reply it will receive should be forwarded to the caller as the value for
the future identi�er f (and not p). In other words, the proxy remembers that the future p it
will receive is in fact an alias for the future f . Similarly to primitive components, there are two
actions for dealing with future proxy creations: GetProxy in [C4.1], and New in [C4.2].

Finally, the synchronisation vectors for the bindings of the composite component are shown
in Table 3. There are three rules for building SVB . Rule [C5] deals with import bindings, i.e.
bindings from the composite component's internal client interfaces to inner components. Sym-
metrically, [C6] concerns export bindings, from inner components to the composite component's
internal server interfaces. The last rule [C7] speci�es synchronisations due to bindings between
two inner components.

The �rst rule [C5] deals with import bindings. The �rst premise of the rule picks an import
binding, the next premises �nd the concerned server interface of the composite component,

Inria

Behavioural Semantics for Asynchronous Components 27

Table 3: Binding synchronisation vectors.
The synchronised sub-pNets occur in the following order:
〈〈Queue,Body,DelegationMethods,ProxyManagers,Proxies,Subcomponents〉〉

k∈K (This.SI, C.SI2) ∈ Bindingb∈B
b i ∈ I SI = Name(SItfi)

C = Name(Compk) m
n∈N
n = MethLabel(SItfi) n ∈ N m

′
n = mn{{SI← SI2}} q, f ∈ N

{〈−, !R_mn(f), n 7→!Q_mn(q, arg),−,−, k 7→?Q_m
′
n(q, arg)〉 → Q_mn(q, arg), [1]

〈−,−,−, i 7→n7→!Recycle_mn(q), i 7→n7→q 7→!R_mn(f), k 7→!R_mn(q, val)〉 →!R_m
′
n(f, val)} [2]

⊆ SVB(Bindingb∈B
b ,SItf i∈I

i ,CItf j∈J
j ,Compk∈K

k)

C5

k ∈ K (C.CI,This.CI2) ∈ Bindingb∈B
b j ∈ J CI2 = Name(CItfj)

C = Name(Compk) m
n∈N
n = MethLabel(CItfj) n ∈ N m

′
n = mn{{CI2 ← CI}} p, f ∈ N

{〈?Q_mn(f, arg),−,−,−,−, k 7→!Q_m
′
n(f, arg)〉 → Q_mn(f, arg), [1]

〈−,−,−, j 7→n7→!Recycle_mn(p), j 7→n7→p7→!R_mn(f), k 7→?R_m
′
n(f, val)〉 →?R_mn(p, val) } [2]

⊆ SVB(Bindingb∈B
b ,SItf i∈I

i ,CItf j∈J
j ,Compk∈K

k)

C6

k, k
′∈K (C.CI, C′

.SI) ∈ Bindingb∈B
b

C = Name(Compk) C
′ = Name(Compk′) CItf ′i

i∈I
= CItfs(Compk) i ∈ I

CI = Name(CItf ′i) m
n∈N
n = MethLabel(CItf ′i) n ∈ N m

′
n = mn{{CI← SI}} f ∈ N

{〈−,−,−,−,−, (k 7→!Q_mn(f, arg), k′
7→?Q_m

′
n(f, arg))〉 → Q_mn(f, arg), [1]

〈−,−,−,−,−, (k′
7→!R_m

′
n(f, val), k 7→?R_mn(f, val))〉 → R_mn(f, val) } [2]

⊆ SVB(Bindingb∈B
b ,SItf i∈I

i ,CItf j∈J
j ,Compk∈K

k)

C7

and the destination of the binding, i.e., a sub-component and its client interface. The only
remaining non-trivial premise is m′

n = mn{{SI ← SI2}}; it replaces in mn the occurrence of the
interface named SI by the interface SI2. Indeed, remember MethodLabels contain the name of
the invoked interface, this name must thus be updated when a request/reply/. . . is transmitted
from an interface to another7. Similar premises, renaming an interface name, will also be used
in rules [C6] and [C7]. The �rst item of Rule [C5.1] synchronises the emission of a request by
a delegate method with the inner component bound to the concerned internal client interface.
This action is also synchronised with the proxy for future that will receive the result computed
by the request. The case [C5.2] concerns the corresponding reply that is issued by the inner
component, this reply is sent to the outside of the composite component. Note that the inner
component emits a value for future q, that is directly synchronised with the future proxy number
q of the composite component; the identi�er of the future to be sent to the outside becomes f ;
it is retrieved from the future proxy, and an action !R_m′

n(f, val) is emitted. At the same time,
a recycling action is triggered in the proxy manager.

The second rule [C6] manages export bindings, it also has one item for request emission [C6.1]
and another one for reply reception [C6.2]. A request emitted by the inner component on the
�rst side of the binding is enqueued in the encompassing composite component (at the other side
of the binding). Replies are redirected when received by the encompassing component: when the
reply for future p is received, the future proxy at index p is used to retrieve the future identi�er
f , and �nally the result val is transmitted, associated with the future f , to the inner component
indexed by k. At the same time, a Recycle action is triggered in the adequate proxy manager.

Rule [C7] deals with bindings between two inner components. It considers a binding between
an interface of component C and an interface of component C ′. It �nds k, the index of C, and k′,

7at this point, other meta-informations encoded in the method label should also be updated.

RR n° 8167

28 Boulifa, Henrio, Madelaine & Savu

the one of C ′; the rule directly transfers requests [C7.1] and replies [C7.2] from one component
to the other for all the methods of the client interface bound. Like in the preceding rules, the
name of the interface is updated during transmission.

This section presented a behavioural semantics for hierarchical components communicating by
asynchronous requests which are transmitted between components, where composite components
just forward requests to the adequate destination. We encode replies by means of futures, and
composite components act as reply forwarders, independently from the rest of the component;
this avoids some of the limitations induced by the mono-threaded nature of our components.
The next section will de�ne more advanced features allowing more asynchronous or dynamic
behaviours.

5 Advanced features

In this section we focus on three crucial advanced features of GCM components, which are general
enough to be applicable to most other component models. First, we will introduce behavioural
models for �rst-class futures in order to allow for more asynchrony between components. Second,
we will de�ne a model for binding controllers allowing for a more dynamic component model,
where the bindings between components can be changed at runtime. Of course, this step sup-
poses that (an abstract representation of the) potential bindings are known when the model is
generated, or else we could not generate a full behavioural model. Usually, dynamic component
recon�guration also includes starting/stopping a component and adding a component inside an-
other one. Concerning start/stop capacity, it is relatively easy to de�ne a life-cycle pNet that
would control the rest of the pNet. For the second case, as the speci�cation of the component
must be known at model-generation time, a component that is not yet added is similar to a com-
ponent that is already here but totally unbound and stopped. This is why we only focus here on
the speci�cation of dynamic component bindings. Section 5.3 speci�es the behaviour of multicast
interfaces equipped with a binding controller. Those interfaces allow the easy de�nition of com-
ponents performing some kind of group communications: multicast are one-to-many interfaces.
One-to-many interfaces are frequently used in distributed systems where one computation/in-
formation is to be sent, sometimes cut into pieces, to several destinations. Finally, Section 5.4
will informally explain how to encode bindings that involve the client and the server interface
of the same component, and then overcome the main limitation introduced in the de�nition of
well-formed components, and.

In this section, we will specify new rules for the behavioural de�nition of those advanced
features. In practice, we build new behavioural semantics by modifying the semantics de�ned in
the preceding section, for this we use two additional operators on pNets:

� ;: Let pNet be a pNet and A be an indexed set of labels (strings); pNet � A returns
a pNet similar to pNet but with restricted synchronisation vectors. The synchronisation
vectors of pNet�A are the ones of of pNet except all the synchronisation vectors containing
an element of A as part of their global synchronisation label. For example, if m belongs
to A then all the vectors containing m in their global label will be removed, in that
case the global labels concerned could be: Q_m, !Q_m, ?Q_m, R_m, Serve_m,
Remember that method labels contain the name of the interface that contains the method
and consequently, removing a method label cannot remove an action concerning another
method with the same name in another interface.

� ⊕: For I ∈ IP and I ′ ∈ IP disjoint, let pNet = 〈〈P,L, pNeti∈I
i ,SVk∈K

k 〉〉 be a pNet and

pNet′i
i∈I′

be a pNet family (possibly empty). Let SV ′
k

k∈K′

be synchronisation vectors

Inria

Behavioural Semantics for Asynchronous Components 29

over I ⊎ I ′, i.e., ∀k ∈K ′.SV ′
k = α

j∈Jk

j → α′
k where α′

k ∈ L, Jk ∈ IP , Jk ⊆ I ⊎ I ′, and

∀j∈Jk ∩ I. αj ∈Sort(pNetj), and ∀j∈Jk ∩ I ′. αj ∈Sort(pNet′j). Suppose additionally that

the action labels α′
k belong to L. pNet⊕ 〈〈pNet′i

i∈I′

,SV ′
k

k∈K′

〉〉 extends pNet with the new
sub-pNets pNet ′i. The synchronisation vectors are kept (they do not synchronise the new

sub-pNets); and the new synchronisation vectors: SV ′
k

k∈K′

are added to the ones of pNet:

pNet⊕ 〈〈pNet′i
i∈I′

,SV′
k

k∈K′

〉〉 = 〈〈P,L, pNeti∈I
i ⊎ pNet′i

i∈I′

,SVk∈K
k ⊎ SV′

k

k∈K′

〉〉

5.1 Semantics of First-class Futures

We call �rst-class futures, the futures that can be transmitted between components before their
value is known: without �rst-class futures, a component must wait for the result of a request
and perform a GetValue before being able to send this result to another component (inside a
request parameter, or inside a request result). With �rst-class futures, a component can send
a generalised reference to the future, i.e. a reference that uniquely represents the future in the
whole component system. This way, once the result is computed it is sent to all the components
that hold a (generalised) reference to the corresponding future.

In the model presented in Section 4, composite components could act as reply forwarders
which corresponds to some kind of limited �rst-class futures. However, a service method of a
primitive component that would return a future or send a future as request parameter has to wait
until the adequate reply is received. This behaviour occupies the only thread of the primitive
component and can create deadlocks.

We will consider in this section only the case when a future is transmitted as the single
argument of a request. The case where a single future is returned as request result is similar,
and closer to the reply forwarding mechanism implemented by the composite components. The
case where a future is only a part of the transmitted object requires to reason on the abstract
representation of the transmitted objects, which we do not do in this paper. Overall, we consider
here the minimal case which is su�cient and general enough to understand the mechanism of
the generation of behavioural models for �rst-class futures. A general study on the di�erent kind
of �rst-class futures, their identi�cation and a few usage scenarios more complex than the one
presented here can be found in [20]; however, compared to [20], the approach presented here
provides a complete formal speci�cation of the generation of behavioural models.

5.1.1 Principles and Illustrative example

Figure 9 is a simple scenario demonstrating the transmission of a future value as a parameter of
a remote request. The principle of this scenario is the following. The component A �rst invokes
a request on the component B (step 1); then the result of this invocation is sent as the single
parameter of a request invocation to the component C (step 2). Possibly, the component C can
try to access the future received, resulting in a wait-by-necessity (step 3). When the result is
computed by B, it is returned to A and then to C (step 4), which releases the wait-by-necessity.

The pNet for the scenario described above is shown in Figure 10. The �gure focuses on
aspects related to the transmission of the future (denoted f in the code snippet, and indexed p

as a local proxy) and its update. The generalised reference to the future is denoted gf. Generalised
references, gf, now belong to the set of valid request arguments (denoted by the variable arg).
The local future indexed p has a slightly di�erent proxy able to emit a !Forward(gf, val) action.
The generalised reference for the future is computed by composition of the proxy index p, and
the component holding the proxy and method label, consequently the generalised reference gf is
known and can be given at proxy creation time. Upon the invocation of Q_m2, gf is sent.

RR n° 8167

30 Boulifa, Henrio, Madelaine & Savu

f:=C1.m1(arg)

x:=C2.m2(f)

return(res)

y:=f.foo()

4) Send future

value1) Future

creation

2) Future

transmission 3) Wait for

future

Figure 9: Scenario of �rst-class future transmission

PM_F1

?Forward(gf,val)

?New_F1(gf)

Proxy_F1[q](gf)

!Forward(gf,val) !GetValue_F1(val)

A

!GetProxy_F1(gf)

Method_m2

Proxy_m2[p2]
Method_m

B

CForward(gf,val)

PM_m2

Queue

PM_m1

!Call_m2(q)

x:=C2.m2(f)

FutDetect_m2

Body

!Call_m2(gf)

Serve_m(...)

Q_m(...)

New_m2(p2)

Queue

Call_m(...)

R_m1(p,val)

R_m2(p2,res)

!GetProxy_m1

Q_m2(p2,gf)

f:=C1.m1(arg)

!Q_m1(p,arg)

GetValue_m1(p,val)

New_m1(p)

Recycle_m1(p)

Body

Serve_m2(p2,gf)

New_F1(q,gf)
GetValue_F1(q,val)

FProxy_m1[p]

P3.6

P3.3

P2.4

C8

C7.1

P1.2

P2.3 P1.1

P2.1

P1.4

P2.2

P1.2

P1.3

P4

C7.2

P3.1

P3.2

C7.2

P1.1

P2.1

C7.1

P2.3

P2.5

P2.2
P2.6

P3.4

P3.5

P2.4

Figure 10: Transmitting a future as a method call parameter

When the request is handled by the component C, the call to the local method is intercepted
by a speci�c pNet FutDetect. This pNet creates a local proxy for representing gf (Proxy_F1,
indexed locally by q); q then replaces gf in the invocation. This local proxy for future waits
for the Forward communication coming from the remote proxy, and can then be accessed by
the service method Method_m2. We have a single PM_F1 proxy manager for all the �rst-class
proxies (Proxy_F1), it acts as any other proxy manager except that the �rst-class proxy is given
the generalised reference gf when de�ning the semantics, and it transmits gf when creating the
proxy. It thus has a similar behaviour to the proxy manager for a composite component; it does
not correspond to any method name, we re-use the proxy manager semantics, giving it a pseudo

Inria

Behavioural Semantics for Asynchronous Components 31

method name: F1. Consequently PM_F1 = JF1KproxyManager.

It is crucial here to distinguish the two adjustments that have to be made to two di�erent
future proxies. First, all the future proxies must be able to send a !Forward action for forwarding
the value they received, for them we will overload the existing proxy de�nition J Kproxy. Second,
a new kind of proxy, Proxy_F1, needs to be created; those proxies act as a local future proxy
for a proxy received as request parameter.

5.1.2 Primitive Components: pNets and Synchronisation Vectors

To handle �rst-class futures, it is not possible anymore to consider future identi�ers as integers
that are locally unique. Future identi�ers need to be global references where unicity is guaranteed
globally in the system. For this, we de�ned generalised references, where a generalised reference
identi�es uniquely a future proxy, it is thus de�ned by the tuple: component name, interface,
method, future identi�er. Let GRef be the set of all generalised references and let gf range over
GRef. We can de�ne a constructor of generalised references GeneralisedRef:

GeneralisedRef : CName× Itf×MethodLabels× N→ GRef

In this section we de�ne J KF1 the semantics of components with �rst-class futures. As shown
in the illustrative example, the pNet of the primitive component must be extended with proxies
for storing locally �rst-class futures received as parameters, called Proxy_F1 in Figure 10 and in
the rules below, and a proxy manager managing those proxies. The proxy manager for �rst-class
futures is very similar to the ones shown before; like for composite components it receives a future
reference and transmits it upon proxy creation, except this time the reference is a generalised
one.

FProxy_mFProxy_mFProxy_mFProxy_mFProxy_mFProxy_mFProxy_mFProxy_mFProxy_mFProxy_mFProxy_mFProxy_mFProxy_mFProxy_mFProxy_mFProxy_mFProxy_m
gf:GRefgf:GRefgf:GRefgf:GRefgf:GRefgf:GRefgf:GRefgf:GRefgf:GRefgf:GRefgf:GRefgf:GRefgf:GRefgf:GRefgf:GRefgf:GRefgf:GRef
val:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultType

?R_m(val)?R_m(val)?R_m(val)?R_m(val)?R_m(val)?R_m(val)?R_m(val)?R_m(val)?R_m(val)?R_m(val)?R_m(val)?R_m(val)?R_m(val)?R_m(val)?R_m(val)?R_m(val)?R_m(val)

!Forward(gf,val)!Forward(gf,val)!Forward(gf,val)!Forward(gf,val)!Forward(gf,val)!Forward(gf,val)!Forward(gf,val)!Forward(gf,val)!Forward(gf,val)!Forward(gf,val)!Forward(gf,val)!Forward(gf,val)!Forward(gf,val)!Forward(gf,val)!Forward(gf,val)!Forward(gf,val)!Forward(gf,val) !GetValue_m(val)!GetValue_m(val)!GetValue_m(val)!GetValue_m(val)!GetValue_m(val)!GetValue_m(val)!GetValue_m(val)!GetValue_m(val)!GetValue_m(val)!GetValue_m(val)!GetValue_m(val)!GetValue_m(val)!GetValue_m(val)!GetValue_m(val)!GetValue_m(val)!GetValue_m(val)!GetValue_m(val)

?Recycle_m?Recycle_m?Recycle_m?Recycle_m?Recycle_m?Recycle_m?Recycle_m?Recycle_m?Recycle_m?Recycle_m?Recycle_m?Recycle_m?Recycle_m?Recycle_m?Recycle_m?Recycle_m?Recycle_m

?New_m?New_m?New_m?New_m?New_m?New_m?New_m?New_m?New_m?New_m?New_m?New_m?New_m?New_m?New_m?New_m?New_m

FutDetect_mFutDetect_mFutDetect_mFutDetect_mFutDetect_mFutDetect_mFutDetect_mFutDetect_mFutDetect_mFutDetect_mFutDetect_mFutDetect_mFutDetect_mFutDetect_mFutDetect_mFutDetect_mFutDetect_m
gf:GRefgf:GRefgf:GRefgf:GRefgf:GRefgf:GRefgf:GRefgf:GRefgf:GRefgf:GRefgf:GRefgf:GRefgf:GRefgf:GRefgf:GRefgf:GRefgf:GRef
q:natq:natq:natq:natq:natq:natq:natq:natq:natq:natq:natq:natq:natq:natq:natq:natq:nat

?Call_m(gf)?Call_m(gf)?Call_m(gf)?Call_m(gf)?Call_m(gf)?Call_m(gf)?Call_m(gf)?Call_m(gf)?Call_m(gf)?Call_m(gf)?Call_m(gf)?Call_m(gf)?Call_m(gf)?Call_m(gf)?Call_m(gf)?Call_m(gf)?Call_m(gf)

!GetProxy_m(gf)!GetProxy_m(gf)!GetProxy_m(gf)!GetProxy_m(gf)!GetProxy_m(gf)!GetProxy_m(gf)!GetProxy_m(gf)!GetProxy_m(gf)!GetProxy_m(gf)!GetProxy_m(gf)!GetProxy_m(gf)!GetProxy_m(gf)!GetProxy_m(gf)!GetProxy_m(gf)!GetProxy_m(gf)!GetProxy_m(gf)!GetProxy_m(gf)

?New_m(q,gf)?New_m(q,gf)?New_m(q,gf)?New_m(q,gf)?New_m(q,gf)?New_m(q,gf)?New_m(q,gf)?New_m(q,gf)?New_m(q,gf)?New_m(q,gf)?New_m(q,gf)?New_m(q,gf)?New_m(q,gf)?New_m(q,gf)?New_m(q,gf)?New_m(q,gf)?New_m(q,gf)

!Call_m(q)!Call_m(q)!Call_m(q)!Call_m(q)!Call_m(q)!Call_m(q)!Call_m(q)!Call_m(q)!Call_m(q)!Call_m(q)!Call_m(q)!Call_m(q)!Call_m(q)!Call_m(q)!Call_m(q)!Call_m(q)!Call_m(q)

Figure 11: Proxy for a �rst-class future and Future Detector machine

Figure 11 shows the pLTS of a �rst-class future proxy (a future that can be transmitted
as request parameter), and of a FutDetect process that intercepts the local service of requests
with a future as parameter. On the left part of the �gure, the proxy for a future that can
be transmitted as request parameter is a classical one except it can also send a Forward action
(with the generalised reference as parameter) to transmit the future value outside the component.
FProxy_m in the �gure de�nes the new proxy creation semantics Jm, gfKproxy; it is used each
time a proxy for a future that can be transmitted as request parameter is instantiated. The
future detector pLTS is shown on the right part of Figure 11. It creates a local proxy before
delegating the call. FutDetect_m de�nes the pLTS denoted by JmKFutDetect in the following.

We introduce a set L′ that indexes the set of methods that can receive a future; L still
indexes all the service methods. The service of each service method that can receive a future as

RR n° 8167

32 Boulifa, Henrio, Madelaine & Savu

Table 4: Synchronisation vectors related to client and server interfaces of primitive components
for �rst class futures.
The synchronised sub-pNets occur in the following order:
〈〈Queue,Body,ServiceMethods,ProxyManagers,Proxies,FutDetect,PM_F1,Proxies_F1〉〉

i ∈ L
′ gf ∈ GRef q ∈ N j ∈ L

{〈−, !Call_mi(gf),−,−,−, i 7→?Call_mi(gf),−,−〉 → Call_mi(gf), [1]
〈−,−, i 7→?Call_mi(q),−,−, i 7→!Call_mi(q),−,−〉 → Call_mi(q), [2]
〈−,−,−,−,−, i 7→!GetProxy_F1(gf), ?GetProxy_F1(gf),−〉 → GetProxy_F1(gf), [3]
〈−,−,−,−,−, i 7→?New_F1(q), !New_F1(q, gf), q 7→?New_F1(gf)〉→New_F1(q, gf), [4]
〈−,−, j 7→?GetValue_F1(q, val),−,−,−,−, q 7→!GetValue_F1(val)〉 → GetValue_F1(q, val), [5]
〈−,−,−,−,−,−,−, q 7→?Forward(gf, val)〉 →?Forward(gf, val), [6]
〈−,−,−,−,−,−,−, q 7→!Forward(gf, val)〉 →!Forward(gf, val)} [7]

⊆ SVF1S (mi∈L′

i , L)

P3

j ∈ J m
i∈I
i = MethLabel(CItfj)

i ∈ I Futures for requests on mi can be sent as parameter p ∈ N gf ∈ GRef

〈−,−,−,−, j 7→i7→p7→!Forward(gf, val),−,−,−〉 →!Forward(gf, val)∈SVF1C (CItf j∈J
j ,CName)

P4

parameter passes by an intermediate FutDetect_m process that creates a local proxy representing
the transmitted future, it is denoted FDl in the equation below:

m
l∈L
l = MethLabel(SItf i∈I

i)

m
l∈L′

l are the methods that can receive a future as parameter PM_F1 = JF1KproxyManager

∀l ∈ L
′
. FDl = JmlKFutDetect SVF1 = SVF1S (ml∈L′

l , L) ∪ SVF1C (CItf j∈J
j ,CName)

JCName < SItf i∈I
i ,CItf j∈J

j , M
k∈K
k >KF1 =JCName < SItf i∈I

i ,CItf j∈J
j , M

k∈K
k >K ; call_m

l∈L′

l

⊕〈〈
←−−−−−−−→
〈〈P,FDl

l∈L′

〉〉,PM_F1,
←−−−−−−−−−−→
〈〈P,Proxy_F1N〉〉,SVF1〉〉

The new pNet extends the old one thanks to the operator ⊕ de�ned previously. Concerning
methods that can receive a future as parameter, direct Call invocations from the body to the
service methods are removed by the ; operator. The new synchronisation vectors are de�ned in
Table 4.

There are seven entries in the new synchronisation vectors of rule [P3]. The two �rst ones,
[P3.1] and [P3.2] intercept the invocation from the body to the service method, those invocations
now are intercepted by the FutDetect process. [P3.3] and [P3.4] deal with the creation of proxies
for futures received as argument, which is quite similar to a classical proxy creation, as shown
in Section 4.1. All the service methods can access the Proxy_F1 proxies by a GetValue_F18,
which is expressed by [P3.5]. The new future proxies are updated by a Forward action instead
of a R action for usual proxies [P3.6]. Finally, [P3.7] emits a forward from the �rst-class future
proxy. Indeed, if the component that received a �rst-class future itself forwards the future to
another component (inside a request parameter), it also needs to forward the future value when
it is known.

The new synchronisation vectors on the client side of the primitive components allow the
emission of Forward actions (rule [P4]): when a future proxy of kind FProxy_m emits a Forward,
this Forward is sent to the outside of the primitive component.

8The future references can be transferred between two service methods only if the component is stateful

Inria

Behavioural Semantics for Asynchronous Components 33

Table 5: Binding synchronisation vectors for �rst class futures.
The synchronised sub-pNets occur in the following order:
〈〈Queue,Body,DelegationMethods,ProxyManagers,Proxies,Subcomponents〉〉

(C.CI, C′
.SI) ∈ Bindingb∈B

b

C = Name(Compk) C
′ = Name(Compk′) CItf ′i

i∈I
= CItfs(Compk) i ∈ I

CI = Name(CItf ′i) gf ∈ GRef ∃mn ∈ MethLabel(CItf ′i). mn can pass a future as parameter

〈−,−,−,−,−, (k 7→!Forward(gf, val), k′
7→?Forward(gf, val))〉 → Forward(gf, val),

∈ SVF1B (Bindingb∈B
b ,SItf i∈I

i ,CItf j∈J
j ,Compk∈K

k)

C8

(This.SI, C.SI2) ∈ Binding
b∈B
b i ∈ I gf ∈ GRef SI = Name(SItfi)

C = Name(Compk) ∃mn ∈ MethLabel(SItfi). mn can pass a future as parameter

〈−,−,−,−,−, k 7→?Forward(gf, val)〉 →?Forward(gf, val)

∈ SVF1B (Bindingb∈B
b ,SItf i∈I

i ,CItf j∈J
j ,Compk∈K

k)

C9

(C.CI,This.CI2) ∈ Binding
b∈B
b j ∈ J gf ∈ GRef CI = Name(CItfj)

C = Name(Compk) ∃mn ∈ MethLabel(CItfj). mn can pass a future as parameter

〈−,−,−,−,−, k 7→!Forward(gf, val)〉 →!Forward(gf, val)

∈ SVF1B (Bindingb∈B
b ,SItf i∈I

i ,CItf j∈J
j ,Compk∈K

k)

C10

First-class proxies As shown in the illustrative example, the proxy of future that can be
transmitted to other components is slightly di�erent from the de�nition of Section 4.1.5: it can
additionally emit a !Forward action. This action has a generalised referenced to the future as
parameter, it can be computed locally as it is only formed of the local future identi�er, the
component, and the interface which are all known when the proxy is built. As mentioned above,
for futures that can be transmitted, the J Kproxy function is enriched as illustrated in Figure 11:
Jm, gf Kproxy is de�ned by the pLTS FProxy_m(gf) in the �gure. For the other futures, the
de�nition of Section 4.1.5 is still valid.

5.1.3 Composite Components: New Synchronisation Vectors

Concerning composite components, the composition of the pNets is unchanged, we only need to
add new synchronisation vectors for transmitting Forward actions between components, this is
speci�ed by the new behavioural semantics:

JCName < SItf i∈I
i ,CItf j∈J

j ,Compk∈K
k ,Bindingb∈B

b >KF1 =

JCName < SItf i∈I
i ,CItf j∈J

j ,Compk∈K
k ,Bindingb∈B

b >K

⊕〈〈SVF1B (Bindingb∈B
b ,SItf i∈I

i ,CItf j∈J
j ,Compk∈K

k)〉〉

The three rules of Table 5 de�ne the transmission of forward communications. Rule [C8] deals
with brother bindings: consider two components at the same level, if one forwards a future value,
the other should receive it. Rule [C9] (resp. [C10]) transmits forward reception (resp. emission)
along import (resp. export) bindings.

Note that each gf ∈ GRef can easily be restricted; indeed the origin of the future (component,
method label) is known and the future �ow can be approximated.

RR n° 8167

34 Boulifa, Henrio, Madelaine & Savu

5.2 Semantics of Binding Controllers

By nature, GCM inherits from Fractal recon�guration capabilities. The component structure is
known at runtime and can be introspected and modi�ed dynamically. Mainly, Fractal and GCM
provide capabilities for adding and removing components inside a composite component, and for
changing bindings between components.

In the Fractal component model and in GCM, recon�guration and in particular dynamic
binding/un-binding of components is speci�ed such that it is very close to what happens in object-
oriented languages. In particular, the bind/unbind operations are addressed to the component
that owns the client interface to be recon�gured, indeed if one thinks of a component as an object,
it is the object that holds the reference to the target object. It is then this client interface that
must change the reference it holds. In our behavioural semantics however, the synchronisation
between components is done at the higher level in the hierarchy: this approach corresponds
better to the de�nition of pNets and to the component structure. It is also more compositional:
the behaviour of a component is totally independent from the component to which it is bound.

Here, we want to specify binding controllers that are similar to Fractal ones in order to verify
real Fractal/GCM applications. For this we will have to re-introduce some form of reference in
the components: for each recon�gurable client interface, we will de�ne a bind operation that
receives as parameter a reference to the server interface to be bound to this client interface (in
practice this parameter can be the index in the list of interfaces/components that can potentially
be bound). The �reference� will then be passed as parameter to the request emission, and at the
higher level we will use this reference to send the request to the right target.

To de�ne recon�gurable bindings, we introduce targets, denoted by t, that range over the
set of quali�ed references to interfaces (QName). We will write t = C.SI to check whether the
reference contained in the variable t is the interface SI of the component C. In practice, t should
store an index among the possible bindings, and t = C.SI will check if the index t corresponds
to the interface SI of the component with name C.

To deal with recon�gurable interfaces, a preliminary step is to know which interfaces can be
recon�gured: those interfaces will be assigned a binding controller as explained above. Addi-
tionally, it is necessary to know statically which set of interfaces can be bound to this one in
order to generate the possible behaviours of the component system. We suppose there is a set
TopBinding that over-approximates the set of all bindings a component system can contain. A
practical way to specify this set could be to extend the ADL with a new kind of binding, a
potential binding that can be activated at runtime but is not active upon instantiation. The
allowed recon�gurations would then only be the ones that activate a potential binding.

5.2.1 Principles and Illustrative Example

For encoding recon�gurable bindings in our behavioural speci�cation, we follow the principles
described below.

A component is endowed with a Binding Controller (BC) interface to bind and unbind its
client interfaces to other components through primitive bindings.

The binding controller pLTS attached to each interface (see Figure 12) controls the bindings
of a given client interface. It receives the control actions (?Bind(t) and ?Unbind) and emits
status actions (!Bound(t) and !Unbound) that are used to allow the component to forward the
request (!Q_m(f, arg)) to the appropriate bound interface. The target is, in a �rst time attached
to the request emission. Then, the encompassing composite component will use this target to
synchronise the adequate components. The distinguished action (Error(�Unbound�)) visible from
the higher levels of hierarchy is triggered whenever a request is performed over an unbound
interface. We symbolise the branching between the two components by some guarded invocation

Inria

Behavioural Semantics for Asynchronous Components 35

M

P5.4

P5.2
P5.3

P5.1

Queue

Primitive + BC

!Q m(f, t, arg)

[t=S1.Itf] Q m(f, arg)

[t=S2.Itf´] Q m(f, arg)

Body

!Q m(f, arg)

!Bound(t)

Error(”unbound”)

BCItfj

!Unbound !Bound(t)

?Unbind

Call m*(...)

!Unbound

Bind Itfj(t)

S2

S1

?Q Bind Itfj(t)
?Q Unbind Itfj

!Q m(f, arg)

Serve * Unbind Itfj

?Bind(t)

Figure 12: Adding a Binding Controller

in Figure 12; in the synchronisation vectors we will check in the premises of the rules whether
t = S1.Itf in order to trigger the right invocation.

5.2.2 Recon�gurable Primitive Components: pNets and Synchronisation Vectors

The semantics for recon�gurable primitive components supposes that the set of client interfaces

that can be con�gured is known; it is denoted CItf j∈J′

j , it is a subset of the set of client interfaces

CItf j∈J
j of the component.
To provide recon�guration capacities inside the pNet model for a primitive component, we

add a family of sub-pNets encoding the binding controller. This family has as many elements
as there are recon�gurable interfaces. Each binding controller is de�ned by the pLTS shown
in Figure 12: J KBC is a function that takes a client interface, and returns a binding controller
pLTS as described in Figure 12: the process BCItf

i

in the �gure de�nes the value of JItfiKBC.

Additionally, the request emission for those interfaces has to be synchronised with the status of
the binding controller. For this we remove (;) the synchronisation vectors for emitting requests
on those interfaces and replace them by the new ones de�ned below (⊕). Finally, now that the
bind and unbind requests are two new kind of non-functional requests, the set NF introduced in
Section 4 is non-empty:

NF =
[

j∈J′,t∈QName

{Bind_Itf
j
(t),Unbind_Itf

j
} where CItfj∈J′

j are the recon�gurable interfaces

This implies that the request queue and the body of the primitive take into account bind-

ing requests. J KBC is the behavioural semantics of a component equipped with recon�gurable
interfaces. The rule below de�nes this semantics for primitive components:

m
l∈L
l = MethLabel(SItf i∈I

i) CItfj∈J′

j are the recon�gurable interfaces j ⊆ J
′

m
l∈L′

l = MethLabel(CItf j∈J′

j) ∀j ∈ J
′
. BCj = JCItfjKBC SVBC = SVBCC (CItf j∈J′

j , L)

JCName < SItf i∈I
i ,CItf j∈J

j , M
k∈K
k >KBC =

JCName < SItf i∈I
i ,CItf j∈J

j , M
k∈K
k >K ; (!Q_ml)

l∈L′

⊕ 〈〈
←−−−−−−−−→
〈〈P,BCj

j∈J′

〉〉,SVBC〉〉

RR n° 8167

36 Boulifa, Henrio, Madelaine & Savu

Table 6: Client synchronisation vectors for recon�gurable primitive components.
The synchronised sub-pNets occur in the following order:
〈〈Queue,Body,ServiceMethods,ProxyManagers,Proxies,BindingControllers〉〉

l ∈ L j ∈ J
′

m
i∈I
i = MethLabel(CItfj) i ∈ I t ∈ QName f ∈ N

{〈−, !Bind_Itf
j
(t),−,−,−, j 7→?Bind(t)〉 → Bind_Itf

j
(t), [1]

〈−, !Unbind_Itf
j
,−,−,−, j 7→?Unbind〉 → Unbind_Itf

j
, [2]

〈−,−, l 7→!Q_mi(f, arg),−,−, j 7→!Bound(t)〉 →!Q_mi(p, t, arg), [3]
〈−,−, l 7→!Q_mi(f, arg),−,−, j 7→!Unbound〉 → Error(�Unbound�), [4]
〈!Serve_Bind_Itf

j
(t), ?Serve_Bind_Itf

j
(t),−,−,−,−〉 → Serve_Bind_Itf

j
(t), [5]

〈!Serve_Unbind_Itf
j
, ?Serve_Unbind_Itf

j
,−,−,−,−〉 → Serve_Unbind_Itf

j
} [6]

⊆ SVBCC (CItf j∈J′

j , L)

P5

The new synchronisation vectors for client interfaces are de�ned by rule [P5] shown in Table 6.
Items [P5.1] and [P5.2] transmit the Bind and Unbind actions from the body to the binding
controller. In [P5.3], when a request on a method on the recon�gurable client interface is issued,
the binding controller adds an additional parameter containing the target of the invocation. If
there is no target, i.e. the interface is Unbound, then an error is raised [P5.4]. The two last
items [P5.5] and [P5.6] synchronise the request queue with the body in order to serve bind and
unbind requests. The target of the invocation will be used at the higher level in the hierarchy,
as expressed below.

5.2.3 Recon�gurable Composite Components: pNets and Synchronisation Vectors

First of all, a composite component can be assigned binding controllers allowing its client inter-
faces to be bound to a new target. The introduction of such binding controllers is extremely
similar to the case of the primitive components. We do not formalise it here, the only two techni-
cal di�erences are: the number of elements of the pNet is di�erent, and the intercepted requests
are emitted by the Deleg_mi sub-pNets instead of the service methods. Also, as an internal
client interface corresponds to each server interface, the server interfaces can be assigned a bind-
ing controller if they are recon�gurable. Considering their similarity with the case of primitive
components, we do not describe formally here the binding controllers for composite components.

More interestingly, targets of invocations should be used by the synchronisation vectors gener-
ated by the potential bindings. We describe in Table 7 the synchronisation vectors corresponding
to bindings that can be recon�gured, those synchronisation vectors are able to use the target
reference sent as argument to address the request to the bound component. The new behavioural
semantics thus requires to replace the items transmitting requests for methods for recon�gurable
interfaces by the ones de�ned in Table 7.

JCName < SItf i∈I
i ,CItf j∈J

j ,Compk∈K
k ,TopBindingb∈B

b >KBC =

JCName < SItf i∈I
i ,CItf j∈J

j ,Compk∈K
k ,TopBindingb∈B

b >K

;{Q_mn|mn belongs to a recon�gurable interface}

⊕〈〈SVBCB (TopBindingb∈B
b ,SItf i∈I

i ,CItf j∈J
j ,Compk∈K

k ,CName)〉〉

In fact the operator ⊕ is only used here to add new synchronisation vectors, no sub-pNet is
added. The synchronisation vectors for replies are kept from the non-recon�gurable case, except
that there must be one reply channel for each binding of TopBinding instead of each binding of

Inria

Behavioural Semantics for Asynchronous Components 37

Table 7: Binding synchronisation vectors for recon�gurable composite components.
The synchronised sub-pNets occur in the following order:
〈〈Queue,Body,DelegationMethods,ProxyManagers,Proxies,Subcomponents,BC〉〉

(This.SI, C.SI2) ∈ TopBindingb∈B
b

This.SI is recon�gurable i ∈ I SI = Name(SItfi) C = Name(Compk)

m
n∈N
n = MethLabel(SItfi) n ∈ N m

′
n = mn{{SI← SI2}} q ∈ N t = C.SI2

〈−,−, n 7→!Q_mn(q, t, arg),−,−, k 7→?Q_m
′
n(q, arg),−〉 → Q_mn(q, arg),

∈ SVBCB (TopBindingb∈B
b ,SItf i∈I

i ,CItf j∈J
j ,Compk∈K

k ,CName)

C11

(C.CI,This.CI2) ∈ TopBindingb∈B
b

C.CI is recon�gurable j ∈ J CI = Name(CItfj) C = Name(Compk)

m
n∈N
n = MethLabel(CItfj) n ∈ N m

′
n = mn{{CI← CI2}} f ∈ N t = CName.CI2

〈?Q_m
′
n(f, arg),−,−,−,−, k 7→!Q_mn(f, t, arg),−〉 → Q_mn(f, arg),

∈ SVBCB (TopBindingb∈B
b ,SItf i∈I

i ,CItf j∈J
j ,Compk∈K

k ,CName)

C12

(C.CI, C′
.SI) ∈ TopBindingb∈B

b C.CI is recon�gurable C = Name(Compk)

C
′ = Name(Compk′) CItf ′i

i∈I
= CItfs(Compk) i ∈ I CI = Name(CItf ′i)

m
n∈N
n = MethLabel(CItf ′i) n ∈ N m

′
n = mn{{CI← SI}} f ∈ N t = C

′
.SI

〈−,−,−,−,−, (k 7→!Q_mn(f, t, arg), k′
7→?Q_m

′
n(f, arg)),−〉 → Q_mn(f, arg),

∈ SVBCB (TopBindingb∈B
b ,SItf i∈I

i ,CItf j∈J
j ,Compk∈K

k ,CName)

C13

Binding. There is no need to use addressing in this direction: a single component will necessarily
send each reply because a single one received the corresponding request. The synchronisation
vectors shown in Table 7 replace the ones of Section 4.2 for dealing with recon�gurable bindings.
Now, SVB receives an additional parameter: CName, the name of the composite component that
contains the bindings. The rules of Table 7 are relatively straightforward: the target t is used
and uni�ed with one destination of a potential binding to trigger the right communication. Note
that, in rule [C12], the encompassing composite is referred by its name, CName, and not by This
because t is the �reference� that is stored in the binding controller of the contained component,
and there is no reason to refer to the parent component by This.

Note that the initial state of the binding controllers is unbound. In practice, if the ADL of
the system de�nes initial bindings, then it is necessary to change the coresponding initial states,
either in the de�nition of the pLTSs of the binding controllers, or by initialising the request
queues with a sequence of binding commands.

5.3 Multicast Interfaces

This section provides a model for multicast interfaces where the capabilities of the pNets' syn-
chronisation vectors are fully used and allow one component to broadcast a request to several
others, or one component to provide a reply that would reach the right index in a group of
futures. For this, we de�ne richer future proxies that can handle a list of results, and provide

a result as soon as enough results are available. This section de�nes J KMC, the behavioural
semantics for components equipped with recon�gurable multicast interfaces.

RR n° 8167

38 Boulifa, Henrio, Madelaine & Savu

m2: Ty2 −> Ty

m1: Ty1 −> Ty

m: Ty0 −> Ty

Figure 13: Example with a Multicast Interface

5.3.1 Principle of the approach

Figure 13 shows a primitive component with a multicast client interface. When a client interface
is of type Multicast, it may have a variable number of outgoing bindings (it is bound to the server
interfaces of several components). Invocations emitted by a multicast interface are broadcasted
to all the server interfaces bound to it. In GCM, depending on the interface policy, arguments
of requests emitted by the interface can be dispatched in a parameterisable manner. Here, we
suppose that the argument is broadcasted to all the destination components. Then results will
come back in an asynchronous way from the elements of the group. The encoding of multicast

GrPM_mGrPM_mGrPM_mGrPM_mGrPM_mGrPM_mGrPM_mGrPM_mGrPM_mGrPM_mGrPM_mGrPM_mGrPM_mGrPM_mGrPM_mGrPM_mGrPM_m
p,t:natp,t:natp,t:natp,t:natp,t:natp,t:natp,t:natp,t:natp,t:natp,t:natp,t:natp,t:natp,t:natp,t:natp,t:natp,t:natp,t:nat
G:array[1..Max_Group] of boolG:array[1..Max_Group] of boolG:array[1..Max_Group] of boolG:array[1..Max_Group] of boolG:array[1..Max_Group] of boolG:array[1..Max_Group] of boolG:array[1..Max_Group] of boolG:array[1..Max_Group] of boolG:array[1..Max_Group] of boolG:array[1..Max_Group] of boolG:array[1..Max_Group] of boolG:array[1..Max_Group] of boolG:array[1..Max_Group] of boolG:array[1..Max_Group] of boolG:array[1..Max_Group] of boolG:array[1..Max_Group] of boolG:array[1..Max_Group] of bool
Pool_Proxy:array[1..Max_Proxy] of boolPool_Proxy:array[1..Max_Proxy] of boolPool_Proxy:array[1..Max_Proxy] of boolPool_Proxy:array[1..Max_Proxy] of boolPool_Proxy:array[1..Max_Proxy] of boolPool_Proxy:array[1..Max_Proxy] of boolPool_Proxy:array[1..Max_Proxy] of boolPool_Proxy:array[1..Max_Proxy] of boolPool_Proxy:array[1..Max_Proxy] of boolPool_Proxy:array[1..Max_Proxy] of boolPool_Proxy:array[1..Max_Proxy] of boolPool_Proxy:array[1..Max_Proxy] of boolPool_Proxy:array[1..Max_Proxy] of boolPool_Proxy:array[1..Max_Proxy] of boolPool_Proxy:array[1..Max_Proxy] of boolPool_Proxy:array[1..Max_Proxy] of boolPool_Proxy:array[1..Max_Proxy] of bool

?GetProxy_m?GetProxy_m?GetProxy_m?GetProxy_m?GetProxy_m?GetProxy_m?GetProxy_m?GetProxy_m?GetProxy_m?GetProxy_m?GetProxy_m?GetProxy_m?GetProxy_m?GetProxy_m?GetProxy_m?GetProxy_m?GetProxy_m
p:=0p:=0p:=0p:=0p:=0p:=0p:=0p:=0p:=0p:=0p:=0p:=0p:=0p:=0p:=0p:=0p:=0

[Pool_Proxy(p).free=false][Pool_Proxy(p).free=false][Pool_Proxy(p).free=false][Pool_Proxy(p).free=false][Pool_Proxy(p).free=false][Pool_Proxy(p).free=false][Pool_Proxy(p).free=false][Pool_Proxy(p).free=false][Pool_Proxy(p).free=false][Pool_Proxy(p).free=false][Pool_Proxy(p).free=false][Pool_Proxy(p).free=false][Pool_Proxy(p).free=false][Pool_Proxy(p).free=false][Pool_Proxy(p).free=false][Pool_Proxy(p).free=false][Pool_Proxy(p).free=false]

[p=Max_Proxy][p=Max_Proxy][p=Max_Proxy][p=Max_Proxy][p=Max_Proxy][p=Max_Proxy][p=Max_Proxy][p=Max_Proxy][p=Max_Proxy][p=Max_Proxy][p=Max_Proxy][p=Max_Proxy][p=Max_Proxy][p=Max_Proxy][p=Max_Proxy][p=Max_Proxy][p=Max_Proxy]
!Error(NoMoreProxy)!Error(NoMoreProxy)!Error(NoMoreProxy)!Error(NoMoreProxy)!Error(NoMoreProxy)!Error(NoMoreProxy)!Error(NoMoreProxy)!Error(NoMoreProxy)!Error(NoMoreProxy)!Error(NoMoreProxy)!Error(NoMoreProxy)!Error(NoMoreProxy)!Error(NoMoreProxy)!Error(NoMoreProxy)!Error(NoMoreProxy)!Error(NoMoreProxy)!Error(NoMoreProxy)

[p<Max_Proxy][p<Max_Proxy][p<Max_Proxy][p<Max_Proxy][p<Max_Proxy][p<Max_Proxy][p<Max_Proxy][p<Max_Proxy][p<Max_Proxy][p<Max_Proxy][p<Max_Proxy][p<Max_Proxy][p<Max_Proxy][p<Max_Proxy][p<Max_Proxy][p<Max_Proxy][p<Max_Proxy]
p++p++p++p++p++p++p++p++p++p++p++p++p++p++p++p++p++

?Bind(t)?Bind(t)?Bind(t)?Bind(t)?Bind(t)?Bind(t)?Bind(t)?Bind(t)?Bind(t)?Bind(t)?Bind(t)?Bind(t)?Bind(t)?Bind(t)?Bind(t)?Bind(t)?Bind(t)
G[t]:=trueG[t]:=trueG[t]:=trueG[t]:=trueG[t]:=trueG[t]:=trueG[t]:=trueG[t]:=trueG[t]:=trueG[t]:=trueG[t]:=trueG[t]:=trueG[t]:=trueG[t]:=trueG[t]:=trueG[t]:=trueG[t]:=true?Unbind(t)?Unbind(t)?Unbind(t)?Unbind(t)?Unbind(t)?Unbind(t)?Unbind(t)?Unbind(t)?Unbind(t)?Unbind(t)?Unbind(t)?Unbind(t)?Unbind(t)?Unbind(t)?Unbind(t)?Unbind(t)?Unbind(t)

G[t]:=falseG[t]:=falseG[t]:=falseG[t]:=falseG[t]:=falseG[t]:=falseG[t]:=falseG[t]:=falseG[t]:=falseG[t]:=falseG[t]:=falseG[t]:=falseG[t]:=falseG[t]:=falseG[t]:=falseG[t]:=falseG[t]:=false

[Pool_Proxy(p).free=true][Pool_Proxy(p).free=true][Pool_Proxy(p).free=true][Pool_Proxy(p).free=true][Pool_Proxy(p).free=true][Pool_Proxy(p).free=true][Pool_Proxy(p).free=true][Pool_Proxy(p).free=true][Pool_Proxy(p).free=true][Pool_Proxy(p).free=true][Pool_Proxy(p).free=true][Pool_Proxy(p).free=true][Pool_Proxy(p).free=true][Pool_Proxy(p).free=true][Pool_Proxy(p).free=true][Pool_Proxy(p).free=true][Pool_Proxy(p).free=true]
!New_m(p,G)!New_m(p,G)!New_m(p,G)!New_m(p,G)!New_m(p,G)!New_m(p,G)!New_m(p,G)!New_m(p,G)!New_m(p,G)!New_m(p,G)!New_m(p,G)!New_m(p,G)!New_m(p,G)!New_m(p,G)!New_m(p,G)!New_m(p,G)!New_m(p,G)
Pool_Proxy(p).free:=falsePool_Proxy(p).free:=falsePool_Proxy(p).free:=falsePool_Proxy(p).free:=falsePool_Proxy(p).free:=falsePool_Proxy(p).free:=falsePool_Proxy(p).free:=falsePool_Proxy(p).free:=falsePool_Proxy(p).free:=falsePool_Proxy(p).free:=falsePool_Proxy(p).free:=falsePool_Proxy(p).free:=falsePool_Proxy(p).free:=falsePool_Proxy(p).free:=falsePool_Proxy(p).free:=falsePool_Proxy(p).free:=falsePool_Proxy(p).free:=false

?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)
Pool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=true

?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)
Pool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=true

?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)?Recycle_m(p)
Pool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=truePool_Proxy(p).free:=true

GrProxy_mGrProxy_mGrProxy_mGrProxy_mGrProxy_mGrProxy_mGrProxy_mGrProxy_mGrProxy_mGrProxy_mGrProxy_mGrProxy_mGrProxy_mGrProxy_mGrProxy_mGrProxy_mGrProxy_m
f,len,i,nbWait:natf,len,i,nbWait:natf,len,i,nbWait:natf,len,i,nbWait:natf,len,i,nbWait:natf,len,i,nbWait:natf,len,i,nbWait:natf,len,i,nbWait:natf,len,i,nbWait:natf,len,i,nbWait:natf,len,i,nbWait:natf,len,i,nbWait:natf,len,i,nbWait:natf,len,i,nbWait:natf,len,i,nbWait:natf,len,i,nbWait:natf,len,i,nbWait:nat
G:array[1..Max_Group] of boolG:array[1..Max_Group] of boolG:array[1..Max_Group] of boolG:array[1..Max_Group] of boolG:array[1..Max_Group] of boolG:array[1..Max_Group] of boolG:array[1..Max_Group] of boolG:array[1..Max_Group] of boolG:array[1..Max_Group] of boolG:array[1..Max_Group] of boolG:array[1..Max_Group] of boolG:array[1..Max_Group] of boolG:array[1..Max_Group] of boolG:array[1..Max_Group] of boolG:array[1..Max_Group] of boolG:array[1..Max_Group] of boolG:array[1..Max_Group] of bool
val:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultType
vect:array[1..Max_Group] of resultTypevect:array[1..Max_Group] of resultTypevect:array[1..Max_Group] of resultTypevect:array[1..Max_Group] of resultTypevect:array[1..Max_Group] of resultTypevect:array[1..Max_Group] of resultTypevect:array[1..Max_Group] of resultTypevect:array[1..Max_Group] of resultTypevect:array[1..Max_Group] of resultTypevect:array[1..Max_Group] of resultTypevect:array[1..Max_Group] of resultTypevect:array[1..Max_Group] of resultTypevect:array[1..Max_Group] of resultTypevect:array[1..Max_Group] of resultTypevect:array[1..Max_Group] of resultTypevect:array[1..Max_Group] of resultTypevect:array[1..Max_Group] of resultType

?WaitN_m(nbWait)?WaitN_m(nbWait)?WaitN_m(nbWait)?WaitN_m(nbWait)?WaitN_m(nbWait)?WaitN_m(nbWait)?WaitN_m(nbWait)?WaitN_m(nbWait)?WaitN_m(nbWait)?WaitN_m(nbWait)?WaitN_m(nbWait)?WaitN_m(nbWait)?WaitN_m(nbWait)?WaitN_m(nbWait)?WaitN_m(nbWait)?WaitN_m(nbWait)?WaitN_m(nbWait)
[len>=nbWait][len>=nbWait][len>=nbWait][len>=nbWait][len>=nbWait][len>=nbWait][len>=nbWait][len>=nbWait][len>=nbWait][len>=nbWait][len>=nbWait][len>=nbWait][len>=nbWait][len>=nbWait][len>=nbWait][len>=nbWait][len>=nbWait]
!R_WaitN_m(f,vect)!R_WaitN_m(f,vect)!R_WaitN_m(f,vect)!R_WaitN_m(f,vect)!R_WaitN_m(f,vect)!R_WaitN_m(f,vect)!R_WaitN_m(f,vect)!R_WaitN_m(f,vect)!R_WaitN_m(f,vect)!R_WaitN_m(f,vect)!R_WaitN_m(f,vect)!R_WaitN_m(f,vect)!R_WaitN_m(f,vect)!R_WaitN_m(f,vect)!R_WaitN_m(f,vect)!R_WaitN_m(f,vect)!R_WaitN_m(f,vect)

?R_m(i,val);?R_m(i,val);?R_m(i,val);?R_m(i,val);?R_m(i,val);?R_m(i,val);?R_m(i,val);?R_m(i,val);?R_m(i,val);?R_m(i,val);?R_m(i,val);?R_m(i,val);?R_m(i,val);?R_m(i,val);?R_m(i,val);?R_m(i,val);?R_m(i,val);
if vect(i)=undef if vect(i)=undef if vect(i)=undef if vect(i)=undef if vect(i)=undef if vect(i)=undef if vect(i)=undef if vect(i)=undef if vect(i)=undef if vect(i)=undef if vect(i)=undef if vect(i)=undef if vect(i)=undef if vect(i)=undef if vect(i)=undef if vect(i)=undef if vect(i)=undef
 then len:=len+1 fi; then len:=len+1 fi; then len:=len+1 fi; then len:=len+1 fi; then len:=len+1 fi; then len:=len+1 fi; then len:=len+1 fi; then len:=len+1 fi; then len:=len+1 fi; then len:=len+1 fi; then len:=len+1 fi; then len:=len+1 fi; then len:=len+1 fi; then len:=len+1 fi; then len:=len+1 fi; then len:=len+1 fi; then len:=len+1 fi;
vect(i) := valvect(i) := valvect(i) := valvect(i) := valvect(i) := valvect(i) := valvect(i) := valvect(i) := valvect(i) := valvect(i) := valvect(i) := valvect(i) := valvect(i) := valvect(i) := valvect(i) := valvect(i) := valvect(i) := val

?Recycle_m?Recycle_m?Recycle_m?Recycle_m?Recycle_m?Recycle_m?Recycle_m?Recycle_m?Recycle_m?Recycle_m?Recycle_m?Recycle_m?Recycle_m?Recycle_m?Recycle_m?Recycle_m?Recycle_m ?New_m(f,G)?New_m(f,G)?New_m(f,G)?New_m(f,G)?New_m(f,G)?New_m(f,G)?New_m(f,G)?New_m(f,G)?New_m(f,G)?New_m(f,G)?New_m(f,G)?New_m(f,G)?New_m(f,G)?New_m(f,G)?New_m(f,G)?New_m(f,G)?New_m(f,G)
nbWait:=length(G)nbWait:=length(G)nbWait:=length(G)nbWait:=length(G)nbWait:=length(G)nbWait:=length(G)nbWait:=length(G)nbWait:=length(G)nbWait:=length(G)nbWait:=length(G)nbWait:=length(G)nbWait:=length(G)nbWait:=length(G)nbWait:=length(G)nbWait:=length(G)nbWait:=length(G)nbWait:=length(G)
vect:=[undef..undef]vect:=[undef..undef]vect:=[undef..undef]vect:=[undef..undef]vect:=[undef..undef]vect:=[undef..undef]vect:=[undef..undef]vect:=[undef..undef]vect:=[undef..undef]vect:=[undef..undef]vect:=[undef..undef]vect:=[undef..undef]vect:=[undef..undef]vect:=[undef..undef]vect:=[undef..undef]vect:=[undef..undef]vect:=[undef..undef]
len:=0len:=0len:=0len:=0len:=0len:=0len:=0len:=0len:=0len:=0len:=0len:=0len:=0len:=0len:=0len:=0len:=0

!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)

[len=length(G)][len=length(G)][len=length(G)][len=length(G)][len=length(G)][len=length(G)][len=length(G)][len=length(G)][len=length(G)][len=length(G)][len=length(G)][len=length(G)][len=length(G)][len=length(G)][len=length(G)][len=length(G)][len=length(G)]
!GetValue_m(f,vect)!GetValue_m(f,vect)!GetValue_m(f,vect)!GetValue_m(f,vect)!GetValue_m(f,vect)!GetValue_m(f,vect)!GetValue_m(f,vect)!GetValue_m(f,vect)!GetValue_m(f,vect)!GetValue_m(f,vect)!GetValue_m(f,vect)!GetValue_m(f,vect)!GetValue_m(f,vect)!GetValue_m(f,vect)!GetValue_m(f,vect)!GetValue_m(f,vect)!GetValue_m(f,vect)

[vect(n)!=undef][vect(n)!=undef][vect(n)!=undef][vect(n)!=undef][vect(n)!=undef][vect(n)!=undef][vect(n)!=undef][vect(n)!=undef][vect(n)!=undef][vect(n)!=undef][vect(n)!=undef][vect(n)!=undef][vect(n)!=undef][vect(n)!=undef][vect(n)!=undef][vect(n)!=undef][vect(n)!=undef]
!GetNth_m(f,n,vect(n))!GetNth_m(f,n,vect(n))!GetNth_m(f,n,vect(n))!GetNth_m(f,n,vect(n))!GetNth_m(f,n,vect(n))!GetNth_m(f,n,vect(n))!GetNth_m(f,n,vect(n))!GetNth_m(f,n,vect(n))!GetNth_m(f,n,vect(n))!GetNth_m(f,n,vect(n))!GetNth_m(f,n,vect(n))!GetNth_m(f,n,vect(n))!GetNth_m(f,n,vect(n))!GetNth_m(f,n,vect(n))!GetNth_m(f,n,vect(n))!GetNth_m(f,n,vect(n))!GetNth_m(f,n,vect(n))

Figure 14: A Group Manager and a Group Proxy

interfaces relies on the two pLTSs of Figure 14 for dealing with the speci�c future proxies:

� one Group Proxy Manager for each method of each Multicast interface: the left part of
Figure 14 shows the process GrPM_m that de�nes the value of JmKproxyManager in case

the method m belongs to a multicast interface. Compared to a classical proxy manager,
each group proxy manager is also in charge of managing changes in the group content
(bindings and unbindings). Each binding/unbinding operation targeted at a client multicast
interface is thus broadcasted to all the group proxy managers of all the methods of this
interface.

� for each method in the Multicast interface, an indexed family of Group Proxies: the right
side of Figure 14 de�nes a process GrProxy_m that overrides the value of JmKproxy in
case m belongs to a multicast interface. Upon each request invocation, a corresponding
proxy is activated and initialised. Each incoming reply to this request will update a result
vector (additional conditions check that a given component does not reply twice). Results

Inria

Behavioural Semantics for Asynchronous Components 39

can be accessed by the service methods that can query either the result vector totally
�lled (GetValue_m), or a partially �lled vector (WaitN_m). As in the case of the standard
future proxies, group proxies can be Recycled, whenever it can be decided that it will never
be used again.

Note that in the Group Manager pLTS, the group variable G is modi�ed by !Bind and !Unbind
messages. Each time the Group Manager activates a new Group proxy (!New_m message), it
sends a copy of the value of G, so that even if recon�gurations occur, each proxy keeps its own
copy of Group, on which the invocation has been performed.

Multicast Example

GrProxy m1[p]
GrPM m1

GrPM m2

P6.1

P6.2

P6.3

P6.[6,7,8,9]

P6.10

P6.9

P6.5

!R m(f, val)

GetProxy m1
GetProxy m2

?R m1((p, id), val)

?R m2((p, id), val)

!R m(val)

?Q Unbind Itfj(t)

?Q m(f, arg)

?Q Bind Itfj(t)

Bind Itfj(t)

Unbind Itfj(t)

!Q m1(p, arg)
!Q m2(p, arg)

!Q m1(p,G, arg)

!Q m2(p,G, arg)

GrProxy m2[p]

!MC(G)

New m1(p,G)

New m2(p,G)

Recycle m2(p)
Recycle m1(p)

∀m in {m1,m2}
WaitN m(p, n)
R WaitN m(p, vect)

GetNth m(p, n, val)
GetValue m(p, vect)

Serve unbind Itfj(t)
Serve bind Itfj(t)
Serve m(f, arg)

Itfj Itfj

Body

P6.4

New m1(p)
New m2(p)

Method m

!Call m(arg)

Queue

Figure 15: pNet model for Figure 13

The pNet of a primitive component with a multicast interface is shown in Figure 15, it
corresponds to the primitive component that was shown in Figure 13. The �gure shows the
parts of the pNet that are speci�c to the handling of multicast interfaces. It shows that binding
operations received in the queue are broadcasted to each group proxy manager of the targeted
multicast interface. Then proxy creation (New_m) is synchronised similarly to the case of usual
interfaces except that the current status of the multicast interface (G) is transmitted to the
created proxy. The main speci�city of the synchronisation vectors for multicast interfaces is the
fact that a request emission is also synchronised with the corresponding proxy that sends the
group G targeted by the invocation (!MC(G)), and the outgoing request also sends G as argument.
This argument containing the invoked group will be used at the higher level in the hierarchy by
the encompassing composite component. Consequently, G ranges over sets of quali�ed names.
We will also use variable g for members of G: g ranges over quali�ed names. Finally, actions for
accessing the group proxy (waitN_m, GetValue_m, GetNth_m) can be invoked by the service
methods.

Figure 16 illustrates the principle of the synchronisation occurring at the higher hierarchical
level, in the composite that contains the component with the multicast interface. Depending on
the group targeted by the invocation, a di�erent synchronisation vector is used, and the adequate
server interfaces receive the invocation.

RR n° 8167

40 Boulifa, Henrio, Madelaine & Savu

B[1]

B[2]

B[n]

Multicast Example

!Q mi(p, arg)

!Q mi(p,G, arg)

Method m

[G=0,0,...,1]

[G=1,0,...,0]

[G=1,1,...,1]

R mi((p, 1), val)

?Q mi((p, 1), arg)

?Q mi((p, 2), arg)

?Q mi((p, n), arg)

!MC(G)

GrProxy m1

GrProxy m2

C7.2

C17

Figure 16: Dynamic Connector for a Multicast Interface

As for recon�gurable interfaces, the queue and the body of the components that contain
multicast interfaces must be able to accept and handle bind and unbind messages. Like for
binding controller, the set of non-functional requests now contain Bind and Unbind requests.

However, in the case of multicast interfaces, the proxy has to know the group addressed by
the invocation because it will contain as many entries for receiving replies as there are elements
in the group. In our speci�cation, to simplify notations, we rather create a bigger array of results
but only the ones corresponding to elements of G will be used. Knowing G at invocation time
is also useful to implement a GetValue primitive returning a result if all replies came back. It is
important to note that the group G known by the proxy is the one that was active at invocation
time regardless of bind/unbind operations that occurred after the invocation.

The way we handle recon�gurable multicast interfaces is relatively close to what we have
shown in the previous section. However, there is no binding controller here. Instead, the role of
the binding controller of the previous section is split between the proxy managers and the group
proxies. The proxy managers receive Bind/Unbind actions and store the current value of the
group, whereas the group proxies are responsible for emitting the current value of the group at
invocation. Another di�erence is to be noticed: in the case of a multicast interface, the unbind
operation receives a target reference as a parameter. Indeed, contrarily to the usual binding
controller, multicast interfaces are in general bound to several targets, it is thus necessary to
transmit the reference of the target to be unbound.

Finally, the structure of future identi�ers has to be enriched for dealing with multicast in-
terfaces: in the following a future identi�er, like f , p, can be either a classical future identi�er,
or a couple made of a classical future identi�er and an index, the index being used to identify
uniquely the destination of the invocation among G, the group of invoked components. This way
we will be able to distinguish replies originating from two di�erent members of the group, and
concerning the same invocation. Consequently, we rely on a function IndexG(g) that returns an
integer for each g ∈ G. This index will be attached to the future identi�er to uniquely identify
the destination of the multicast invocation. The function should be injective so that two targets
cannot receive the same index; we let id range over those indexes

Inria

Behavioural Semantics for Asynchronous Components 41

Table 8: Synchronisation vectors for multicast client interfaces in primitive components.
The synchronised sub-pNets occur in the following order:
〈〈Queue,Body,ServiceMethods,ProxyManagers,Proxies〉〉

j ∈ J l ∈ L m
i∈I
i = MethLabel(CItfj) i ∈ I p ∈ N
CItfj is multicast

{〈−,−, l 7→!GetProxy_mi, j 7→i7→?GetProxy_mi,−〉 → GetProxy_mi, [1]
〈−,−, l 7→?New_mi(p), j 7→i7→!New_mi(p, G), j 7→i7→p7→?New_mi(G)〉→New_mi(p, G), [2]
〈−,−, l 7→!Q_mi(p, arg),−, j 7→i7→p7→!MC(G)〉 →!Q_mi(p, G, arg), [3]
〈−,−,−,−, j 7→i7→p7→?R_mi(id, val)〉 →?R_mi((p, id), val), [4]
〈−,−, l 7→!Recycle_mi(p), j 7→i7→?Recycle_mi(p), j 7→i7→p7→?Recycle_mi〉 → Recycle_mi(p), [5]
〈−,−, l 7→!WaitN_mi(p,nb),−, j 7→i7→p7→?WaitN_mi(nb)〉 →WaitN_mi(p, nb), [6]
〈−,−, l 7→?R_WaitN_mi(vect),−, j 7→i7→p7→!R_WaitN_mi(vect)〉 → R_WaitN_mi(p, vect), [7]
〈−,−, l 7→!GetNth_mi(p,nb, val),−, j 7→i7→p7→?GetNth_mi(nb, val)〉 → GetNth_mi(p,nb, val), [8]
〈−,−, l 7→?GetValue_mi(p, vect),−, j 7→i7→p7→!GetValue_mi(vect)〉 → GetValue_mi(p, vect), [9]
〈−, !Bind_CItf

j
(t),−, j 7→(i′ ∈ I 7→?Bind(t)),−〉 → Bind_CItf

j
(t), [10]

〈−, !Unbind_CItf
j
(t),−, j 7→(i′ ∈ I 7→?Unbind(t)),−〉 → Unbind_CItf

j
(t), [11]

〈!Serve_Bind_CItf
j
(t), ?Serve_Bind_CItf

j
(t),−,−,−,−〉 → Serve_Bind_CItf

j
(t), [12]

〈!Serve_Unbind_CItf
j
(t), ?Serve_Unbind_CItf

j
(t),−,−,−,−〉 → Serve_Unbind_CItf

j
(t)} [13]

⊆ SVMC
C (CItf j∈J

j , L)

P6

5.3.2 Multicast Interfaces for Primitive Components

The pNet of a primitive component with multicast interfaces is similar to the pNet without
multicast interfaces, except that the proxy managers and the proxies for methods of multicast
interfaces are replaced by the pLTSs de�ned in Figure 14: J KproxyManager is overloaded for

multicast interfaces, it returns the classical proxy manager of Figure 6 for a singleton interface,
and the new one of Figure 14 for a multicast interface, and similarly for J Kproxy. Additionally
to these changes in the behavioural semantics of future proxies and their managers, the synchro-
nisation vectors are modi�ed as shown in the next rule: synchronisation vectors containing the
name of a multicast interface are replaced by a new one. Note that, as method labels contain the

name of the interface, ;(CItf j∈J′

j) removes all the synchronisation vectors containing the name
of a method mi of an interface CItfj among its action labels.

m
l∈L
l = MethLabel(SItf i∈I

i) CItf j∈J′

j = {CItfj |j ∈ J ∧ CItfj is multicast}

JCName < SItf i∈I
i ,CItf j∈J

j , M
k∈K
k >KMC =

JCName < SItf i∈I
i ,CItf j∈J

j , M
k∈K
k >K ;(CItf j∈J′

j)⊕ 〈〈SVMC
C (CItf j∈J

j , L)〉〉

The synchronisation vectors for the multicast interface of a primitive component are de�ned
in Table 8, they correspond to Figure 15. We introduce a new variable vect, similarly to arg and
val, vect ranges over arrays of values. In the rules, we write (i′ ∈ I 7→(?Bind(t))) to represent the
family ?Bind(t)i′∈I ; this represents a synchronisation vector that broadcasts the action ?Bind(t)
to all the elements inside I, here all the proxy managers of the recon�gured interface.

Cases [P6.1] and [P6.2] are used to create a proxy: compared to Section 4.1, the content
of the group targeted by the invocation (G) is transmitted to the proxy. The element [P6.3]
expresses request emission, with the proxy emitting the adequate value of G. Compared to
singleton interfaces, reply reception uses the fact that an index id is attached the future, and

RR n° 8167

42 Boulifa, Henrio, Madelaine & Savu

GrProxyComposite_mGrProxyComposite_mGrProxyComposite_mGrProxyComposite_mGrProxyComposite_mGrProxyComposite_mGrProxyComposite_mGrProxyComposite_mGrProxyComposite_mGrProxyComposite_mGrProxyComposite_mGrProxyComposite_mGrProxyComposite_mGrProxyComposite_mGrProxyComposite_mGrProxyComposite_mGrProxyComposite_m
len,i,f:natlen,i,f:natlen,i,f:natlen,i,f:natlen,i,f:natlen,i,f:natlen,i,f:natlen,i,f:natlen,i,f:natlen,i,f:natlen,i,f:natlen,i,f:natlen,i,f:natlen,i,f:natlen,i,f:natlen,i,f:natlen,i,f:nat
G:array[1..Max_Group] of boolG:array[1..Max_Group] of boolG:array[1..Max_Group] of boolG:array[1..Max_Group] of boolG:array[1..Max_Group] of boolG:array[1..Max_Group] of boolG:array[1..Max_Group] of boolG:array[1..Max_Group] of boolG:array[1..Max_Group] of boolG:array[1..Max_Group] of boolG:array[1..Max_Group] of boolG:array[1..Max_Group] of boolG:array[1..Max_Group] of boolG:array[1..Max_Group] of boolG:array[1..Max_Group] of boolG:array[1..Max_Group] of boolG:array[1..Max_Group] of bool
val:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultTypeval:resultType
vect:array[1..Max_Group] of resultTypevect:array[1..Max_Group] of resultTypevect:array[1..Max_Group] of resultTypevect:array[1..Max_Group] of resultTypevect:array[1..Max_Group] of resultTypevect:array[1..Max_Group] of resultTypevect:array[1..Max_Group] of resultTypevect:array[1..Max_Group] of resultTypevect:array[1..Max_Group] of resultTypevect:array[1..Max_Group] of resultTypevect:array[1..Max_Group] of resultTypevect:array[1..Max_Group] of resultTypevect:array[1..Max_Group] of resultTypevect:array[1..Max_Group] of resultTypevect:array[1..Max_Group] of resultTypevect:array[1..Max_Group] of resultTypevect:array[1..Max_Group] of resultType

?R_m(i,val);?R_m(i,val);?R_m(i,val);?R_m(i,val);?R_m(i,val);?R_m(i,val);?R_m(i,val);?R_m(i,val);?R_m(i,val);?R_m(i,val);?R_m(i,val);?R_m(i,val);?R_m(i,val);?R_m(i,val);?R_m(i,val);?R_m(i,val);?R_m(i,val);
if vect(i)=undef if vect(i)=undef if vect(i)=undef if vect(i)=undef if vect(i)=undef if vect(i)=undef if vect(i)=undef if vect(i)=undef if vect(i)=undef if vect(i)=undef if vect(i)=undef if vect(i)=undef if vect(i)=undef if vect(i)=undef if vect(i)=undef if vect(i)=undef if vect(i)=undef
 then len:=len+1 fi; then len:=len+1 fi; then len:=len+1 fi; then len:=len+1 fi; then len:=len+1 fi; then len:=len+1 fi; then len:=len+1 fi; then len:=len+1 fi; then len:=len+1 fi; then len:=len+1 fi; then len:=len+1 fi; then len:=len+1 fi; then len:=len+1 fi; then len:=len+1 fi; then len:=len+1 fi; then len:=len+1 fi; then len:=len+1 fi;
vect(i) := valvect(i) := valvect(i) := valvect(i) := valvect(i) := valvect(i) := valvect(i) := valvect(i) := valvect(i) := valvect(i) := valvect(i) := valvect(i) := valvect(i) := valvect(i) := valvect(i) := valvect(i) := valvect(i) := val

[len=length(G)][len=length(G)][len=length(G)][len=length(G)][len=length(G)][len=length(G)][len=length(G)][len=length(G)][len=length(G)][len=length(G)][len=length(G)][len=length(G)][len=length(G)][len=length(G)][len=length(G)][len=length(G)][len=length(G)]
!R_m(f,vect)!R_m(f,vect)!R_m(f,vect)!R_m(f,vect)!R_m(f,vect)!R_m(f,vect)!R_m(f,vect)!R_m(f,vect)!R_m(f,vect)!R_m(f,vect)!R_m(f,vect)!R_m(f,vect)!R_m(f,vect)!R_m(f,vect)!R_m(f,vect)!R_m(f,vect)!R_m(f,vect)

?New_m(f,G)?New_m(f,G)?New_m(f,G)?New_m(f,G)?New_m(f,G)?New_m(f,G)?New_m(f,G)?New_m(f,G)?New_m(f,G)?New_m(f,G)?New_m(f,G)?New_m(f,G)?New_m(f,G)?New_m(f,G)?New_m(f,G)?New_m(f,G)?New_m(f,G)
vect:=[undef..undef]vect:=[undef..undef]vect:=[undef..undef]vect:=[undef..undef]vect:=[undef..undef]vect:=[undef..undef]vect:=[undef..undef]vect:=[undef..undef]vect:=[undef..undef]vect:=[undef..undef]vect:=[undef..undef]vect:=[undef..undef]vect:=[undef..undef]vect:=[undef..undef]vect:=[undef..undef]vect:=[undef..undef]vect:=[undef..undef]
len:=0len:=0len:=0len:=0len:=0len:=0len:=0len:=0len:=0len:=0len:=0len:=0len:=0len:=0len:=0len:=0len:=0

!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)

Figure 17: The Proxy of a Multicast interface inside a Composite component

transmits this index to the future proxy for multicast interface. Recycle [P6.5] is similar to the
non-multicast case. Elements [P6.6] and [P6.7] are used for waiting for a given number, nb, of
responses: �rst, nb is sent to the proxy (WaitN_mi action), and then a reply is sent back to the
service method by R_WaitN_mi. The two next rules [P6.8] and [P6.9] do not require to work in
a request/reply manner, the proxy can directly emit GetNth_mi and GetValue_m_mi actions
when they are enabled, i.e. when the necessary replies have arrived. The next two elements
([P6.10] and [P6.11]) deal with the recon�guration of the multicast interface: they transmit
bind and unbind orders from the body to all the group proxy managers corresponding to the
recon�gured interface. The two last items [P6.12] and [P6.13] synchronise the request queue with
the body in order to serve bind and unbind requests.

5.3.3 Multicast Interfaces for Composite Components

Concerning composite components, two aspects have to be added. First, composite components
can also have multicast client interfaces. Compared to other recon�gurable interfaces, multicast
interfaces have to deal with future proxies in a special manner, the behaviour of a composite
multicast interface is di�erent enough from the primitive ones to necessitate its complete spec-
i�cation. Second, composite components have to encode the synchronisation between multicast
interfaces and the plugged components.

Concerning the �rst point, to be precise, multicast interfaces can be either external client
interfaces, or internal client interfaces (that correspond to multicast external server interfaces).
There is no multicast server interface, thus to state that an internal client interface is multicast,
we tag as multicast the corresponding server interface (see Section 2.3.3).

Similarly to primitive components, the proxy managers and the future proxies are di�erent
for multicast interfaces compared to normal interfaces. The proxy manager for a method of a
multicast interface is the same as the one for primitive components (see Figure 14). The group
proxy is quite di�erent and quite simpler than the primitive component case, it is shown in
Figure 17: the process GrProxyComposite_m de�nes the behavioural semantics of the proxy for
a multicast interface of a composite component: JmKproxy. After creation and emission of a
!MC(G) action, this future proxy accumulates replies and when all futures have been received,
a !R_m(f, vect) action is emitted. Note that, as there is no application logic encapsulated in
the composite component, a given policy must be chosen to know when a reply is issued from
a multicast interface belonging to a composite. Here we choose to reply the whole vector of

Inria

Behavioural Semantics for Asynchronous Components 43

replies when it is completely �lled. It would also be possible to implement a di�erent policy,
for example return the most frequent result, this would be particularly adapted to the case
where the multicast interface targets several replicas of the same component for redundancy
purposes. The behavioural semantics of proxies and their managers feature the new semantics
for multicast interfaces. Then, the behavioural semantics of a composite component supporting
multicast interfaces is the following: it rede�nes the synchronisation vectors for transmitting
request and replies concerning multicast interfaces, and the ones concerning the group proxies
and their management.

m
i∈L
i are the methods that belong to multicast interfaces of the composite or its sub-components

m
i∈L′

i are the methods that belong to multicast interfaces of the composite component

Itfh
h∈H = (CItf j∈J

j) ⊎ (Symm(SItfi)
i∈I)

SVMC = SVMC
C (CItf j∈J

j , Itf h∈H
h) ∪ SVC(CItf j∈J

j , Itf h∈H
h)

∪ SVMC
B (TopBindingb∈B

b ,SItf i∈I
i ,CItf j∈J

j ,Compk∈K
k ,CName)

JCName < SItf i∈I
i ,CItf j∈J

j ,Compk∈K
k ,TopBindingb∈B

b >KMC =

JCName < SItf i∈I
i ,CItf j∈J

j ,Compk∈K
k ,TopBindingb∈B

b >K ;Q_m
l∈L
l

;GetProxy_m
l∈L′

l ; New_m
l∈L′

l ; R_m
l∈L′

l ⊕ 〈〈SVMC〉〉

Figure 18: A Composite component with multicast internal and external interfaces, VCE graphics

Figure 19 illustrates the construction of synchronisation vectors for a composite component
having one internal client multicast interface, and one external client multicast interface. The
rules for generating the synchronisation vectors dealing with the multicast server and client
interfaces of a composite component are shown in Table 9. The �rst rule [C14] de�nes the
emission [C14.1] of a request on a multicast external client interface and the reception of a reply
by this interface [C14.2]. The request is emitted by the delegation method indexed k, the proxy
provides the target group G. The emission of request by internal multicast client interfaces will
be described below as it depends on the bindings inside the composite component. The reply
reception [C14.2] is similar to the reply reception in a primitive component [P6.4].

The second rule [C15] expresses the creation of a new future proxy and the binding/unbinding
of interfaces, it is very similar to the primitive component case, except that, as it is the case for
a normal interface of a composite component, the future corresponding to the request served by
the composite component is transmitted to the proxy.

We now describe how we generate synchronisation vectors for bindings involving a multicast
interface. When de�ning well-formed components, we required that there is no looping binding
and two bindings from the same MC interface do not reach the same component; this allows

RR n° 8167

44 Boulifa, Henrio, Madelaine & Savu

Multicast Composite Example

Deleg m2

C16.2

C15.1

C16.3

C16.1

C15.2

C14.2

C14.1

C15.1

C15.4
C15.3

Body

C15.3
C15.4

C15.2

C19

Sub-components

New m2(p)

!Q m2(p,G, arg)!MC(G)

!R m2(f, vect)

!Recycle m2(p)

?Q Unbind Itfj(t)

?Q m2(f, arg)

?Q Bind Itfj(t)

?R m1(p, fi, vect)

!R m2(p, k, val)

New m2(p, f,G)

GetProxy m2(f)

!Q m1(p,G, arg)

!MC(G)

R m1(p, id, val)

!R m1(p, fi, vect)

Deleg m1

New m1(p, fi, G)

New m1(p)
GetProxy m1(fi)

Unbind Itf1(t)
Bind Itf1(t)

Serve mi(f, arg)
Serve bind Itfj(t)

Serve unbind Itfj(t)

!Recycle m1(p)

Bind Itf2(t)
Unbind Itf2(t)

Itf1

GrProxyC m1[p]

Itf1

GrPMC m1

Itf2

GrProxyC m2[p]

Itf2

GrPMC m2

!Q m1(fi, arg)

R m1(p, vect)

Queue

!Call m2(f, arg)

!Call m1(fi, arg)

Figure 19: pNets for the Composite component with multicast internal and external interfaces

us here to write synchronisation vectors for expressing multicast interfaces. Indeed, those re-
strictions ensure that in each of the synchronisation vectors expressed below, each sub-pNet of
the composite pNet performs a single action in a given synchronisation vector. Section 5.4 will
discuss how to avoid this limitation.

In order to de�ne recon�gurable bindings for multicast interfaces, similarly to Section 5.2,
we rely on TopBinding, the maximal set of bindings that can exist. Then we de�ne four rules
for building synchronisation vectors from TopBinding. For each of the three �rst rules, we build
Gmax the maximal set of quali�ed names that can be bound to the considered multicast interface.
Then we consider all the possible subsets G of Gmax; these are the possible sets on which the
request invocations originating from the multicast interface can arrive. Note that SVB has now
CName as additional parameter, it is the name of the composite component that contains the
bindings. We use two auxiliary functions for computing Gmax, and for obtaining the index of
the component inside a quali�ed name:

Gmax(TopBindingb∈B
b ,QName,CName) =

{C.Itf|(QName, C.Itf) ∈ TopBindingb∈B
b ∧ C 6= This}{{This← CName}}

Target(C.Itf,Compk∈K
k) = k ∈ K such that C = Name(Compk)}

Note that Gmax renames the occurrences of This into CName because when the encompassing
composite is bound, it is referred by its name, not This.

Table 10 shows rules for building synchronisation vectors related to bindings involving a
multicast interface. Rule [C16] deals with the case when a server interface is multicast, or more
precisely an internal client interface is multicast. The item [C16.1] in the synchronisation vector
expresses request emission. Each request emitted by a delegation method is broadcasted to the
bound interfaces, where the destination set G is taken from the adequate group proxy. For each
destination of the invocation g ∈ G, the index of the target component is obtained thanks to
the Target function; then IndexG(g) is attached to the future identi�er. Replies can originate

Inria

Behavioural Semantics for Asynchronous Components 45

Table 9: Synchronisation vectors for multicast interfaces in composite components.
The synchronised sub-pNets occur in the following order:
〈〈Queue,Body,DelegationMethods,ProxyManagers,Proxies,Subcomponents〉〉

j ∈ J m
k∈K
k = MethLabel(CItfj) k ∈ K p ∈ N CItfj is multicast

{〈−,−, k 7→!Q_mk(p, arg),−, j 7→k 7→p7→!MC(G),−〉 →!Q_mk(p, G, arg), [1]
〈−,−,−,−, j 7→k 7→p7→?R_mk(id, val),−〉 →?R_mk((p, id), val)} [2]

⊆ SVMC
C (CItf j∈J

j , Itf h∈H
h)

C14

h ∈ H m
k∈K
k = MethLabel(Itfh) k ∈ K f, p ∈ N Itfh is multicast

{〈−,−, k 7→!GetProxy_mk(f), h 7→k 7→?GetProxy_mk(f),−,−〉 → GetProxy_mk(f), [1]
〈−,−, k 7→?New_mk(p), h 7→k 7→!New_mk(p, f, G), h 7→k 7→p7→?New_mk(f, G),−〉→New_mk(p, f, G)} [2]
〈−, !Bind_Itf

h
(t),−, h 7→(k′ ∈ K 7→?Bind(t)),−〉 → Bind_Itf

h
(t), [3]

〈−, !Unbind_Itf
h
(t),−, h 7→(k′ ∈ K 7→?Unbind(t)),−〉 → Unbind_Itf

h
(t), [4]

〈!Serve_Bind_Itf
h
(t), ?Serve_Bind_Itf

h
(t),−,−,−〉 → Serve_Bind_Itf

h
(t), [5]

〈!Serve_Unbind_Itf
h
(t), ?Serve_Unbind_Itf

h
(t),−,−,−〉 → Serve_Unbind_Itf

j
(t)} [6]

⊆ SVMC
C (CItf j∈J

j , Itf h∈H
h)

C15

from each g member of G independently; overall, we build one reply vector for each element of
Gmax. The synchronisation vectors for replies are split into two vectors compared to singleton
interfaces: the return of results from sub-components [C16.2] is done independently from the
reply of the overall result [C16.3], the second only occurs when the vector of replies is �lled. The
last item of the �rst rule is in fact unrelated to bindings, it is however more natural to mention it
here; it sends a reply out of the composite component when the vector of replies of a future proxy
f of a multicast server interface has been completely �lled. Method renaming (computation of
m′

g from mj) relies on a function Itf that returns the interface of a method label.

The second rule [C17] deals with the case when a sub-component has a client multicast
interface that sends request to other sub-components. The rules are quite similar to the previous
case except that the emitter component has to be found (it is indexed by k). The synchronisation
between sub components for the transmission of a request synchronises the emitter k with the
elements of G, or more precisely with the sub-components indexed by Target(g) for g ∈ G.
Again, indexes of the destination components are attached to the future identi�er. The set of
synchronised sub-components is a family of card(G) + 1 elements (remember that the de�nition
of well-formed components ensures that k cannot be among the indexes in G). There is no need
to specify a rule for replies here because the case of singleton interfaces still applies (except that
it is instantiated for the maximal binding set, TopBinding, and that it returns a future identi�er
that contains an index IndexG(g)).

Rule [C18] deals with the case when a sub-component has a client multicast interface that
sends a request to other sub-components, but also to the encompassing component. This rule
applies when the invocation is performed on a target group G that contains CName.Itf where
CName is the name of the composite component. Note that as bindings are recon�gurable, the
composite component can be bound or not, and depending on whether it is bound, [C17] or
[C18] applies. This rule only applies for request transmission, it is similar to the preceding rule
except that the composite component also receives a request and that the set of destination
sub-components is obtained from G′, the elements of G that are not the composite component.

The last rule [C19] deals with the sending of replies from a multicast client interface of the
composite component to a sub-component. As replies for multicast are bound similarly to replies

RR n° 8167

46 Boulifa, Henrio, Madelaine & Savu

Table 10: Binding synchronisation vectors for multicast interfaces.
The synchronised sub-pNets occur in the following order:
〈〈Queue,Body,DelegationMethods,ProxyManagers,Proxies,Subcomponents〉〉

i ∈ I SI = Name(SItfi) SI is multicast m
j∈J′

j = MethLabel(SItfi)

j ∈ J
′

p, f ∈ N Gmax=Gmax(TopBindingb∈B
b ,This.SI,CName) G⊆Gmax

g ∈ Gmax k = Target(g,Compk∈K
k) for all C.Itf ∈ G. m

′

(C.Itf) =mj{{Itf(mj)← Itf}}

{〈−,−, j 7→!Q_mj(p, arg),−, i 7→j 7→p7→!MC(G),
“

Target(g,Compk∈K
k)7→?Q_m

′
g((p, IndexG(g)), arg)

”g∈G

〉 → Q_mj(p, arg), [1]

〈−,−,−,−, i 7→j 7→p7→?R_mj(id, val), k 7→!R_m
′
k((p, id), val)〉 → R_mj(p, val) [2]

〈−,−,−, i 7→j 7→!Recycle_mj(p), i 7→j 7→p7→!R_mj(f, vect),−〉 →!R_mj(f, vect)} [3]

⊆ SVMC
B (TopBindingb∈B

b ,SItf i∈I
i ,CItf j∈J

j ,Compk∈K
k ,CName)

C16

k ∈ K C = Name(Compk) CItf ′i
i∈I′

= CItfs(Compk) i ∈ I
′ CI = Name(CItf ′i)

mj ∈ MethLabel(CItf ′i) CI is multicast Gmax=Gmax(TopBindingb∈B
b ,C.CI,CName)

G⊆Gmax ∄Itf.CName.Itf ∈ G f ∈ N for all C.Itf ∈ G. m
′

(C.Itf) =mj{{Itf(mj)← Itf}}

〈−,−,−,−,−,
„

k 7→!Q_mj(f, G, arg),
“

Target(g,Compk∈K
k)7→?Q_m

′
g((f, IndexG(g)), arg)

”g∈G
«

〉 → Q_mj(f, arg)

∈ SVMC
B (TopBindingb∈B

b ,SItf i∈I
i ,CItf j∈J

j ,Compk∈K
k ,CName)

C17

k ∈ K C =Name(Compk) CItf ′i
i∈I′

= CItfs(Compk) i ∈ I
′ CI = Name(CItf ′i)

CI is multicast mj ∈MethLabel(CItf ′i) Gmax=Gmax(TopBindingb∈B
b ,C.CI,CName)

G⊆Gmax G = {CName.Itf} ⊎G
′

f ∈ N for all C.Itf ∈ G. m
′

(C.Itf) =mj{{Itf(mj)← Itf}}

〈?Q_mCName.Itf(f, arg),−,−,−,−,
„

k 7→!Q_mj(f, G, arg),
“

Target(g,Compk∈K
k)7→?Q_m

′
g((f, IndexG(g)), arg)

”g∈G′
«

〉 → Q_mj(f, arg)

∈ SVMC
B (TopBindingb∈B

b ,SItf i∈I
i ,CItf j∈J

j ,Compk∈K
k ,CName)

C18

k∈K C =Name(Compk) (C.CI,This.CI2)∈TopBinding
b∈B
b CI2 is multicast j∈J

Name(CItfj)=CI2 f, q∈N m
n∈N
n = MethLabel(CItfj) n ∈ N m

′
n = mn{{CI2 ← CI}}

〈−,−,−, j 7→n7→!Recycle_mn(q), j 7→n7→q 7→!R_mn(f, vect), k 7→?R_m
′
n(f, vect)〉 → R_mn(q, vect)

∈ SVMC
B (TopBindingb∈B

b ,SItf i∈I
i ,CItf j∈J

j ,Compk∈K
k ,CName)

C19

Inria

Behavioural Semantics for Asynchronous Components 47

for singleton interfaces, the only di�erence with the rules of Section 4 is when the client interface
of the composite that sends the reply is a multicast interface. Indeed, when the interface is
singleton the reply occurs as soon as one reply is received, and the proxy for future is used to
rename the future identi�er (see Section 4.2). In the case of a multicast interface, the reply occurs
independently from external communications when the vector of replies is entirely �lled. This is
visible in the rule because the global action is just an observable action of the form R_m instead
of a communication reception of the form ?R_m. Rule [C14.2] that speci�es the reception of
the reply ?R by the composite still applies for receiving replies from other components.

5.4 Dealing with Binding Loops

The de�nition of Well-formed components in Section 2.3 does not allow a client interface to be
bound to a server interface of the same component (binding loop). Also, the same multicast
interface cannot be bound twice to the same component. Those restrictions do not exist in
the GCM speci�cations; we had to add them because synchronisation vectors do not allow two
actions to occur simultaneously on the same sub-pNet. Additionally, performing this kind of
bindings, especially binding loops, is sometimes useful in real applications. We explain below
how to overcome this restriction; we focus on the binding loop case but a similar approach can
be used to allow one multicast interface to be bound twice to the same component.

A �rst idea to encode a binding loop could be to add an additional pNet that would transmit
its input to its output; such a pNet would intercept the outgoing request invocations (and replies)
and send them back to the same sub-pNet. While this approach is feasible it would un-synchronise
the communication and thus does not �t the original semantics for communications.

Instead, we should add an action to the pNet of the sub-component that performs both the
sending and the reception of the request (it could be labelled Q&R_m). We thus add an action
exported by the sub-component that at the same time enqueues and emits a request. For all
interfaces of all components that support loop-bindings, such a compound action can be added.

One possibility would be to add a generic action product operator, as in the SCCS or Meije
process algebras. But this would complexify too much the structure of actions, and the complex-
ity of model-checking. Instead, we prefer to introduce local products in a very limited manner,
when really required.

Concerning the restriction on multicast interfaces, a similar approach can be taken: a single
action can be added that enqueues two requests at the same time (in an order arbitrarily chosen)
and if the same component is bound twice, this compound action is triggered.

6 Full example

We will sketch here a small example illustrating the most important of the constructs de�ned in
this article. This is an application called �HyperManager� which role is to monitor and control
a pre-existing distributed application. The HyperManager itself (see Figure 20) is distributed,
with a GCM composite encapsulating each of the original application legacy components, to-
gether with local monitoring and control GCM components. The application administrator can
issue commands through a toplevel HyperManager component, for con�guring the local legacy
component, setting trace level attributes in the local monitors, and trace �ltering rules in the
global monitor, or performing recon�guration operations by Binding or Unbinding local compo-
nents from the global HyperManager.

This allows us to illustrate the construction of pNets for primitive and composite components,
with future proxies, service and client delegation processes, attribute controllers, a multicast

RR n° 8167

48 Boulifa, Henrio, Madelaine & Savu

Figure 20: Component Structure of the Full Example

client interface, and recon�guration of this multicast interface.

Additionally, this gives us the opportunity to discuss a number of implementation issues, and
in particular of simpli�cation of the generated pNet structure depending on the con�guration
of the GCM components considered. A brute application of the semantical rules from this
article would produce an unnecessary number of management pNets, and we give example of
optimisations that are applicable in a signi�cant number of situations. A full description of the
implementation of the pNets construction, and of the optimisations, is out of the scope of this
paper.

6.1 Structure of the pNets semantics

We illustrate here, in an informal manner, the construction of the pNets semantics of the Hyper-
Manager example. We focus on the pNets hierarchy and their synchronisation vectors, de�ned
in a graphical way (examples of the pLTS representing the basic blocks of the semantics will be
given in Annex C). We give some �gures about the complexity of this construction.

We start, in Figure 21, with the pNet structure representing the semantics of one of the
(identical) Local HM components. Only the structure of the pNets is de�ned here, some of the
pLTSs involved in the composition will be de�ned in appendix C. Each Local HM is a compos-
ite containing a business process represented here by a Code pNet, a Local Manager primitive
component managing the requests coming from the global HyperManager, and a Local Monitor
listening to monitoring messages coming from Code.

Remark that the semantic rules above de�ning the produced pNet structures systematicaly
build an intermediate pNet containing all sub-pNets for the sub-component of a composite (resp.
the sets of proxies, proxy managers, deleg methods, etc). These intermediate pNets simplify the
writing of the rules, but are unnecessary when building a particular instantiation, and we have
omitted them in the drawings.

Inria

Behavioural Semantics for Asynchronous Components 49

Local HMLocal HMLocal HMLocal HMLocal HMLocal HMLocal HMLocal HMLocal HMLocal HMLocal HMLocal HMLocal HMLocal HMLocal HMLocal HMLocal HM

Local ManagerLocal ManagerLocal ManagerLocal ManagerLocal ManagerLocal ManagerLocal ManagerLocal ManagerLocal ManagerLocal ManagerLocal ManagerLocal ManagerLocal ManagerLocal ManagerLocal ManagerLocal ManagerLocal Manager

CodeCodeCodeCodeCodeCodeCodeCodeCodeCodeCodeCodeCodeCodeCodeCodeCode

Local MonitorLocal MonitorLocal MonitorLocal MonitorLocal MonitorLocal MonitorLocal MonitorLocal MonitorLocal MonitorLocal MonitorLocal MonitorLocal MonitorLocal MonitorLocal MonitorLocal MonitorLocal MonitorLocal Monitor

QueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueue

BodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBody

ConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfig

TraceLvlTraceLvlTraceLvlTraceLvlTraceLvlTraceLvlTraceLvlTraceLvlTraceLvlTraceLvlTraceLvlTraceLvlTraceLvlTraceLvlTraceLvlTraceLvlTraceLvl

PM_configPM_configPM_configPM_configPM_configPM_configPM_configPM_configPM_configPM_configPM_configPM_configPM_configPM_configPM_configPM_configPM_config

QueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueue

BodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBody

TraceEvtTraceEvtTraceEvtTraceEvtTraceEvtTraceEvtTraceEvtTraceEvtTraceEvtTraceEvtTraceEvtTraceEvtTraceEvtTraceEvtTraceEvtTraceEvtTraceEvt

TraceLvlTraceLvlTraceLvlTraceLvlTraceLvlTraceLvlTraceLvlTraceLvlTraceLvlTraceLvlTraceLvlTraceLvlTraceLvlTraceLvlTraceLvlTraceLvlTraceLvl
 AttrCtrl AttrCtrl AttrCtrl AttrCtrl AttrCtrl AttrCtrl AttrCtrl AttrCtrl AttrCtrl AttrCtrl AttrCtrl AttrCtrl AttrCtrl AttrCtrl AttrCtrl AttrCtrl AttrCtrl

BusinessBusinessBusinessBusinessBusinessBusinessBusinessBusinessBusinessBusinessBusinessBusinessBusinessBusinessBusinessBusinessBusiness
LogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicLogicGrProxy_config[p]GrProxy_config[p]GrProxy_config[p]GrProxy_config[p]GrProxy_config[p]GrProxy_config[p]GrProxy_config[p]GrProxy_config[p]GrProxy_config[p]GrProxy_config[p]GrProxy_config[p]GrProxy_config[p]GrProxy_config[p]GrProxy_config[p]GrProxy_config[p]GrProxy_config[p]GrProxy_config[p]

?Q_config(fid,cmd)?Q_config(fid,cmd)?Q_config(fid,cmd)?Q_config(fid,cmd)?Q_config(fid,cmd)?Q_config(fid,cmd)?Q_config(fid,cmd)?Q_config(fid,cmd)?Q_config(fid,cmd)?Q_config(fid,cmd)?Q_config(fid,cmd)?Q_config(fid,cmd)?Q_config(fid,cmd)?Q_config(fid,cmd)?Q_config(fid,cmd)?Q_config(fid,cmd)?Q_config(fid,cmd)

?Q_traceLvl(fid,lvl)?Q_traceLvl(fid,lvl)?Q_traceLvl(fid,lvl)?Q_traceLvl(fid,lvl)?Q_traceLvl(fid,lvl)?Q_traceLvl(fid,lvl)?Q_traceLvl(fid,lvl)?Q_traceLvl(fid,lvl)?Q_traceLvl(fid,lvl)?Q_traceLvl(fid,lvl)?Q_traceLvl(fid,lvl)?Q_traceLvl(fid,lvl)?Q_traceLvl(fid,lvl)?Q_traceLvl(fid,lvl)?Q_traceLvl(fid,lvl)?Q_traceLvl(fid,lvl)?Q_traceLvl(fid,lvl)

!R_config(fid,code)!R_config(fid,code)!R_config(fid,code)!R_config(fid,code)!R_config(fid,code)!R_config(fid,code)!R_config(fid,code)!R_config(fid,code)!R_config(fid,code)!R_config(fid,code)!R_config(fid,code)!R_config(fid,code)!R_config(fid,code)!R_config(fid,code)!R_config(fid,code)!R_config(fid,code)!R_config(fid,code)

!R_config(p,cmd)!R_config(p,cmd)!R_config(p,cmd)!R_config(p,cmd)!R_config(p,cmd)!R_config(p,cmd)!R_config(p,cmd)!R_config(p,cmd)!R_config(p,cmd)!R_config(p,cmd)!R_config(p,cmd)!R_config(p,cmd)!R_config(p,cmd)!R_config(p,cmd)!R_config(p,cmd)!R_config(p,cmd)!R_config(p,cmd)

?Q_config(p,cmd)?Q_config(p,cmd)?Q_config(p,cmd)?Q_config(p,cmd)?Q_config(p,cmd)?Q_config(p,cmd)?Q_config(p,cmd)?Q_config(p,cmd)?Q_config(p,cmd)?Q_config(p,cmd)?Q_config(p,cmd)?Q_config(p,cmd)?Q_config(p,cmd)?Q_config(p,cmd)?Q_config(p,cmd)?Q_config(p,cmd)?Q_config(p,cmd)

!Set_traceLvl(lvl)!Set_traceLvl(lvl)!Set_traceLvl(lvl)!Set_traceLvl(lvl)!Set_traceLvl(lvl)!Set_traceLvl(lvl)!Set_traceLvl(lvl)!Set_traceLvl(lvl)!Set_traceLvl(lvl)!Set_traceLvl(lvl)!Set_traceLvl(lvl)!Set_traceLvl(lvl)!Set_traceLvl(lvl)!Set_traceLvl(lvl)!Set_traceLvl(lvl)!Set_traceLvl(lvl)!Set_traceLvl(lvl)

!Q_traceEvt(evt)!Q_traceEvt(evt)!Q_traceEvt(evt)!Q_traceEvt(evt)!Q_traceEvt(evt)!Q_traceEvt(evt)!Q_traceEvt(evt)!Q_traceEvt(evt)!Q_traceEvt(evt)!Q_traceEvt(evt)!Q_traceEvt(evt)!Q_traceEvt(evt)!Q_traceEvt(evt)!Q_traceEvt(evt)!Q_traceEvt(evt)!Q_traceEvt(evt)!Q_traceEvt(evt)

!Q_traceEvt(evt)!Q_traceEvt(evt)!Q_traceEvt(evt)!Q_traceEvt(evt)!Q_traceEvt(evt)!Q_traceEvt(evt)!Q_traceEvt(evt)!Q_traceEvt(evt)!Q_traceEvt(evt)!Q_traceEvt(evt)!Q_traceEvt(evt)!Q_traceEvt(evt)!Q_traceEvt(evt)!Q_traceEvt(evt)!Q_traceEvt(evt)!Q_traceEvt(evt)!Q_traceEvt(evt)

!R_ACGet_traceLvl(lvl)!R_ACGet_traceLvl(lvl)!R_ACGet_traceLvl(lvl)!R_ACGet_traceLvl(lvl)!R_ACGet_traceLvl(lvl)!R_ACGet_traceLvl(lvl)!R_ACGet_traceLvl(lvl)!R_ACGet_traceLvl(lvl)!R_ACGet_traceLvl(lvl)!R_ACGet_traceLvl(lvl)!R_ACGet_traceLvl(lvl)!R_ACGet_traceLvl(lvl)!R_ACGet_traceLvl(lvl)!R_ACGet_traceLvl(lvl)!R_ACGet_traceLvl(lvl)!R_ACGet_traceLvl(lvl)!R_ACGet_traceLvl(lvl)

?Q_ACSet_traceLvl(lvl)?Q_ACSet_traceLvl(lvl)?Q_ACSet_traceLvl(lvl)?Q_ACSet_traceLvl(lvl)?Q_ACSet_traceLvl(lvl)?Q_ACSet_traceLvl(lvl)?Q_ACSet_traceLvl(lvl)?Q_ACSet_traceLvl(lvl)?Q_ACSet_traceLvl(lvl)?Q_ACSet_traceLvl(lvl)?Q_ACSet_traceLvl(lvl)?Q_ACSet_traceLvl(lvl)?Q_ACSet_traceLvl(lvl)?Q_ACSet_traceLvl(lvl)?Q_ACSet_traceLvl(lvl)?Q_ACSet_traceLvl(lvl)?Q_ACSet_traceLvl(lvl)

?Q_ACGet_traceLvl?Q_ACGet_traceLvl?Q_ACGet_traceLvl?Q_ACGet_traceLvl?Q_ACGet_traceLvl?Q_ACGet_traceLvl?Q_ACGet_traceLvl?Q_ACGet_traceLvl?Q_ACGet_traceLvl?Q_ACGet_traceLvl?Q_ACGet_traceLvl?Q_ACGet_traceLvl?Q_ACGet_traceLvl?Q_ACGet_traceLvl?Q_ACGet_traceLvl?Q_ACGet_traceLvl?Q_ACGet_traceLvl

!R_ACSet_traceLvl!R_ACSet_traceLvl!R_ACSet_traceLvl!R_ACSet_traceLvl!R_ACSet_traceLvl!R_ACSet_traceLvl!R_ACSet_traceLvl!R_ACSet_traceLvl!R_ACSet_traceLvl!R_ACSet_traceLvl!R_ACSet_traceLvl!R_ACSet_traceLvl!R_ACSet_traceLvl!R_ACSet_traceLvl!R_ACSet_traceLvl!R_ACSet_traceLvl!R_ACSet_traceLvl

Figure 21: pNets for a Local HM composite

The Local HM composite has a very simple con�guration: it receives requests on a single
service interface, and directly passes these requests to the Local Manager sub-component, it has
a single client interface whose methods have a void return type, and it has no recon�guration
features. This is a pattern that allows us to omit its whole control structure (Queue, Body, and
proxies), and to synchronise directly the interface events with the corresponding inner pNets.

The Local Manager primitive component has a standard pNet structure, with:

� a service interface with 2 service methods con�g and trace that go through the Queue and
Body pNets, before being routed towards their respective methods.

� a single client interface Con�g with a single method con�g, but that may be called several
times from within the con�g method. This interface requires a proxy manager and a family
of future proxies Proxy_con�g[p].

� the con�g service request requires a result code, so we have a returning !R_con�g message,
while the trace request simply forwards its command to the Local Monitor component,
without requiring a return message.

The Local Monitor primitive component has a quite simple pNet structure: it has a queue
listening to requests from the Code, but also to Set_traceLvl requests addressed to the TraceLvl
attribute controller (see Annex C, Figure 26). It has a single (client) interface, with a single
method requiring no answer, so it needs no proxies.

The Code object is not a GCM component, but rather a simple encapsulation of legacy code.
The API entry and return points are directly connected to the business code itself.

We move now to Figure 22, and explain the structure of the Global HM composite. This part
features a complete pNet infrastructure in the composite membrane, and the management of a
recon�gurable multicast client interface.

RR n° 8167

50 Boulifa, Henrio, Madelaine & Savu

QueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueue

PM_configPM_configPM_configPM_configPM_configPM_configPM_configPM_configPM_configPM_configPM_configPM_configPM_configPM_configPM_configPM_configPM_config

Proxy_configProxy_configProxy_configProxy_configProxy_configProxy_configProxy_configProxy_configProxy_configProxy_configProxy_configProxy_configProxy_configProxy_configProxy_configProxy_configProxy_config

TraceLvlTraceLvlTraceLvlTraceLvlTraceLvlTraceLvlTraceLvlTraceLvlTraceLvlTraceLvlTraceLvlTraceLvlTraceLvlTraceLvlTraceLvlTraceLvlTraceLvl

Deleg_configDeleg_configDeleg_configDeleg_configDeleg_configDeleg_configDeleg_configDeleg_configDeleg_configDeleg_configDeleg_configDeleg_configDeleg_configDeleg_configDeleg_configDeleg_configDeleg_config

QueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueue

BodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBody

Global ManagerGlobal ManagerGlobal ManagerGlobal ManagerGlobal ManagerGlobal ManagerGlobal ManagerGlobal ManagerGlobal ManagerGlobal ManagerGlobal ManagerGlobal ManagerGlobal ManagerGlobal ManagerGlobal ManagerGlobal ManagerGlobal Manager

QueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueueQueue

BodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBody

PM_configPM_configPM_configPM_configPM_configPM_configPM_configPM_configPM_configPM_configPM_configPM_configPM_configPM_configPM_configPM_configPM_config

ConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfig

TraceFilterTraceFilterTraceFilterTraceFilterTraceFilterTraceFilterTraceFilterTraceFilterTraceFilterTraceFilterTraceFilterTraceFilterTraceFilterTraceFilterTraceFilterTraceFilterTraceFilter

Deleg_configDeleg_configDeleg_configDeleg_configDeleg_configDeleg_configDeleg_configDeleg_configDeleg_configDeleg_configDeleg_configDeleg_configDeleg_configDeleg_configDeleg_configDeleg_configDeleg_config

Deleg_traceLvlDeleg_traceLvlDeleg_traceLvlDeleg_traceLvlDeleg_traceLvlDeleg_traceLvlDeleg_traceLvlDeleg_traceLvlDeleg_traceLvlDeleg_traceLvlDeleg_traceLvlDeleg_traceLvlDeleg_traceLvlDeleg_traceLvlDeleg_traceLvlDeleg_traceLvlDeleg_traceLvl

GrP_M1GrP_M1GrP_M1GrP_M1GrP_M1GrP_M1GrP_M1GrP_M1GrP_M1GrP_M1GrP_M1GrP_M1GrP_M1GrP_M1GrP_M1GrP_M1GrP_M1

GrPM_M1_configGrPM_M1_configGrPM_M1_configGrPM_M1_configGrPM_M1_configGrPM_M1_configGrPM_M1_configGrPM_M1_configGrPM_M1_configGrPM_M1_configGrPM_M1_configGrPM_M1_configGrPM_M1_configGrPM_M1_configGrPM_M1_configGrPM_M1_configGrPM_M1_config

Global MonitorGlobal MonitorGlobal MonitorGlobal MonitorGlobal MonitorGlobal MonitorGlobal MonitorGlobal MonitorGlobal MonitorGlobal MonitorGlobal MonitorGlobal MonitorGlobal MonitorGlobal MonitorGlobal MonitorGlobal MonitorGlobal Monitor

GrPM_M1_traceLvlGrPM_M1_traceLvlGrPM_M1_traceLvlGrPM_M1_traceLvlGrPM_M1_traceLvlGrPM_M1_traceLvlGrPM_M1_traceLvlGrPM_M1_traceLvlGrPM_M1_traceLvlGrPM_M1_traceLvlGrPM_M1_traceLvlGrPM_M1_traceLvlGrPM_M1_traceLvlGrPM_M1_traceLvlGrPM_M1_traceLvlGrPM_M1_traceLvlGrPM_M1_traceLvl

SetFilterSetFilterSetFilterSetFilterSetFilterSetFilterSetFilterSetFilterSetFilterSetFilterSetFilterSetFilterSetFilterSetFilterSetFilterSetFilterSetFilterTraceTraceTraceTraceTraceTraceTraceTraceTraceTraceTraceTraceTraceTraceTraceTraceTrace

FilterFilterFilterFilterFilterFilterFilterFilterFilterFilterFilterFilterFilterFilterFilterFilterFilter
AttrCtrlAttrCtrlAttrCtrlAttrCtrlAttrCtrlAttrCtrlAttrCtrlAttrCtrlAttrCtrlAttrCtrlAttrCtrlAttrCtrlAttrCtrlAttrCtrlAttrCtrlAttrCtrlAttrCtrl

BodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBodyBody

GrProxy_config[p]GrProxy_config[p]GrProxy_config[p]GrProxy_config[p]GrProxy_config[p]GrProxy_config[p]GrProxy_config[p]GrProxy_config[p]GrProxy_config[p]GrProxy_config[p]GrProxy_config[p]GrProxy_config[p]GrProxy_config[p]GrProxy_config[p]GrProxy_config[p]GrProxy_config[p]GrProxy_config[p]

Proxy_config[fa]Proxy_config[fa]Proxy_config[fa]Proxy_config[fa]Proxy_config[fa]Proxy_config[fa]Proxy_config[fa]Proxy_config[fa]Proxy_config[fa]Proxy_config[fa]Proxy_config[fa]Proxy_config[fa]Proxy_config[fa]Proxy_config[fa]Proxy_config[fa]Proxy_config[fa]Proxy_config[fa]

Global HMGlobal HMGlobal HMGlobal HMGlobal HMGlobal HMGlobal HMGlobal HMGlobal HMGlobal HMGlobal HMGlobal HMGlobal HMGlobal HMGlobal HMGlobal HMGlobal HM

GrProxy_traceLvl[p]GrProxy_traceLvl[p]GrProxy_traceLvl[p]GrProxy_traceLvl[p]GrProxy_traceLvl[p]GrProxy_traceLvl[p]GrProxy_traceLvl[p]GrProxy_traceLvl[p]GrProxy_traceLvl[p]GrProxy_traceLvl[p]GrProxy_traceLvl[p]GrProxy_traceLvl[p]GrProxy_traceLvl[p]GrProxy_traceLvl[p]GrProxy_traceLvl[p]GrProxy_traceLvl[p]GrProxy_traceLvl[p]

!Q_setFilter(fi)!Q_setFilter(fi)!Q_setFilter(fi)!Q_setFilter(fi)!Q_setFilter(fi)!Q_setFilter(fi)!Q_setFilter(fi)!Q_setFilter(fi)!Q_setFilter(fi)!Q_setFilter(fi)!Q_setFilter(fi)!Q_setFilter(fi)!Q_setFilter(fi)!Q_setFilter(fi)!Q_setFilter(fi)!Q_setFilter(fi)!Q_setFilter(fi)

?Q_config_M1(fa,cmd)?Q_config_M1(fa,cmd)?Q_config_M1(fa,cmd)?Q_config_M1(fa,cmd)?Q_config_M1(fa,cmd)?Q_config_M1(fa,cmd)?Q_config_M1(fa,cmd)?Q_config_M1(fa,cmd)?Q_config_M1(fa,cmd)?Q_config_M1(fa,cmd)?Q_config_M1(fa,cmd)?Q_config_M1(fa,cmd)?Q_config_M1(fa,cmd)?Q_config_M1(fa,cmd)?Q_config_M1(fa,cmd)?Q_config_M1(fa,cmd)?Q_config_M1(fa,cmd)

?Q_traceLvl_M1(lvl)?Q_traceLvl_M1(lvl)?Q_traceLvl_M1(lvl)?Q_traceLvl_M1(lvl)?Q_traceLvl_M1(lvl)?Q_traceLvl_M1(lvl)?Q_traceLvl_M1(lvl)?Q_traceLvl_M1(lvl)?Q_traceLvl_M1(lvl)?Q_traceLvl_M1(lvl)?Q_traceLvl_M1(lvl)?Q_traceLvl_M1(lvl)?Q_traceLvl_M1(lvl)?Q_traceLvl_M1(lvl)?Q_traceLvl_M1(lvl)?Q_traceLvl_M1(lvl)?Q_traceLvl_M1(lvl)

?Bind_M1(i)?Bind_M1(i)?Bind_M1(i)?Bind_M1(i)?Bind_M1(i)?Bind_M1(i)?Bind_M1(i)?Bind_M1(i)?Bind_M1(i)?Bind_M1(i)?Bind_M1(i)?Bind_M1(i)?Bind_M1(i)?Bind_M1(i)?Bind_M1(i)?Bind_M1(i)?Bind_M1(i)

?Unbind_M1(i)?Unbind_M1(i)?Unbind_M1(i)?Unbind_M1(i)?Unbind_M1(i)?Unbind_M1(i)?Unbind_M1(i)?Unbind_M1(i)?Unbind_M1(i)?Unbind_M1(i)?Unbind_M1(i)?Unbind_M1(i)?Unbind_M1(i)?Unbind_M1(i)?Unbind_M1(i)?Unbind_M1(i)?Unbind_M1(i)

!Q_config(p,cmd)!Q_config(p,cmd)!Q_config(p,cmd)!Q_config(p,cmd)!Q_config(p,cmd)!Q_config(p,cmd)!Q_config(p,cmd)!Q_config(p,cmd)!Q_config(p,cmd)!Q_config(p,cmd)!Q_config(p,cmd)!Q_config(p,cmd)!Q_config(p,cmd)!Q_config(p,cmd)!Q_config(p,cmd)!Q_config(p,cmd)!Q_config(p,cmd)

!Q_traceLvl(p,lvl)!Q_traceLvl(p,lvl)!Q_traceLvl(p,lvl)!Q_traceLvl(p,lvl)!Q_traceLvl(p,lvl)!Q_traceLvl(p,lvl)!Q_traceLvl(p,lvl)!Q_traceLvl(p,lvl)!Q_traceLvl(p,lvl)!Q_traceLvl(p,lvl)!Q_traceLvl(p,lvl)!Q_traceLvl(p,lvl)!Q_traceLvl(p,lvl)!Q_traceLvl(p,lvl)!Q_traceLvl(p,lvl)!Q_traceLvl(p,lvl)!Q_traceLvl(p,lvl)

?New_traceLvl(p,G)?New_traceLvl(p,G)?New_traceLvl(p,G)?New_traceLvl(p,G)?New_traceLvl(p,G)?New_traceLvl(p,G)?New_traceLvl(p,G)?New_traceLvl(p,G)?New_traceLvl(p,G)?New_traceLvl(p,G)?New_traceLvl(p,G)?New_traceLvl(p,G)?New_traceLvl(p,G)?New_traceLvl(p,G)?New_traceLvl(p,G)?New_traceLvl(p,G)?New_traceLvl(p,G)

?New_traceLvl(p)?New_traceLvl(p)?New_traceLvl(p)?New_traceLvl(p)?New_traceLvl(p)?New_traceLvl(p)?New_traceLvl(p)?New_traceLvl(p)?New_traceLvl(p)?New_traceLvl(p)?New_traceLvl(p)?New_traceLvl(p)?New_traceLvl(p)?New_traceLvl(p)?New_traceLvl(p)?New_traceLvl(p)?New_traceLvl(p)

?Recycle_config(p)?Recycle_config(p)?Recycle_config(p)?Recycle_config(p)?Recycle_config(p)?Recycle_config(p)?Recycle_config(p)?Recycle_config(p)?Recycle_config(p)?Recycle_config(p)?Recycle_config(p)?Recycle_config(p)?Recycle_config(p)?Recycle_config(p)?Recycle_config(p)?Recycle_config(p)?Recycle_config(p)

!Q_trace_C1(evt)!Q_trace_C1(evt)!Q_trace_C1(evt)!Q_trace_C1(evt)!Q_trace_C1(evt)!Q_trace_C1(evt)!Q_trace_C1(evt)!Q_trace_C1(evt)!Q_trace_C1(evt)!Q_trace_C1(evt)!Q_trace_C1(evt)!Q_trace_C1(evt)!Q_trace_C1(evt)!Q_trace_C1(evt)!Q_trace_C1(evt)!Q_trace_C1(evt)!Q_trace_C1(evt)

!Q_trace_C2(evt)!Q_trace_C2(evt)!Q_trace_C2(evt)!Q_trace_C2(evt)!Q_trace_C2(evt)!Q_trace_C2(evt)!Q_trace_C2(evt)!Q_trace_C2(evt)!Q_trace_C2(evt)!Q_trace_C2(evt)!Q_trace_C2(evt)!Q_trace_C2(evt)!Q_trace_C2(evt)!Q_trace_C2(evt)!Q_trace_C2(evt)!Q_trace_C2(evt)!Q_trace_C2(evt)

!call_traceFilter_S1(fid,fi)!call_traceFilter_S1(fid,fi)!call_traceFilter_S1(fid,fi)!call_traceFilter_S1(fid,fi)!call_traceFilter_S1(fid,fi)!call_traceFilter_S1(fid,fi)!call_traceFilter_S1(fid,fi)!call_traceFilter_S1(fid,fi)!call_traceFilter_S1(fid,fi)!call_traceFilter_S1(fid,fi)!call_traceFilter_S1(fid,fi)!call_traceFilter_S1(fid,fi)!call_traceFilter_S1(fid,fi)!call_traceFilter_S1(fid,fi)!call_traceFilter_S1(fid,fi)!call_traceFilter_S1(fid,fi)!call_traceFilter_S1(fid,fi)

!call_config_S1(fid,cmd)!call_config_S1(fid,cmd)!call_config_S1(fid,cmd)!call_config_S1(fid,cmd)!call_config_S1(fid,cmd)!call_config_S1(fid,cmd)!call_config_S1(fid,cmd)!call_config_S1(fid,cmd)!call_config_S1(fid,cmd)!call_config_S1(fid,cmd)!call_config_S1(fid,cmd)!call_config_S1(fid,cmd)!call_config_S1(fid,cmd)!call_config_S1(fid,cmd)!call_config_S1(fid,cmd)!call_config_S1(fid,cmd)!call_config_S1(fid,cmd) !call_traceLvl_S1(fid,lvl)!call_traceLvl_S1(fid,lvl)!call_traceLvl_S1(fid,lvl)!call_traceLvl_S1(fid,lvl)!call_traceLvl_S1(fid,lvl)!call_traceLvl_S1(fid,lvl)!call_traceLvl_S1(fid,lvl)!call_traceLvl_S1(fid,lvl)!call_traceLvl_S1(fid,lvl)!call_traceLvl_S1(fid,lvl)!call_traceLvl_S1(fid,lvl)!call_traceLvl_S1(fid,lvl)!call_traceLvl_S1(fid,lvl)!call_traceLvl_S1(fid,lvl)!call_traceLvl_S1(fid,lvl)!call_traceLvl_S1(fid,lvl)!call_traceLvl_S1(fid,lvl)

!R_config_S1(fid)!R_config_S1(fid)!R_config_S1(fid)!R_config_S1(fid)!R_config_S1(fid)!R_config_S1(fid)!R_config_S1(fid)!R_config_S1(fid)!R_config_S1(fid)!R_config_S1(fid)!R_config_S1(fid)!R_config_S1(fid)!R_config_S1(fid)!R_config_S1(fid)!R_config_S1(fid)!R_config_S1(fid)!R_config_S1(fid)

!R_traceLvl_M1(fid)!R_traceLvl_M1(fid)!R_traceLvl_M1(fid)!R_traceLvl_M1(fid)!R_traceLvl_M1(fid)!R_traceLvl_M1(fid)!R_traceLvl_M1(fid)!R_traceLvl_M1(fid)!R_traceLvl_M1(fid)!R_traceLvl_M1(fid)!R_traceLvl_M1(fid)!R_traceLvl_M1(fid)!R_traceLvl_M1(fid)!R_traceLvl_M1(fid)!R_traceLvl_M1(fid)!R_traceLvl_M1(fid)!R_traceLvl_M1(fid)
!R_config_M1(fid)!R_config_M1(fid)!R_config_M1(fid)!R_config_M1(fid)!R_config_M1(fid)!R_config_M1(fid)!R_config_M1(fid)!R_config_M1(fid)!R_config_M1(fid)!R_config_M1(fid)!R_config_M1(fid)!R_config_M1(fid)!R_config_M1(fid)!R_config_M1(fid)!R_config_M1(fid)!R_config_M1(fid)!R_config_M1(fid)

!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)

?Q_config_S1(fid,cmd)?Q_config_S1(fid,cmd)?Q_config_S1(fid,cmd)?Q_config_S1(fid,cmd)?Q_config_S1(fid,cmd)?Q_config_S1(fid,cmd)?Q_config_S1(fid,cmd)?Q_config_S1(fid,cmd)?Q_config_S1(fid,cmd)?Q_config_S1(fid,cmd)?Q_config_S1(fid,cmd)?Q_config_S1(fid,cmd)?Q_config_S1(fid,cmd)?Q_config_S1(fid,cmd)?Q_config_S1(fid,cmd)?Q_config_S1(fid,cmd)?Q_config_S1(fid,cmd)

?Q_traceLvl_S1(fid,lvl)?Q_traceLvl_S1(fid,lvl)?Q_traceLvl_S1(fid,lvl)?Q_traceLvl_S1(fid,lvl)?Q_traceLvl_S1(fid,lvl)?Q_traceLvl_S1(fid,lvl)?Q_traceLvl_S1(fid,lvl)?Q_traceLvl_S1(fid,lvl)?Q_traceLvl_S1(fid,lvl)?Q_traceLvl_S1(fid,lvl)?Q_traceLvl_S1(fid,lvl)?Q_traceLvl_S1(fid,lvl)?Q_traceLvl_S1(fid,lvl)?Q_traceLvl_S1(fid,lvl)?Q_traceLvl_S1(fid,lvl)?Q_traceLvl_S1(fid,lvl)?Q_traceLvl_S1(fid,lvl)

!R_config(fid,code)!R_config(fid,code)!R_config(fid,code)!R_config(fid,code)!R_config(fid,code)!R_config(fid,code)!R_config(fid,code)!R_config(fid,code)!R_config(fid,code)!R_config(fid,code)!R_config(fid,code)!R_config(fid,code)!R_config(fid,code)!R_config(fid,code)!R_config(fid,code)!R_config(fid,code)!R_config(fid,code)

?Bind_M1(i)?Bind_M1(i)?Bind_M1(i)?Bind_M1(i)?Bind_M1(i)?Bind_M1(i)?Bind_M1(i)?Bind_M1(i)?Bind_M1(i)?Bind_M1(i)?Bind_M1(i)?Bind_M1(i)?Bind_M1(i)?Bind_M1(i)?Bind_M1(i)?Bind_M1(i)?Bind_M1(i)

?Q_traceFilter_S1(fid,fi)?Q_traceFilter_S1(fid,fi)?Q_traceFilter_S1(fid,fi)?Q_traceFilter_S1(fid,fi)?Q_traceFilter_S1(fid,fi)?Q_traceFilter_S1(fid,fi)?Q_traceFilter_S1(fid,fi)?Q_traceFilter_S1(fid,fi)?Q_traceFilter_S1(fid,fi)?Q_traceFilter_S1(fid,fi)?Q_traceFilter_S1(fid,fi)?Q_traceFilter_S1(fid,fi)?Q_traceFilter_S1(fid,fi)?Q_traceFilter_S1(fid,fi)?Q_traceFilter_S1(fid,fi)?Q_traceFilter_S1(fid,fi)?Q_traceFilter_S1(fid,fi)

?Unbind_M1(i)?Unbind_M1(i)?Unbind_M1(i)?Unbind_M1(i)?Unbind_M1(i)?Unbind_M1(i)?Unbind_M1(i)?Unbind_M1(i)?Unbind_M1(i)?Unbind_M1(i)?Unbind_M1(i)?Unbind_M1(i)?Unbind_M1(i)?Unbind_M1(i)?Unbind_M1(i)?Unbind_M1(i)?Unbind_M1(i)

!Q_config(p,G,cmd)!Q_config(p,G,cmd)!Q_config(p,G,cmd)!Q_config(p,G,cmd)!Q_config(p,G,cmd)!Q_config(p,G,cmd)!Q_config(p,G,cmd)!Q_config(p,G,cmd)!Q_config(p,G,cmd)!Q_config(p,G,cmd)!Q_config(p,G,cmd)!Q_config(p,G,cmd)!Q_config(p,G,cmd)!Q_config(p,G,cmd)!Q_config(p,G,cmd)!Q_config(p,G,cmd)!Q_config(p,G,cmd)

!Q_traceLvl(p,G,lvl)!Q_traceLvl(p,G,lvl)!Q_traceLvl(p,G,lvl)!Q_traceLvl(p,G,lvl)!Q_traceLvl(p,G,lvl)!Q_traceLvl(p,G,lvl)!Q_traceLvl(p,G,lvl)!Q_traceLvl(p,G,lvl)!Q_traceLvl(p,G,lvl)!Q_traceLvl(p,G,lvl)!Q_traceLvl(p,G,lvl)!Q_traceLvl(p,G,lvl)!Q_traceLvl(p,G,lvl)!Q_traceLvl(p,G,lvl)!Q_traceLvl(p,G,lvl)!Q_traceLvl(p,G,lvl)!Q_traceLvl(p,G,lvl)

? Q_trace_S2(fid,evt)? Q_trace_S2(fid,evt)? Q_trace_S2(fid,evt)? Q_trace_S2(fid,evt)? Q_trace_S2(fid,evt)? Q_trace_S2(fid,evt)? Q_trace_S2(fid,evt)? Q_trace_S2(fid,evt)? Q_trace_S2(fid,evt)? Q_trace_S2(fid,evt)? Q_trace_S2(fid,evt)? Q_trace_S2(fid,evt)? Q_trace_S2(fid,evt)? Q_trace_S2(fid,evt)? Q_trace_S2(fid,evt)? Q_trace_S2(fid,evt)? Q_trace_S2(fid,evt)

?R_config(p,i,code)?R_config(p,i,code)?R_config(p,i,code)?R_config(p,i,code)?R_config(p,i,code)?R_config(p,i,code)?R_config(p,i,code)?R_config(p,i,code)?R_config(p,i,code)?R_config(p,i,code)?R_config(p,i,code)?R_config(p,i,code)?R_config(p,i,code)?R_config(p,i,code)?R_config(p,i,code)?R_config(p,i,code)?R_config(p,i,code)

!Q_trace(hl_evt)!Q_trace(hl_evt)!Q_trace(hl_evt)!Q_trace(hl_evt)!Q_trace(hl_evt)!Q_trace(hl_evt)!Q_trace(hl_evt)!Q_trace(hl_evt)!Q_trace(hl_evt)!Q_trace(hl_evt)!Q_trace(hl_evt)!Q_trace(hl_evt)!Q_trace(hl_evt)!Q_trace(hl_evt)!Q_trace(hl_evt)!Q_trace(hl_evt)!Q_trace(hl_evt)

!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)!MC(G)

!Q_config_M1(fa,cmd)!Q_config_M1(fa,cmd)!Q_config_M1(fa,cmd)!Q_config_M1(fa,cmd)!Q_config_M1(fa,cmd)!Q_config_M1(fa,cmd)!Q_config_M1(fa,cmd)!Q_config_M1(fa,cmd)!Q_config_M1(fa,cmd)!Q_config_M1(fa,cmd)!Q_config_M1(fa,cmd)!Q_config_M1(fa,cmd)!Q_config_M1(fa,cmd)!Q_config_M1(fa,cmd)!Q_config_M1(fa,cmd)!Q_config_M1(fa,cmd)!Q_config_M1(fa,cmd)

!Q_traceLvl_M1(lvl)!Q_traceLvl_M1(lvl)!Q_traceLvl_M1(lvl)!Q_traceLvl_M1(lvl)!Q_traceLvl_M1(lvl)!Q_traceLvl_M1(lvl)!Q_traceLvl_M1(lvl)!Q_traceLvl_M1(lvl)!Q_traceLvl_M1(lvl)!Q_traceLvl_M1(lvl)!Q_traceLvl_M1(lvl)!Q_traceLvl_M1(lvl)!Q_traceLvl_M1(lvl)!Q_traceLvl_M1(lvl)!Q_traceLvl_M1(lvl)!Q_traceLvl_M1(lvl)!Q_traceLvl_M1(lvl)

?R_config(fa,codes)?R_config(fa,codes)?R_config(fa,codes)?R_config(fa,codes)?R_config(fa,codes)?R_config(fa,codes)?R_config(fa,codes)?R_config(fa,codes)?R_config(fa,codes)?R_config(fa,codes)?R_config(fa,codes)?R_config(fa,codes)?R_config(fa,codes)?R_config(fa,codes)?R_config(fa,codes)?R_config(fa,codes)?R_config(fa,codes)

!call_trace_S2(evt)!call_trace_S2(evt)!call_trace_S2(evt)!call_trace_S2(evt)!call_trace_S2(evt)!call_trace_S2(evt)!call_trace_S2(evt)!call_trace_S2(evt)!call_trace_S2(evt)!call_trace_S2(evt)!call_trace_S2(evt)!call_trace_S2(evt)!call_trace_S2(evt)!call_trace_S2(evt)!call_trace_S2(evt)!call_trace_S2(evt)!call_trace_S2(evt)

Figure 22: pNets for a Global HM composite

The Global HM composite has two sub-pNets for its internal sub-components, and a full set
of pNets modelling its membrane, namely: a Queue receiving requests both from its service
interface S1 and from the Global Manager sub-component, a body dispatching these requests to
the Global Manager or to the controllers (Deleg, GrPM) of the multicast interface M1. On the
M1 interface, only the con�g method requires an answer, and has an indexed family of group
proxies, managing the R_con�g return messages. The GrProxy_traceLvl proxy role is only to
store the group value (G) before sending the broadcasted request, so it only needs one instance,
and no recycling. Last, the con�g_S1 service method requires an answer, so it has a set of
controllers (Deleg, PM, Proxy) managing this future.

The Global Manager and Global Monitor primitive components are very similar to the
Local Manager and Local Monitor.

The last step is to assemble the toplevel composite, including the (dynamic) modelling of the
multicast binding. In the current version of the Fractal/GCM ADL, we have no possibility for
specifying this architecture in a parameterized manner: the (maximum) number of Local HM
components must be known from the beginning. Only the group G may vary dynamically, by
the e�ect of Bind/Unbind operations.

In Figure 23 we show this toplevel pNet, for a con�guration with a maximum of 3 local
components. As we do not show here the state machines (pLTSs) of the controllers, the initial

Inria

Behavioural Semantics for Asynchronous Components 51

Local HMLocal HMLocal HMLocal HMLocal HMLocal HMLocal HMLocal HMLocal HMLocal HMLocal HMLocal HMLocal HMLocal HMLocal HMLocal HMLocal HM

Global HMGlobal HMGlobal HMGlobal HMGlobal HMGlobal HMGlobal HMGlobal HMGlobal HMGlobal HMGlobal HMGlobal HMGlobal HMGlobal HMGlobal HMGlobal HMGlobal HM

Local HMLocal HMLocal HMLocal HMLocal HMLocal HMLocal HMLocal HMLocal HMLocal HMLocal HMLocal HMLocal HMLocal HMLocal HMLocal HMLocal HM

Local HMLocal HMLocal HMLocal HMLocal HMLocal HMLocal HMLocal HMLocal HMLocal HMLocal HMLocal HMLocal HMLocal HMLocal HMLocal HMLocal HM

Toplevel HMToplevel HMToplevel HMToplevel HMToplevel HMToplevel HMToplevel HMToplevel HMToplevel HMToplevel HMToplevel HMToplevel HMToplevel HMToplevel HMToplevel HMToplevel HMToplevel HM

?Q_config((p,i1),cmd)?Q_config((p,i1),cmd)?Q_config((p,i1),cmd)?Q_config((p,i1),cmd)?Q_config((p,i1),cmd)?Q_config((p,i1),cmd)?Q_config((p,i1),cmd)?Q_config((p,i1),cmd)?Q_config((p,i1),cmd)?Q_config((p,i1),cmd)?Q_config((p,i1),cmd)?Q_config((p,i1),cmd)?Q_config((p,i1),cmd)?Q_config((p,i1),cmd)?Q_config((p,i1),cmd)?Q_config((p,i1),cmd)?Q_config((p,i1),cmd)

?Q_traceLvl((p,i1),lvl)?Q_traceLvl((p,i1),lvl)?Q_traceLvl((p,i1),lvl)?Q_traceLvl((p,i1),lvl)?Q_traceLvl((p,i1),lvl)?Q_traceLvl((p,i1),lvl)?Q_traceLvl((p,i1),lvl)?Q_traceLvl((p,i1),lvl)?Q_traceLvl((p,i1),lvl)?Q_traceLvl((p,i1),lvl)?Q_traceLvl((p,i1),lvl)?Q_traceLvl((p,i1),lvl)?Q_traceLvl((p,i1),lvl)?Q_traceLvl((p,i1),lvl)?Q_traceLvl((p,i1),lvl)?Q_traceLvl((p,i1),lvl)?Q_traceLvl((p,i1),lvl)

!R_config((p,i1),code)!R_config((p,i1),code)!R_config((p,i1),code)!R_config((p,i1),code)!R_config((p,i1),code)!R_config((p,i1),code)!R_config((p,i1),code)!R_config((p,i1),code)!R_config((p,i1),code)!R_config((p,i1),code)!R_config((p,i1),code)!R_config((p,i1),code)!R_config((p,i1),code)!R_config((p,i1),code)!R_config((p,i1),code)!R_config((p,i1),code)!R_config((p,i1),code)

!Q_TraceEvt(evt)!Q_TraceEvt(evt)!Q_TraceEvt(evt)!Q_TraceEvt(evt)!Q_TraceEvt(evt)!Q_TraceEvt(evt)!Q_TraceEvt(evt)!Q_TraceEvt(evt)!Q_TraceEvt(evt)!Q_TraceEvt(evt)!Q_TraceEvt(evt)!Q_TraceEvt(evt)!Q_TraceEvt(evt)!Q_TraceEvt(evt)!Q_TraceEvt(evt)!Q_TraceEvt(evt)!Q_TraceEvt(evt)

!Q_config(p,G,cmd)!Q_config(p,G,cmd)!Q_config(p,G,cmd)!Q_config(p,G,cmd)!Q_config(p,G,cmd)!Q_config(p,G,cmd)!Q_config(p,G,cmd)!Q_config(p,G,cmd)!Q_config(p,G,cmd)!Q_config(p,G,cmd)!Q_config(p,G,cmd)!Q_config(p,G,cmd)!Q_config(p,G,cmd)!Q_config(p,G,cmd)!Q_config(p,G,cmd)!Q_config(p,G,cmd)!Q_config(p,G,cmd)

!Q_traceLvl(p,G,lvl)!Q_traceLvl(p,G,lvl)!Q_traceLvl(p,G,lvl)!Q_traceLvl(p,G,lvl)!Q_traceLvl(p,G,lvl)!Q_traceLvl(p,G,lvl)!Q_traceLvl(p,G,lvl)!Q_traceLvl(p,G,lvl)!Q_traceLvl(p,G,lvl)!Q_traceLvl(p,G,lvl)!Q_traceLvl(p,G,lvl)!Q_traceLvl(p,G,lvl)!Q_traceLvl(p,G,lvl)!Q_traceLvl(p,G,lvl)!Q_traceLvl(p,G,lvl)!Q_traceLvl(p,G,lvl)!Q_traceLvl(p,G,lvl)

?R_config((p,i),code)?R_config((p,i),code)?R_config((p,i),code)?R_config((p,i),code)?R_config((p,i),code)?R_config((p,i),code)?R_config((p,i),code)?R_config((p,i),code)?R_config((p,i),code)?R_config((p,i),code)?R_config((p,i),code)?R_config((p,i),code)?R_config((p,i),code)?R_config((p,i),code)?R_config((p,i),code)?R_config((p,i),code)?R_config((p,i),code)

?Q_trace_S2(evt)?Q_trace_S2(evt)?Q_trace_S2(evt)?Q_trace_S2(evt)?Q_trace_S2(evt)?Q_trace_S2(evt)?Q_trace_S2(evt)?Q_trace_S2(evt)?Q_trace_S2(evt)?Q_trace_S2(evt)?Q_trace_S2(evt)?Q_trace_S2(evt)?Q_trace_S2(evt)?Q_trace_S2(evt)?Q_trace_S2(evt)?Q_trace_S2(evt)?Q_trace_S2(evt)

?Q_config((p,i3),cmd)?Q_config((p,i3),cmd)?Q_config((p,i3),cmd)?Q_config((p,i3),cmd)?Q_config((p,i3),cmd)?Q_config((p,i3),cmd)?Q_config((p,i3),cmd)?Q_config((p,i3),cmd)?Q_config((p,i3),cmd)?Q_config((p,i3),cmd)?Q_config((p,i3),cmd)?Q_config((p,i3),cmd)?Q_config((p,i3),cmd)?Q_config((p,i3),cmd)?Q_config((p,i3),cmd)?Q_config((p,i3),cmd)?Q_config((p,i3),cmd)

?Q_traceLvl((p,i3),lvl)?Q_traceLvl((p,i3),lvl)?Q_traceLvl((p,i3),lvl)?Q_traceLvl((p,i3),lvl)?Q_traceLvl((p,i3),lvl)?Q_traceLvl((p,i3),lvl)?Q_traceLvl((p,i3),lvl)?Q_traceLvl((p,i3),lvl)?Q_traceLvl((p,i3),lvl)?Q_traceLvl((p,i3),lvl)?Q_traceLvl((p,i3),lvl)?Q_traceLvl((p,i3),lvl)?Q_traceLvl((p,i3),lvl)?Q_traceLvl((p,i3),lvl)?Q_traceLvl((p,i3),lvl)?Q_traceLvl((p,i3),lvl)?Q_traceLvl((p,i3),lvl)

!R_config((p,i3),code)!R_config((p,i3),code)!R_config((p,i3),code)!R_config((p,i3),code)!R_config((p,i3),code)!R_config((p,i3),code)!R_config((p,i3),code)!R_config((p,i3),code)!R_config((p,i3),code)!R_config((p,i3),code)!R_config((p,i3),code)!R_config((p,i3),code)!R_config((p,i3),code)!R_config((p,i3),code)!R_config((p,i3),code)!R_config((p,i3),code)!R_config((p,i3),code)

!Q_TraceEvt(evt)!Q_TraceEvt(evt)!Q_TraceEvt(evt)!Q_TraceEvt(evt)!Q_TraceEvt(evt)!Q_TraceEvt(evt)!Q_TraceEvt(evt)!Q_TraceEvt(evt)!Q_TraceEvt(evt)!Q_TraceEvt(evt)!Q_TraceEvt(evt)!Q_TraceEvt(evt)!Q_TraceEvt(evt)!Q_TraceEvt(evt)!Q_TraceEvt(evt)!Q_TraceEvt(evt)!Q_TraceEvt(evt)

?Q_config((p,i2),cmd)?Q_config((p,i2),cmd)?Q_config((p,i2),cmd)?Q_config((p,i2),cmd)?Q_config((p,i2),cmd)?Q_config((p,i2),cmd)?Q_config((p,i2),cmd)?Q_config((p,i2),cmd)?Q_config((p,i2),cmd)?Q_config((p,i2),cmd)?Q_config((p,i2),cmd)?Q_config((p,i2),cmd)?Q_config((p,i2),cmd)?Q_config((p,i2),cmd)?Q_config((p,i2),cmd)?Q_config((p,i2),cmd)?Q_config((p,i2),cmd)

?Q_traceLvl((p,i2),lvl)?Q_traceLvl((p,i2),lvl)?Q_traceLvl((p,i2),lvl)?Q_traceLvl((p,i2),lvl)?Q_traceLvl((p,i2),lvl)?Q_traceLvl((p,i2),lvl)?Q_traceLvl((p,i2),lvl)?Q_traceLvl((p,i2),lvl)?Q_traceLvl((p,i2),lvl)?Q_traceLvl((p,i2),lvl)?Q_traceLvl((p,i2),lvl)?Q_traceLvl((p,i2),lvl)?Q_traceLvl((p,i2),lvl)?Q_traceLvl((p,i2),lvl)?Q_traceLvl((p,i2),lvl)?Q_traceLvl((p,i2),lvl)?Q_traceLvl((p,i2),lvl)

!R_config((p,i2),code)!R_config((p,i2),code)!R_config((p,i2),code)!R_config((p,i2),code)!R_config((p,i2),code)!R_config((p,i2),code)!R_config((p,i2),code)!R_config((p,i2),code)!R_config((p,i2),code)!R_config((p,i2),code)!R_config((p,i2),code)!R_config((p,i2),code)!R_config((p,i2),code)!R_config((p,i2),code)!R_config((p,i2),code)!R_config((p,i2),code)!R_config((p,i2),code)

!Q_TraceEvt(evt)!Q_TraceEvt(evt)!Q_TraceEvt(evt)!Q_TraceEvt(evt)!Q_TraceEvt(evt)!Q_TraceEvt(evt)!Q_TraceEvt(evt)!Q_TraceEvt(evt)!Q_TraceEvt(evt)!Q_TraceEvt(evt)!Q_TraceEvt(evt)!Q_TraceEvt(evt)!Q_TraceEvt(evt)!Q_TraceEvt(evt)!Q_TraceEvt(evt)!Q_TraceEvt(evt)!Q_TraceEvt(evt)

!Bind_M1(i)!Bind_M1(i)!Bind_M1(i)!Bind_M1(i)!Bind_M1(i)!Bind_M1(i)!Bind_M1(i)!Bind_M1(i)!Bind_M1(i)!Bind_M1(i)!Bind_M1(i)!Bind_M1(i)!Bind_M1(i)!Bind_M1(i)!Bind_M1(i)!Bind_M1(i)!Bind_M1(i) !Unbind_M1(i)!Unbind_M1(i)!Unbind_M1(i)!Unbind_M1(i)!Unbind_M1(i)!Unbind_M1(i)!Unbind_M1(i)!Unbind_M1(i)!Unbind_M1(i)!Unbind_M1(i)!Unbind_M1(i)!Unbind_M1(i)!Unbind_M1(i)!Unbind_M1(i)!Unbind_M1(i)!Unbind_M1(i)!Unbind_M1(i)

?_Q_config_S1(...)?_Q_config_S1(...)?_Q_config_S1(...)?_Q_config_S1(...)?_Q_config_S1(...)?_Q_config_S1(...)?_Q_config_S1(...)?_Q_config_S1(...)?_Q_config_S1(...)?_Q_config_S1(...)?_Q_config_S1(...)?_Q_config_S1(...)?_Q_config_S1(...)?_Q_config_S1(...)?_Q_config_S1(...)?_Q_config_S1(...)?_Q_config_S1(...)

?Q_traceLvl_S1(...)?Q_traceLvl_S1(...)?Q_traceLvl_S1(...)?Q_traceLvl_S1(...)?Q_traceLvl_S1(...)?Q_traceLvl_S1(...)?Q_traceLvl_S1(...)?Q_traceLvl_S1(...)?Q_traceLvl_S1(...)?Q_traceLvl_S1(...)?Q_traceLvl_S1(...)?Q_traceLvl_S1(...)?Q_traceLvl_S1(...)?Q_traceLvl_S1(...)?Q_traceLvl_S1(...)?Q_traceLvl_S1(...)?Q_traceLvl_S1(...)

?Q_traceFilter_S1(...)?Q_traceFilter_S1(...)?Q_traceFilter_S1(...)?Q_traceFilter_S1(...)?Q_traceFilter_S1(...)?Q_traceFilter_S1(...)?Q_traceFilter_S1(...)?Q_traceFilter_S1(...)?Q_traceFilter_S1(...)?Q_traceFilter_S1(...)?Q_traceFilter_S1(...)?Q_traceFilter_S1(...)?Q_traceFilter_S1(...)?Q_traceFilter_S1(...)?Q_traceFilter_S1(...)?Q_traceFilter_S1(...)?Q_traceFilter_S1(...)

!R_config(...)!R_config(...)!R_config(...)!R_config(...)!R_config(...)!R_config(...)!R_config(...)!R_config(...)!R_config(...)!R_config(...)!R_config(...)!R_config(...)!R_config(...)!R_config(...)!R_config(...)!R_config(...)!R_config(...)

!Q_trace(...)!Q_trace(...)!Q_trace(...)!Q_trace(...)!Q_trace(...)!Q_trace(...)!Q_trace(...)!Q_trace(...)!Q_trace(...)!Q_trace(...)!Q_trace(...)!Q_trace(...)!Q_trace(...)!Q_trace(...)!Q_trace(...)!Q_trace(...)!Q_trace(...)

[G=0,0,0][G=0,0,0][G=0,0,0][G=0,0,0][G=0,0,0][G=0,0,0][G=0,0,0][G=0,0,0][G=0,0,0][G=0,0,0][G=0,0,0][G=0,0,0][G=0,0,0][G=0,0,0][G=0,0,0][G=0,0,0][G=0,0,0]

[G=1,0,0][G=1,0,0][G=1,0,0][G=1,0,0][G=1,0,0][G=1,0,0][G=1,0,0][G=1,0,0][G=1,0,0][G=1,0,0][G=1,0,0][G=1,0,0][G=1,0,0][G=1,0,0][G=1,0,0][G=1,0,0][G=1,0,0]

[G=0,1,0][G=0,1,0][G=0,1,0][G=0,1,0][G=0,1,0][G=0,1,0][G=0,1,0][G=0,1,0][G=0,1,0][G=0,1,0][G=0,1,0][G=0,1,0][G=0,1,0][G=0,1,0][G=0,1,0][G=0,1,0][G=0,1,0]

[G=0,0,1][G=0,0,1][G=0,0,1][G=0,0,1][G=0,0,1][G=0,0,1][G=0,0,1][G=0,0,1][G=0,0,1][G=0,0,1][G=0,0,1][G=0,0,1][G=0,0,1][G=0,0,1][G=0,0,1][G=0,0,1][G=0,0,1]

[G=1,1,0][G=1,1,0][G=1,1,0][G=1,1,0][G=1,1,0][G=1,1,0][G=1,1,0][G=1,1,0][G=1,1,0][G=1,1,0][G=1,1,0][G=1,1,0][G=1,1,0][G=1,1,0][G=1,1,0][G=1,1,0][G=1,1,0]

[G=1,0,1][G=1,0,1][G=1,0,1][G=1,0,1][G=1,0,1][G=1,0,1][G=1,0,1][G=1,0,1][G=1,0,1][G=1,0,1][G=1,0,1][G=1,0,1][G=1,0,1][G=1,0,1][G=1,0,1][G=1,0,1][G=1,0,1]

[G=0,1,1][G=0,1,1][G=0,1,1][G=0,1,1][G=0,1,1][G=0,1,1][G=0,1,1][G=0,1,1][G=0,1,1][G=0,1,1][G=0,1,1][G=0,1,1][G=0,1,1][G=0,1,1][G=0,1,1][G=0,1,1][G=0,1,1]

[G=1,1,1][G=1,1,1][G=1,1,1][G=1,1,1][G=1,1,1][G=1,1,1][G=1,1,1][G=1,1,1][G=1,1,1][G=1,1,1][G=1,1,1][G=1,1,1][G=1,1,1][G=1,1,1][G=1,1,1][G=1,1,1][G=1,1,1]

Figure 23: pNet for the toplevel composite component

state of our model is left unde�ned.
The Toplevel HM composite component has no need for membrane components, with an ar-

gument similar to theLocal HM case: all requests on the service interface, including bind/unbind
requests, are simply forwarded to the Global HM sub-component. The interesting part here is the
dynamic multicast bindings between the Global and Local HM components9. All synchronisation
vectors between the !Q_con�g and !Q_traceLvl ports of the Global HM and the corresponding
input ports of the Local HMs are guarded by a predicate testing the value of the group param-
eter. Each of these synchronisation vectors models the synchronous sending of the messages to
all currently connected Local HMs. The other way round, the !R_con�g messages from each
Local HM are synchronised with the corresponding port of the Global HM, with the index of the
emitting group member inserted as explained in rule [C16].

6.2 Discussion

The implementation of this semantics will only be usable in practice if we are able to de�ne
signi�cant optimisations on the generated pNet structure. We have sketched some of the main
structural optimisations in this section, but the resulting model size is still quite big:
let p be the number of proxies per proxy family, and l be the number of local HMs, then we have
(21+2∗p)+ l ∗ (10+p) basic pNets generated, and (7+2∗ l+2∗2l)+(58+8∗p)+ l ∗ (26+4∗p)
(parameterized) synchronisation vectors. For a typical small instantiation of l := 3, p := 3, we
get 66 basic nets and 225 parameterized vectors, that is more or less 2 orders of magnitude bigger
than the last use-case we published [2].

9for the sake of readability, we have omitted the connections for the !Q_traceLvl broadcast messages

RR n° 8167

52 Boulifa, Henrio, Madelaine & Savu

In this previous case-study, we showed how to combine 3 main techniques to master the state-
explosion of such systems, namely data-abstraction, compositional construction/minimization,
and distributed model-checking. Naturally all will be useful here, but we want to highlight the
�rst one that will probably be very sensible here: many of the parameters that occur in the
actions of our behaviour rules may be safely abstracted away in speci�c con�gurations (like the
optimisations we described previously), others will have to be abstracted in a manner depending
on the formulas we want to prove. Naturally, we want to validate formally all these optimisations.

7 Related Work

Component-based development has in recent years become an established approach. It shown
successes in many application domains such as in distributed and embedded systems. There are
several component models that are supplied for building complex systems: Fractal [17], Ptolemy
[25], CCM [22, 33, 11], AADL, and GCM [10, 1]. But there are only a few that have a theoretical
framework that allows reasoning about modelled systems and veri�cation of their behavioural
properties.

Some of the formal developments around components are done with objectives very di�er-
ent from ours. For example, the formalisation of the Fractal model in Alloy [31] brings several
interesting properties, but they are mainly related to the model itself more than to the com-
ponent applications. Similarly, a formal model of GCM has been speci�ed in Isabelle/HOL
[28], while it gives an interesting framework to reason on the component model and prove some
of its properties, it is not adapted to prove the correct behaviour of applications. A formal
framework for reasoning on futures has been de�ned in [23], but the authors did not provide, to
our knowledge, the tools to use their equations in order to automatically or semi-automatically
prove properties on programs. Behavioural speci�cation, on the contrary, is better adapted to
the correctness proofs for given applications. Among the researches dedicated to the component
oriented behavioural veri�cation that we are aware of, the closest are SOFA, Kmelia, STSLib,
and BIP.

The SOFA system [19] is a development and veri�cation framework for large-scale distributed
software systems based on hierarchical components. It uses behaviour protocols [34] to specify
interactions between components in terms of ordering of method invocation events. Behaviour
protocols are also used, at each level of the component hierarchy, to de�ne a black blox speci�ca-
tion of the subsystem. The behaviour compliance and consent relations are de�ned on behaviour
protocols based on their trace semantics, allowing to prove separately at each level of the hier-
achy the compliance of an implementation (called architecture) with its speci�cation (protocol).
Behavior protocols can also be encoded e.g. in Promela, that allows for classical LTL model-
checking [30].

Kmelia [3, 5, 4] is a component speci�cation model based on the description of complex
services. Kmelia and its toolbox COSTO can be used to model software architectures and
their properties, these models being later re�ned to execution platforms. It can also be used as a
common model for studying component or service model properties (abstraction, interoperability,
composability), using various veri�cation toolsets, including CADP, MEC5, and Atelier-B. To
our knowledge, though, there is no explicit behavioural semantics de�ned for Kmelia applications.

The STSLib library [26] provides a formal component framework that synthesizes components
from symbolic protocols in terms of Symbolic Transition Systems (STS). Just as pNets, STS
concisely represent in�nite systems, however STS rely on Abstract Data Types (ADT) which are
more expressive than the Simple Types used in pNets but less intuitive for software engineers.
Both formalisms rely on (N-ary) synchronization vectors, but in STS they are static whereas

Inria

Behavioural Semantics for Asynchronous Components 53

in pNets they are dynamic. STSLib synthesizes components based on their STS protocols;
a controller interprets the STS protocol and data from which the ADT is implemented (and
generated) in Java. The communication in STS components is rather low level ; both emitter
and receiver must agree to exchange a message, and there is no explicit notion of required nor
provided services.

On the implementation side, the two approaches are quite di�erent: the implementation of
STS simulates the synchronisation vectors that can be expressed in the speci�cation, whereas
in our approach, we write only the synchronisation vectors corresponding to the possible com-
munications between components. Our speci�cation language is more independent from the
middleware, and it allows us to express complex synchronisations. This allows us to reason on
e�cient, expressive, and proved communication mechanisms. Overall, even if the pNet formalism
is approximately at the same level of abstraction as STS, in our approach, the programmer is
rather exposed to a higher-level composition framework, closer to his usual programming and
composition concerns.

BIP [12, 7] is a formal framework that allows building and analysing complex component-
based systems, both synchronous (reactive) or asynchronous (distributed) by coordinating the
behavior of a set of primitive and heterogeneous components. A component's behaviour is
described as a Petri net extended with data and functions, whereas coordination is described
as interactions between components and scheduling policies between interactions. Even if the
BIP framework allows powerful compositional reasoning on the system, it does not support
the de�nition of parameterised components, nor does it allow explicit data transfer between
components.

BIP is supported by a toolset including translators from various programming languages as
Lustre and C into BIP, a compiler for generating code executable by a dedicated engine, and the
veri�cation tool D-Finder. This last tool ([13]) is not a generic model-checker, but a speci�c tool
for deadlock detection and diagnosis, allowing to address systems of large size, as shown e.g. in
[8, 14].

8 Conclusion

This article provides a formal framework for the generation of behavioural semantics of asyn-
chronous distributed software components. Asynchronous software components provide a con-
venient programming abstraction for designing large-scale distributed systems, where each com-
ponent acts as an autonomous entity, only communicating with the others by asynchronous
communications. Behavioural semantics enable the generation of a model of the program be-
haviour; then its correctness can be veri�ed using dedicated platforms, for example based on
model-checking techniques. The main contributions of this article are:

� a minimal formal de�nition of pNets. This de�nition does not cover all aspects previously
published, but constitutes a simpler core de�nition, self-contained and su�cient for this
article.

� a formal de�nition of GCM components, their abstract syntax, and a well-formedness
criteria, together with an informal description of their semantics,

� a precise formal de�nition of the behavioural semantics of GCM, in the form of structural
rules constructing pNet models,

� an illustrative example sketching ideas for using these rules in practice.

RR n° 8167

54 Boulifa, Henrio, Madelaine & Savu

Among these contributions, the main part concerns the behavioural speci�cation of the most
important Fractal/GCM features. For some of these, we have already described a behavioural
semantics in previous conference papers, but only in an informal way. Here we have given a full
de�nition, and a procedure for building their pNet models. This includes the basic structure
for GCM components, request queues, body expressing the service policy, future proxies and
proxy managers; it also de�nes the semantic artifacts needed for �rst class futures, and for group
communication over multicast interfaces, including management of group recon�gurations.

The example described in the last section is extracted from a new (yet unpublished) industrial
use-case, and features all the aspects listed above, except for �rst class futures. We also use this
example to comment on the possible implementation of our semantic model generation, and to
discuss a number of optimisation rules that would be important to take into account.

Naturally enough, we are currently working on a full implementation of this semantics in
our VerCors speci�cation and veri�cation platform [21]. This e�ort is complemented by the
case-study mentioned in the above paragraph, and will be clearly a di�cult challenge in terms
of state-explosion, and may be several orders of magnitude more complex than previous studies
[2]. We also plan to extend this work in several directions. First there are still some GCM
features that are not included in the current core semantics, and that are important in pratical
applications. This is the case of Gathercast interfaces (see [9]), and the various policies for
managing parameters distribution and results gathering. And there is much more to do about the
recon�guration features of GCM, either considering explicit recon�guration scripts, or autonomic
components.

But the pNets approach can easily be applied to other types of distributed languages or
formalisms, in the way we have dealt with Active objects, Fractal components, and GCM. It
encodes in a very �exible and expressive way any kind of process composition, communication
and synchronisation, provided it stays within the family of �rst-order hierarchical structures.
This rules out formalisms such as the Π-calculus or the chemical machine, but includes most
component models (CCM, SCA, Creol, ...) and their implementations.

In a completely di�erent direction, we plan to relate the behavioural semantics of this article
with the more �operational� one de�ned in [9]. We have used the latter in our research on
theorem-prover based formalisations and proofs for GCM, and relating the two semantics would
give us powerful tools for dealing with properties of dynamicaly evolving applications, and in the
longer term to combine model-checking and theorem proving methods to reason about realistic
applications.

References

[1] M. Aldinucci, C. Bertolli, S. Campa, M. Coppola, M. Vanneschi, and C. Zoccolo. Autonomic
Grid Components: the GCM Proposal and Self-optimising ASSIST Components. In Joint
Workshop on HPC Grid programming Environments and COmponents and Component and
Framework Technology in High-Performance and Scienti�c Computing at HPDC'15, June
2006.

[2] R. Ameur-Boulifa, R. Halalai, L. Henrio, and E. Madelaine. Verifying safety of fault-tolerant
distributed components. In International Workshop on Formal Aspects of Component Soft-
ware (FACS'11), Oslo, Sept 2011.

[3] P. André, G. Ardourel, and C. Attiogbé. Adaptation for hierarchical components and ser-
vices. Electron. Notes Theor. Comput. Sci., 189:5�20, 2007.

Inria

Behavioural Semantics for Asynchronous Components 55

[4] P. André, G. Ardourel, and C. Attiogbé. Composing Components with Shared Services
in the Kmelia Model. In 7th International Symposium on Software Composition, SC'08,
volume 4954 of LNCS. Springer, 2008.

[5] C. Attiogbé, P. André, and G. Ardourel. Checking Component Composability. In 5th
International Symposium on Software Composition (ETAPS/SC'06, volume 4089 of Lecture
Notes in Computer Science. Springer Verlag, 2006.

[6] T. Barros, R. Ameur-Boulifa, A. Cansado, L. Henrio, and E. Madelaine. Behavioural models
for distributed fractal components. Annals of Télécommunications, 64(1-2):25�43, 2009.

[7] Ananda Basu, Bensalem Bensalem, Marius Bozga, Jacques Combaz, Mohamad Jaber,
Thanh-Hung Nguyen, and Joseph Sifakis. Rigorous component-based system design using
the bip framework. IEEE Softw., 28(3):41�48, May 2011.

[8] Ananda Basu, Matthieu Gallien, Charles Lesire, Thanh-Hung Nguyen, Saddek Bensalem,
Felix Ingrand, and Joseph Sifakis. Incremental component-based construction and veri�ca-
tion of a robotic system. In ECAI 2008 - 18th European Conference on Arti�cial Intelli-
gence, Patras, Greece, July 21-25, 2008, Proceedings, volume 178 of Frontiers in Arti�cial
Intelligence and Applications, pages 631�635. IOS Press, 2008.

[9] F. Baude, D. Caromel, C. Dalmasso, M. Danelutto, V. Getov, L. Henrio, and C. Pérez.
GCM: A Grid Extension to Fractal for Autonomous Distributed Components. Annals of
Telecommunications, 64(1):5�24, 2009.

[10] F. Baude, D. Caromel, C. Dalmasso, M. Danelutto, V. Getov, L. Henrio, and Ch. Pérez.
GCM: a grid extension to Fractal for autonomous distributed components. Annals of Télé-
communications, 64(1-2):5�24, 2009.

[11] M. Beisiegel, H. Blohm, D. Booz, M. Edwards, and O. Hurley. SCA service component
architecture, assembly model speci�cation. Technical report, OSOA, March 2007.

[12] S. Bensalem, M. Bozga, T.-H. Nguyen, and J. Sifakis. Compositional veri�cation for
component-based systems and application. IET Software, 4(3), 2010.

[13] Saddek Bensalem, Marius Bozga, Thanh-Hung Nguyen, and Joseph Sifakis. D-�nder: A tool
for compositional deadlock detection and veri�cation. In Computer Aided Veri�cation, 21st
International Conference, CAV 2009, Grenoble, France, June 26 - July 2, 2009. Proceedings,
volume 5643 of Lecture Notes in Computer Science, pages 614�619. Springer, 2009.

[14] Saddek Bensalem, Marius Bozga, Thanh-Hung Nguyen, and Joseph Sifakis. Compositional
veri�cation for component-based systems and application. IET Software, 4(3):181�193, June
2010.

[15] R. Ameur Boulifa, L. Henrio, and E. Madelaine. Behavioural models for group communi-
cations. In WCSI-10: International Workshop on Component and Service Interoperability,
Malaga, Spain, 2010.

[16] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani. The fractal component
model and its support in java. Software Practice and Experience, special issue on Experiences
with Auto-adaptive and Recon�gurable Systems, 36(11-12), 2006.

[17] Eric Bruneton, Thierry Coupaye, M. Leclercp, V. Quema, and Jean Bernard Stefani. An
open component model and its support in java. In 7th Int. Symp. on Component-Based
Software Engineering (CBSE-7), LNCS 3054, may 2004.

RR n° 8167

56 Boulifa, Henrio, Madelaine & Savu

[18] Eric Bruneton, Thierry Coupaye, and Jean Bernard Stefani. The Fractal Component Model.
Technical report, ObjectWeb Consortium, February 2004. http://fractal.objectweb.

org/specification/index.html.

[19] T. Bure², P. Hnetynka, and F. Plasil. SOFA 2.0: balancing advanced features in a hier-
archical component model. In Proceedings of SERA 2006, IEEE CS, pages 40�48, Aug
2006.

[20] A. Cansado, L. Henrio, and E. Madelaine. Transparent �rst-class futures and dis-
tributed component. In International Workshop on Formal Aspects of Component Software
(FACS'08), Malaga, Sept 2008.

[21] A. Cansado and E. Madelaine. Speci�cation and veri�cation for grid component-based
applications: From models to tools. In FMCO, pages 180�203, 2008.

[22] CCA forum. The Common Component Architecture (CCA) Forum home page, 2005.
http://www.cca-forum.org/.

[23] Frank S. de Boer, Dave Clarke, and Einar Broch Johnsen. A complete guide to the future. In
Rocco De Nicola, editor, ESOP, volume 4421 of Lecture Notes in Computer Science, pages
316�330. Springer, 2007.

[24] Jessie Dedecker, Tom Van Cutsem, Stijn Mostinckx, Theo D'Hondt, and Wolfgang De
Meuter. Ambient-oriented programming in ambienttalk. In Dave Thomas, editor, ECOOP,
volume 4067 of Lecture Notes in Computer Science, pages 230�254. Springer, 2006.

[25] J. Eker, J. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Sachs, and Y. Xiong. Taming
heterogeneity - the Ptolemy approach. Proceedings of the IEEE, 91(1):127�144, January
2003.

[26] F. Fernandes and JC. Royer. The stslib project: Towards a formal component model based
on sts. Electronic Notes in Theoretical Computer Science, 215:131�149, 2008.

[27] L. Henrio, F. Kammüller, and M. Rivera. An asynchronous distributed component model
and its semantics. In F. de Boer, M. Bonsangue, and E. Madelaine, editors, FMCO'08,
volume 5751 of LNCS, pages 159�179. Springer, Heidelberg, 2008.

[28] Ludovic Henrio, Florian Kammüller, and Muhammad Uzair Khan. A framework for rea-
soning on component composition. In FMCO 2009, Lecture Notes in Computer Science.
Springer, 2010.

[29] E. B. Johnsen, O. Owe, and I. C. Yu. Creol: a types-safe object-oriented model for dis-
tributed concurrent systems. Journal of Theoretical Computer Science, 365(1 � 2):23 � 66,
2006.

[30] J. Kofron. Checking Software Component Behavior Using Behavior Protocols and Spin. In
proceedings of Applied Computing 2007, Seoul, Korea, 2007.

[31] Philippe Merle and Jean-Bernard Stefani. A formal speci�cation of the Fractal component
model in Alloy. Research Report RR-6721, INRIA, 2008.

[32] R. Milner. Communication and Concurrency. Prentice Hall, 1989. ISBN 0-13-114984-9.

Inria

Behavioural Semantics for Asynchronous Components 57

[33] Object Management Group, Inc. (OMG). CORBA Component Model Speci�cation,
omg headquarters edition, April 2006. http://www.omg.org/cgi-bin/apps/doc?formal/
06-04-01.pdf.

[34] F. Plasil and S. Visnovsky. Behavior protocols for software components. IEEE Transactions
on Software Engineering, 28(11), nov 2002.

[35] J. Schafer and A. Poetzsch-He�ter. JCoBox: Generalizing active objects to concurrent
components. ECOOP 2010�Object-Oriented Programming, pages 275�299, 2010.

RR n° 8167

58 Boulifa, Henrio, Madelaine & Savu

A An operational semantics for pNets

This appendix provides an operational semantics for the pNet model; it is based on a valuation
domain for the variables of the pNet, that can be �nite, in�nite, or even contain new variables.

To give a semantics to pNets, we need a unique valuation domain D. This domain can
possibly be a countable instantiation domain for each variable. To simplify the semantics, we
require that it is possible to decide whether a boolean expression in D is true, and to decide
whether two expressions have the same value (e.g. when two action labels are the same). If we
choose a �nite domain for each variable and if each pLTS has a �nite set of states, the semantics
of the pNet will be a �nite LTS that can be used in a �nite-state model-checker.

We let φ = {xj → Vj |j ∈ J} be a valuation function where xj range over variables of the
considered pNet (each variable must be given a value), and Vj ∈ D. Such a valuation maintains
a mapping from variables to values. For a term t ∈ TP , tφ ∈ D is the value of the term obtained
by replacing each variable by their values given by φ. A valuation can be applied to expressions,
actions, or even indexed sets. In all cases, the variables are replaced by their value and the new
expressions are evaluated. The set of valuation functions, Φ, allows the precise de�nition of the
state-space to be considered: only valuation functions such that φ ∈ Φ are considered. We de�ne
an update operator + on valuations, where φ1 + φ2 replaces some of the values de�ned in φ1 by
the ones in φ2; φ2 might also de�ne new entries, formally:

{xj → Vj |j ∈ J}+ {x′
j → V ′

j |j ∈ J ′} = {x′
j → V ′

j |j ∈ J ′} ∪ {xj → Vj |j ∈ J \ J ′}

Note that variables are used locally to each pNet/pLTS, it is thus possible to use quali�ed
names to avoid collision of variable names in the valuation. To simplify notations, in the semantics
we suppose that variable names are unique.

Consider a pNet pNet and an initial valuation φ0 ∈ Φ associating a value to each variable of
the pNet. The semantics of pNet, starting from a valuation φ0, is given by a LTS (or possibly a
pLTS if D contains variables) where:

� states are hierarchical composition of product states of the sub-pNets, more precisely states
are S(pNet) where:

S(〈〈P, S, s0, L,→〉〉) = {(s, φ)|s ∈ S ∧ φ ∈ Φ}

S(〈〈P,L, pNeti∈I
i ,SVk∈K

k 〉〉) = {〈si〉
i∈Iφ|φ ∈ Φ ∧ ∀i ∈ Iφ. si ∈ S(pNeti)}

S(Queue(M)) = {(Mjφj)
j∈[1..n]|n ∈ N ∧ ∀j. (Mj ∈M ∧ φj ∈ Φ)}

� labels are {αφ|α ∈ Sort(pNet) ∧ φ ∈ Φ};

� the initial state is the composition of initial states, S0(pNets) where:

S0(〈〈P, S, s0, L,→〉〉) = (s0, φ0)

S0(〈〈P,L, pNeti∈I
i ,SVk∈K

k 〉〉) = 〈S0(pNeti)〉
i∈Iφ0

S0(Queue(M)) = []

� and transitions are de�ned as the JpNetK, the smallest set of transitions verifying the rules
below.

Inria

Behavioural Semantics for Asynchronous Components 59

φ ∈ Φ k ∈ Kφ

α
j∈J
j → α ∈ SVk ∀j ∈ Jφ. φj ∈ Φ ∧ sj

αjφj

−−−→ s′j ∈ JpNetjK ∀i ∈ Iφ \ Jφ. s′i = si

〈si∈Iφ
i 〉

αφ
−−→ 〈s′i

i∈Iφ
〉 ∈ J〈〈P,L, pNeti∈I

i ,SVk∈K
k 〉〉K

φ∈Φ s
〈α, eb, (xj:=ej)

j∈J 〉
−−−−−−−−−−−−−→ s′ ∈→ iv(α)={x′

i| i∈K}
∀i∈K. Vi∈D φ′=φ + {x′

i→Vi|i∈K} ebφ
′=True φ′′={xj→ejφ

′|j∈J}

(s, φ)
αφ′

−−→ (s′, φ′ + φ′′) ∈ J〈〈P, S, s0, L,→〉〉K

n ∈ N ∀j ∈ [1..n + 1]. Mj ∈M ∧ φj ∈ Φ

(Mjφj)
j∈[1..n] ?Q_Mn+1φn+1

−−−−−−−−−−→ (Mjφj)
j∈[1..n+1] ∈ JQueue(M)K

n ∈ N ∀j ∈ [1..n]. Mj ∈M ∧ φj ∈ Φ

(Mjφj)
j∈[1..n] !Serve_M1φ1

−−−−−−−−−→ (Mj+1φj+1)
j∈[1..n−1] ∈ JQueue(M)K

The most complicated part of the semantics is the way variables are dealt with in the pLTS:
only input variables, and assigned variables are allowed to change value in the valuation function.
This also applies (indirectly) to the queue where the valuation used in the action is in the Serve
case constrained by the source state, and unconstrained in the case of a ?Q_M... transition.

B Signature of Behavioural Semantics

This appendix summarises the signatures of the functions computing the behavioural semantics
in this paper

Function Signature Description page

J K Component→ pNet basic behavioural semantics 18,24

J KF1 Component→ pNet behavioural semantics for �rst-class futures 32

J KBC Component→ pNet behavioural semantics for recon�gurable compo-
nents

35,36

J KMC Component→ pNet behavioural semantics of components with mul-
ticast interfaces

41,43

J Kservice
MethodLabels×
P(MSignature× pNet)→ pNet

Service methods(not speci�ed here)

J Kbody
P(MethodLabels)×
P(MethodLabels)→ pNet

The body: serves requests in a FIFO order 20

J KproxyManager MethodLabels→ pNet Manages future proxies 22

overloaded for multicast interfaces 38

J Kproxy MethodLabels→ pNet future proxy 22
overloaded for composite components 25
overloaded for multicast interfaces 38,42

MethodLabels×GRef→ pNet overloaded for �rst-class futures 31

J KFutDetect MethodLabels→ pNet pLTS detecting a future received as request pa-
rameter

31

J Kdelegate MethodLabels→ pNet Delegation method (in composite components) 25

J KBC CItf→ pNet binding controller 35

RR n° 8167

60 Boulifa, Henrio, Madelaine & Savu

C Examples of instantiated pLTS

In Section 6 we gave the structure of the pNets hierarchy for the HyperManager example. Here
we give some of the pLTS corresponding to this case-study.

Local_Manager.BodyLocal_Manager.BodyLocal_Manager.BodyLocal_Manager.BodyLocal_Manager.BodyLocal_Manager.BodyLocal_Manager.BodyLocal_Manager.BodyLocal_Manager.BodyLocal_Manager.BodyLocal_Manager.BodyLocal_Manager.BodyLocal_Manager.BodyLocal_Manager.BodyLocal_Manager.BodyLocal_Manager.BodyLocal_Manager.Body

?Serve_config(fid,cmd)?Serve_config(fid,cmd)?Serve_config(fid,cmd)?Serve_config(fid,cmd)?Serve_config(fid,cmd)?Serve_config(fid,cmd)?Serve_config(fid,cmd)?Serve_config(fid,cmd)?Serve_config(fid,cmd)?Serve_config(fid,cmd)?Serve_config(fid,cmd)?Serve_config(fid,cmd)?Serve_config(fid,cmd)?Serve_config(fid,cmd)?Serve_config(fid,cmd)?Serve_config(fid,cmd)?Serve_config(fid,cmd) ?Serve_traceLvl(fid,lvl)?Serve_traceLvl(fid,lvl)?Serve_traceLvl(fid,lvl)?Serve_traceLvl(fid,lvl)?Serve_traceLvl(fid,lvl)?Serve_traceLvl(fid,lvl)?Serve_traceLvl(fid,lvl)?Serve_traceLvl(fid,lvl)?Serve_traceLvl(fid,lvl)?Serve_traceLvl(fid,lvl)?Serve_traceLvl(fid,lvl)?Serve_traceLvl(fid,lvl)?Serve_traceLvl(fid,lvl)?Serve_traceLvl(fid,lvl)?Serve_traceLvl(fid,lvl)?Serve_traceLvl(fid,lvl)?Serve_traceLvl(fid,lvl)

!Call_config(cmd)!Call_config(cmd)!Call_config(cmd)!Call_config(cmd)!Call_config(cmd)!Call_config(cmd)!Call_config(cmd)!Call_config(cmd)!Call_config(cmd)!Call_config(cmd)!Call_config(cmd)!Call_config(cmd)!Call_config(cmd)!Call_config(cmd)!Call_config(cmd)!Call_config(cmd)!Call_config(cmd)

!Call_traveLvl(lvl)!Call_traveLvl(lvl)!Call_traveLvl(lvl)!Call_traveLvl(lvl)!Call_traveLvl(lvl)!Call_traveLvl(lvl)!Call_traveLvl(lvl)!Call_traveLvl(lvl)!Call_traveLvl(lvl)!Call_traveLvl(lvl)!Call_traveLvl(lvl)!Call_traveLvl(lvl)!Call_traveLvl(lvl)!Call_traveLvl(lvl)!Call_traveLvl(lvl)!Call_traveLvl(lvl)!Call_traveLvl(lvl)
!R_config(fid)!R_config(fid)!R_config(fid)!R_config(fid)!R_config(fid)!R_config(fid)!R_config(fid)!R_config(fid)!R_config(fid)!R_config(fid)!R_config(fid)!R_config(fid)!R_config(fid)!R_config(fid)!R_config(fid)!R_config(fid)!R_config(fid)

!R_traceLvl(fid)!R_traceLvl(fid)!R_traceLvl(fid)!R_traceLvl(fid)!R_traceLvl(fid)!R_traceLvl(fid)!R_traceLvl(fid)!R_traceLvl(fid)!R_traceLvl(fid)!R_traceLvl(fid)!R_traceLvl(fid)!R_traceLvl(fid)!R_traceLvl(fid)!R_traceLvl(fid)!R_traceLvl(fid)!R_traceLvl(fid)!R_traceLvl(fid)

Global_HM.BodyGlobal_HM.BodyGlobal_HM.BodyGlobal_HM.BodyGlobal_HM.BodyGlobal_HM.BodyGlobal_HM.BodyGlobal_HM.BodyGlobal_HM.BodyGlobal_HM.BodyGlobal_HM.BodyGlobal_HM.BodyGlobal_HM.BodyGlobal_HM.BodyGlobal_HM.BodyGlobal_HM.BodyGlobal_HM.Body

.

?Serve_config_S1(fid,cmd)?Serve_config_S1(fid,cmd)?Serve_config_S1(fid,cmd)?Serve_config_S1(fid,cmd)?Serve_config_S1(fid,cmd)?Serve_config_S1(fid,cmd)?Serve_config_S1(fid,cmd)?Serve_config_S1(fid,cmd)?Serve_config_S1(fid,cmd)?Serve_config_S1(fid,cmd)?Serve_config_S1(fid,cmd)?Serve_config_S1(fid,cmd)?Serve_config_S1(fid,cmd)?Serve_config_S1(fid,cmd)?Serve_config_S1(fid,cmd)?Serve_config_S1(fid,cmd)?Serve_config_S1(fid,cmd)

?Serve_trace_S2(fid,evt)?Serve_trace_S2(fid,evt)?Serve_trace_S2(fid,evt)?Serve_trace_S2(fid,evt)?Serve_trace_S2(fid,evt)?Serve_trace_S2(fid,evt)?Serve_trace_S2(fid,evt)?Serve_trace_S2(fid,evt)?Serve_trace_S2(fid,evt)?Serve_trace_S2(fid,evt)?Serve_trace_S2(fid,evt)?Serve_trace_S2(fid,evt)?Serve_trace_S2(fid,evt)?Serve_trace_S2(fid,evt)?Serve_trace_S2(fid,evt)?Serve_trace_S2(fid,evt)?Serve_trace_S2(fid,evt)

!Call_config_S1(cmd)!Call_config_S1(cmd)!Call_config_S1(cmd)!Call_config_S1(cmd)!Call_config_S1(cmd)!Call_config_S1(cmd)!Call_config_S1(cmd)!Call_config_S1(cmd)!Call_config_S1(cmd)!Call_config_S1(cmd)!Call_config_S1(cmd)!Call_config_S1(cmd)!Call_config_S1(cmd)!Call_config_S1(cmd)!Call_config_S1(cmd)!Call_config_S1(cmd)!Call_config_S1(cmd)

!Call_trace_S2(evt)!Call_trace_S2(evt)!Call_trace_S2(evt)!Call_trace_S2(evt)!Call_trace_S2(evt)!Call_trace_S2(evt)!Call_trace_S2(evt)!Call_trace_S2(evt)!Call_trace_S2(evt)!Call_trace_S2(evt)!Call_trace_S2(evt)!Call_trace_S2(evt)!Call_trace_S2(evt)!Call_trace_S2(evt)!Call_trace_S2(evt)!Call_trace_S2(evt)!Call_trace_S2(evt)!R_config_S1(fid)!R_config_S1(fid)!R_config_S1(fid)!R_config_S1(fid)!R_config_S1(fid)!R_config_S1(fid)!R_config_S1(fid)!R_config_S1(fid)!R_config_S1(fid)!R_config_S1(fid)!R_config_S1(fid)!R_config_S1(fid)!R_config_S1(fid)!R_config_S1(fid)!R_config_S1(fid)!R_config_S1(fid)!R_config_S1(fid)

!R_trace_S2(fid)!R_trace_S2(fid)!R_trace_S2(fid)!R_trace_S2(fid)!R_trace_S2(fid)!R_trace_S2(fid)!R_trace_S2(fid)!R_trace_S2(fid)!R_trace_S2(fid)!R_trace_S2(fid)!R_trace_S2(fid)!R_trace_S2(fid)!R_trace_S2(fid)!R_trace_S2(fid)!R_trace_S2(fid)!R_trace_S2(fid)!R_trace_S2(fid)

?Serve_Unbind_M1(i)?Serve_Unbind_M1(i)?Serve_Unbind_M1(i)?Serve_Unbind_M1(i)?Serve_Unbind_M1(i)?Serve_Unbind_M1(i)?Serve_Unbind_M1(i)?Serve_Unbind_M1(i)?Serve_Unbind_M1(i)?Serve_Unbind_M1(i)?Serve_Unbind_M1(i)?Serve_Unbind_M1(i)?Serve_Unbind_M1(i)?Serve_Unbind_M1(i)?Serve_Unbind_M1(i)?Serve_Unbind_M1(i)?Serve_Unbind_M1(i)

!Unbind_M1(i)!Unbind_M1(i)!Unbind_M1(i)!Unbind_M1(i)!Unbind_M1(i)!Unbind_M1(i)!Unbind_M1(i)!Unbind_M1(i)!Unbind_M1(i)!Unbind_M1(i)!Unbind_M1(i)!Unbind_M1(i)!Unbind_M1(i)!Unbind_M1(i)!Unbind_M1(i)!Unbind_M1(i)!Unbind_M1(i)

?Serve_Bind_M1(i)?Serve_Bind_M1(i)?Serve_Bind_M1(i)?Serve_Bind_M1(i)?Serve_Bind_M1(i)?Serve_Bind_M1(i)?Serve_Bind_M1(i)?Serve_Bind_M1(i)?Serve_Bind_M1(i)?Serve_Bind_M1(i)?Serve_Bind_M1(i)?Serve_Bind_M1(i)?Serve_Bind_M1(i)?Serve_Bind_M1(i)?Serve_Bind_M1(i)?Serve_Bind_M1(i)?Serve_Bind_M1(i)

!Bind_M1(i)!Bind_M1(i)!Bind_M1(i)!Bind_M1(i)!Bind_M1(i)!Bind_M1(i)!Bind_M1(i)!Bind_M1(i)!Bind_M1(i)!Bind_M1(i)!Bind_M1(i)!Bind_M1(i)!Bind_M1(i)!Bind_M1(i)!Bind_M1(i)!Bind_M1(i)!Bind_M1(i)

?Serve_traceLvl_S1(fid,lvl)?Serve_traceLvl_S1(fid,lvl)?Serve_traceLvl_S1(fid,lvl)?Serve_traceLvl_S1(fid,lvl)?Serve_traceLvl_S1(fid,lvl)?Serve_traceLvl_S1(fid,lvl)?Serve_traceLvl_S1(fid,lvl)?Serve_traceLvl_S1(fid,lvl)?Serve_traceLvl_S1(fid,lvl)?Serve_traceLvl_S1(fid,lvl)?Serve_traceLvl_S1(fid,lvl)?Serve_traceLvl_S1(fid,lvl)?Serve_traceLvl_S1(fid,lvl)?Serve_traceLvl_S1(fid,lvl)?Serve_traceLvl_S1(fid,lvl)?Serve_traceLvl_S1(fid,lvl)?Serve_traceLvl_S1(fid,lvl)

!R_traceLvl_S1(fid)!R_traceLvl_S1(fid)!R_traceLvl_S1(fid)!R_traceLvl_S1(fid)!R_traceLvl_S1(fid)!R_traceLvl_S1(fid)!R_traceLvl_S1(fid)!R_traceLvl_S1(fid)!R_traceLvl_S1(fid)!R_traceLvl_S1(fid)!R_traceLvl_S1(fid)!R_traceLvl_S1(fid)!R_traceLvl_S1(fid)!R_traceLvl_S1(fid)!R_traceLvl_S1(fid)!R_traceLvl_S1(fid)!R_traceLvl_S1(fid)

!Call_traceLvl_S1(fid.lvl)!Call_traceLvl_S1(fid.lvl)!Call_traceLvl_S1(fid.lvl)!Call_traceLvl_S1(fid.lvl)!Call_traceLvl_S1(fid.lvl)!Call_traceLvl_S1(fid.lvl)!Call_traceLvl_S1(fid.lvl)!Call_traceLvl_S1(fid.lvl)!Call_traceLvl_S1(fid.lvl)!Call_traceLvl_S1(fid.lvl)!Call_traceLvl_S1(fid.lvl)!Call_traceLvl_S1(fid.lvl)!Call_traceLvl_S1(fid.lvl)!Call_traceLvl_S1(fid.lvl)!Call_traceLvl_S1(fid.lvl)!Call_traceLvl_S1(fid.lvl)!Call_traceLvl_S1(fid.lvl)

Figure 24: Bodies of the Local Manager (full) and GlobalHM (partial) components

In Figure 24(left) we have the instantiation of the Body of a Local Manager component (the
one inside the Local_HM composite). It only has two service methods con�g and traceLvl, and
no non functional interface.

In Figure 24(right) the Body LTS is more complex, because the Global HM has a total of 4
service methods on its two service interfaces S1 and S2, plus 2 outgoing methods on the multicast
interface M1 and 2 on C1. In addition we have two speci�c loops dealing with the Bind/Unbind
requests managing the group at interface M1.

MethodConfigMethodConfigMethodConfigMethodConfigMethodConfigMethodConfigMethodConfigMethodConfigMethodConfigMethodConfigMethodConfigMethodConfigMethodConfigMethodConfigMethodConfigMethodConfigMethodConfig

?call_config_S1(cmd)?call_config_S1(cmd)?call_config_S1(cmd)?call_config_S1(cmd)?call_config_S1(cmd)?call_config_S1(cmd)?call_config_S1(cmd)?call_config_S1(cmd)?call_config_S1(cmd)?call_config_S1(cmd)?call_config_S1(cmd)?call_config_S1(cmd)?call_config_S1(cmd)?call_config_S1(cmd)?call_config_S1(cmd)?call_config_S1(cmd)?call_config_S1(cmd)

!GetProxy_config_C3()!GetProxy_config_C3()!GetProxy_config_C3()!GetProxy_config_C3()!GetProxy_config_C3()!GetProxy_config_C3()!GetProxy_config_C3()!GetProxy_config_C3()!GetProxy_config_C3()!GetProxy_config_C3()!GetProxy_config_C3()!GetProxy_config_C3()!GetProxy_config_C3()!GetProxy_config_C3()!GetProxy_config_C3()!GetProxy_config_C3()!GetProxy_config_C3()

?New_config_C3(p)?New_config_C3(p)?New_config_C3(p)?New_config_C3(p)?New_config_C3(p)?New_config_C3(p)?New_config_C3(p)?New_config_C3(p)?New_config_C3(p)?New_config_C3(p)?New_config_C3(p)?New_config_C3(p)?New_config_C3(p)?New_config_C3(p)?New_config_C3(p)?New_config_C3(p)?New_config_C3(p)

!Q_config_C3(p,cmd)!Q_config_C3(p,cmd)!Q_config_C3(p,cmd)!Q_config_C3(p,cmd)!Q_config_C3(p,cmd)!Q_config_C3(p,cmd)!Q_config_C3(p,cmd)!Q_config_C3(p,cmd)!Q_config_C3(p,cmd)!Q_config_C3(p,cmd)!Q_config_C3(p,cmd)!Q_config_C3(p,cmd)!Q_config_C3(p,cmd)!Q_config_C3(p,cmd)!Q_config_C3(p,cmd)!Q_config_C3(p,cmd)!Q_config_C3(p,cmd)?GetValue_config_C3(p,val)?GetValue_config_C3(p,val)?GetValue_config_C3(p,val)?GetValue_config_C3(p,val)?GetValue_config_C3(p,val)?GetValue_config_C3(p,val)?GetValue_config_C3(p,val)?GetValue_config_C3(p,val)?GetValue_config_C3(p,val)?GetValue_config_C3(p,val)?GetValue_config_C3(p,val)?GetValue_config_C3(p,val)?GetValue_config_C3(p,val)?GetValue_config_C3(p,val)?GetValue_config_C3(p,val)?GetValue_config_C3(p,val)?GetValue_config_C3(p,val)

!Recycle_config_C3(p)!Recycle_config_C3(p)!Recycle_config_C3(p)!Recycle_config_C3(p)!Recycle_config_C3(p)!Recycle_config_C3(p)!Recycle_config_C3(p)!Recycle_config_C3(p)!Recycle_config_C3(p)!Recycle_config_C3(p)!Recycle_config_C3(p)!Recycle_config_C3(p)!Recycle_config_C3(p)!Recycle_config_C3(p)!Recycle_config_C3(p)!Recycle_config_C3(p)!Recycle_config_C3(p)

!R_config_S1(val)!R_config_S1(val)!R_config_S1(val)!R_config_S1(val)!R_config_S1(val)!R_config_S1(val)!R_config_S1(val)!R_config_S1(val)!R_config_S1(val)!R_config_S1(val)!R_config_S1(val)!R_config_S1(val)!R_config_S1(val)!R_config_S1(val)!R_config_S1(val)!R_config_S1(val)!R_config_S1(val)

Figure 25: pLTS for the con�g method of the Local Manager

In Figure 25 we give an example of a service method behaviour, expressed as a pLTS. This is
the con�g method of the Local Manager primitive component. It receives a request call on the
service interface S1 with argument cmd. Then it sends a similar request to the Code component,
which is bound on the client interface C3; this one is a standard remote request call, requiring
the activation of a future proxy: the pLTS here requires a proxy (from the proxy manager),
and gets back its value in the ?New_con�g_C3 message, passes the future proxy id, together
with the cmd argument, in the request !Q_con�g_C3, waits for the return of the future value,

Inria

Behavioural Semantics for Asynchronous Components 61

signals that the proxy can be recycled, and terminates by replying to the original request with
the message !R_con�g_S1(val).

TraceLvl_AttrCtrlTraceLvl_AttrCtrlTraceLvl_AttrCtrlTraceLvl_AttrCtrlTraceLvl_AttrCtrlTraceLvl_AttrCtrlTraceLvl_AttrCtrlTraceLvl_AttrCtrlTraceLvl_AttrCtrlTraceLvl_AttrCtrlTraceLvl_AttrCtrlTraceLvl_AttrCtrlTraceLvl_AttrCtrlTraceLvl_AttrCtrlTraceLvl_AttrCtrlTraceLvl_AttrCtrlTraceLvl_AttrCtrl

?Q_ACSet_traceLvl(val)?Q_ACSet_traceLvl(val)?Q_ACSet_traceLvl(val)?Q_ACSet_traceLvl(val)?Q_ACSet_traceLvl(val)?Q_ACSet_traceLvl(val)?Q_ACSet_traceLvl(val)?Q_ACSet_traceLvl(val)?Q_ACSet_traceLvl(val)?Q_ACSet_traceLvl(val)?Q_ACSet_traceLvl(val)?Q_ACSet_traceLvl(val)?Q_ACSet_traceLvl(val)?Q_ACSet_traceLvl(val)?Q_ACSet_traceLvl(val)?Q_ACSet_traceLvl(val)?Q_ACSet_traceLvl(val)

lvl:=vallvl:=vallvl:=vallvl:=vallvl:=vallvl:=vallvl:=vallvl:=vallvl:=vallvl:=vallvl:=vallvl:=vallvl:=vallvl:=vallvl:=vallvl:=vallvl:=val

!R_ACSet_traceLvl!R_ACSet_traceLvl!R_ACSet_traceLvl!R_ACSet_traceLvl!R_ACSet_traceLvl!R_ACSet_traceLvl!R_ACSet_traceLvl!R_ACSet_traceLvl!R_ACSet_traceLvl!R_ACSet_traceLvl!R_ACSet_traceLvl!R_ACSet_traceLvl!R_ACSet_traceLvl!R_ACSet_traceLvl!R_ACSet_traceLvl!R_ACSet_traceLvl!R_ACSet_traceLvl

?Q_ACGet-traceLvl?Q_ACGet-traceLvl?Q_ACGet-traceLvl?Q_ACGet-traceLvl?Q_ACGet-traceLvl?Q_ACGet-traceLvl?Q_ACGet-traceLvl?Q_ACGet-traceLvl?Q_ACGet-traceLvl?Q_ACGet-traceLvl?Q_ACGet-traceLvl?Q_ACGet-traceLvl?Q_ACGet-traceLvl?Q_ACGet-traceLvl?Q_ACGet-traceLvl?Q_ACGet-traceLvl?Q_ACGet-traceLvl

!R_ACGet_traceLvl(lvl)!R_ACGet_traceLvl(lvl)!R_ACGet_traceLvl(lvl)!R_ACGet_traceLvl(lvl)!R_ACGet_traceLvl(lvl)!R_ACGet_traceLvl(lvl)!R_ACGet_traceLvl(lvl)!R_ACGet_traceLvl(lvl)!R_ACGet_traceLvl(lvl)!R_ACGet_traceLvl(lvl)!R_ACGet_traceLvl(lvl)!R_ACGet_traceLvl(lvl)!R_ACGet_traceLvl(lvl)!R_ACGet_traceLvl(lvl)!R_ACGet_traceLvl(lvl)!R_ACGet_traceLvl(lvl)!R_ACGet_traceLvl(lvl)

Figure 26: Attribute controller in the Local Monitor

Attributes controllers, in Fractal and in GCM, are linked to non-functional interfaces provid-
ing an external get/set access to local variables of a component. In Figure 26 we see an example
of such a controller, for the variable traceLvl of the Local Monitor, that can be controlled (set)
by the Local Manager.

RR n° 8167

RESEARCH CENTRE

SOPHIA ANTIPOLIS – MÉDITERRANÉE

2004 route des Lucioles - BP 93

06902 Sophia Antipolis Cedex

Publisher

Inria

Domaine de Voluceau - Rocquencourt

BP 105 - 78153 Le Chesnay Cedex

inria.fr

ISSN 0249-6399

