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Abstract—In this paper we present our own real

time speaker-independent continuous phone recognition

(Spirit) using Context-Independent Continuous Density

HMMs (CI-CDHMMs) modeled by Gaussian Mixtures

Models (GMMs). All the parameters of our system are es-

timated directly from data by using an improved Viterbi

alignment process instead of the classical Baum-Welch

estimation procedure. Generally, in the literature the

Viterbi training algorithm is used as a pretreatment to ini-

tialize HMMs models that will be most often re-estimated

by using complex re-estimation formula. In order to eval-

uate and compare the performance of our system with

other previous works, we use the TIMIT database. The

duration test of our recognition system for each sentence

is between 2 seconds (for short sentences) to 12 seconds

(for long sentences). We get, by combining the 64 possi-

ble phones into 39 phonetic classes, a phone recognition

correct rate of 71.06% and an accuracy rate of 65.25%.

These results compare favorably with previously pub-

lished works.

Keywords-component—Real Time Automatic Speech Recog-

nition (ASR) System, Continuous Speech Recognition, Con-

tinuous Density Hidden Markov Models (CDHMMs), Viterbi,

Simplified Statistical Trainning Algorithm, Gaussian Mixture

Models (GMMs).

I. INTRODUCTION

Implementation of a continuous speech recognition system

is difficult because of the large amount of variability in the

speech signal. However, there are a lot of possible acous-

tical units able to represent the speech, the most interesting

one is probably the phone which can be considered as the

smallest acoustical unit. To model these units, several tech-

niques have been proposed, the connectionist approach with
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Mediterranean 3+3 M09/02 OESOVOX project with help of the European

COADVISE - IRSES (FP7) program.

Neural Networks (NN), support vector machines (SVM) and

finally the most popular in the field of Automatic Speech

Recognition the statistical approach based on Hidden Markov

Models (HMMs) [1][2]. The most recent works model

the acoustic space by Gaussian Mixture Models (GMMs).

Many researchers have introduced the formalism of this tech-

nique in their Automatic Speech Recognition (ASR) system

[3][4][5][6][7], and they have proved that Continuous Density

Hidden Markov Models (CDHMMs) permit to achieve better

results than discrete HMMs. In this work, we shall describe

our own speaker-independent continuous speech recognition

system we call Spirit.

The purpose of this paper is not to provide the best phone

recognition rates on the Timit database [8], but to demonstrate

that by using a simple statistical training algorithm, we can

reach similar or better context-independent phone recognition

rates than those proposed in the literature.

This paper is organised as follows: in section 2, we ex-

plain our HMM training and recognition procedure; in sec-

tion 3, we present experiments and results; finally in section

4, comparisons with other context-independent phone recog-

nition systems, and some concluding and perspective works

are given.

II. THE PHONE RECOGNITION

A. Speech processing

Before training the models, it is necessary to prepare the

acoustic data by calculating the MFCC feature vectors. The

signal is sampled at 16Khz and preeemphasized with a fac-

tor of 0.96. The static Mel-Cepstral vectors are computed

from windowed time sections of 32ms duration and shifted

every 10ms. Every calculated frame consists in 11 first

static Mel-Cepstrum coefficients and the log energy(E), (the

c0 cepstrum coefficient was discarded). We also included

the first and second order derivatives called dynamic co-

efficients (∆ and ∆∆) in the same high dimentional fea-

ture vector. So we work with vectors of dimension d=36

(11MFCC,E; 11∆MFCC,∆E; 11∆∆MFCC,∆∆E).



B. Context-independent HMM training

Each phone of the system is represented by a left-to-right

HMM composed of five states (but only three of them are

emitting). Fig. 1 illustrates the topology and the type of

HMM model used. Learning models is the starting point of

any (ASR) system and certainly the most crucial. This con-

sists in determining the optimal parameters Θ̃ = {A, πi, B}.

Fig. 1. Topology of the context-independent phonetic HMM.

• πi : An initial state probability.

• A = aij : The state transition probability matrix.

• B = bi(~ot) : The distribution probability of emission of

the observations ~ot in state i.

In a CDHMM the output distribution bi(~ot) for observa-

tion ~ot in state i is generated by a Gaussian Mixture Model

(GMM) which corresponds to a mixture of multivariate gaus-

sian distributions of probability N (~ot, ~µik,Σik) with mean

vector ~µik and covariance matrix Σik:

bi(~ot) =

ni∑

k=1

cik
√

(2π)
d|Σik|

exp(−
1

2
(~ot − ~µik)

TΣ−1
ik (~ot − ~µik))

(1)

Where ni represents the number of gaussian components in

state i and ~ot corresponds to an observation at time t of di-

mension d = 36. The ~µik centroids are statistically computed

in state i by using the LBG vector quantization algorithm [9]

applied to the vectors associated with state i. Each k centroid

in state i (~µik) is calculated (see Eq. 2) by an average of its

associated cepstral vectors ~o
(n)

ik .

~µik =
1

Nik

Nik∑

n=1

~o
(n)

ik (2)

Where Nik represents the number of associated vectors for

the k centroid in state i, and in Eq. 3, cik represents the mix-

ture weight for the centroid k in state i estimated as follows:

cik =
Nik

Ni

(3)

With Ni is the total number of vectors associated with state

i. Σik is the covariance matrix associated with the gaussian k

of state i which is computed directly from the data using the

classical estimation formula (4):

Σik = E((X − E[X]).(Y − E[Y ]))

=
1

Nik

Nik∑

n=1

(~o
(n)

ik − ~µik)(~o
(n)

ik − ~µik)
T (4)

It is important to say that the number of gaussian components

associated to each state must be chosen, by making a com-

promise between a good modeling of the phonetic HMMs

and the limited amount of training data. A too high number

of gaussian components compared to the amount of available

data leads to a bad learning because the training database

has a limited number of samples for each phone. For this

reason we optimize the number of gaussian components in

each HMM state. We begin by setting the number of gaussian

components for each state to 16. The actual optimum number

of gaussian components is related to the number of MFCC

vectors associated to each centroid: if the latter is less than

the dimension d, then the associated gaussian component is

removed because its covariance matrix will be non-invertible.

The associated vectors with this removed gaussian compo-

nent are then redistributed to the nearest remaining centroids.

The state transition probabilities were evaluated by Eq. 7. The

same principle of this method has been successfully applied

to various specialized tasks, such as speaker-independent

alphabet letters recognition [7] and voice conversion [10] .

Let X be a random variable giving the number of times

a HMM state is visited. If we consider event Sj “Staying j

times in the same state” and Mj “Moving to the next state at

the j-th time”.

Then event [X = l] can be expressed by :

[X = l] =

Sj

︷ ︸︸ ︷

S1

⋂

S2

⋂

· · ·
⋂

Sl−1

⋂
Mj

︷︸︸︷

Ml

︸ ︷︷ ︸

intersection of independent events

Then the probability distribution of X is given by:

P (X = l) = pl−1
s .pm (5)

Where ps is the probability to stay in the same state and pm =
1− ps is the probability to move to the next state.

Then by definition the expectation of X is given by:

E[X ] =
+∞∑

l=1

l.pl−1
s .(1− ps) =

1

1− ps
(6)

Consequently :

ps =
E[X ]− 1

E[X ]
(7)



The expectation E[X ] is calculated directly from data by the

following formula:

E[X ] =
Nip

Rp

(8)

Where Nip is the total number of vectors related to state i of

phone p and Rp is the total number of samples of phone p in

the training data space.

The Viterbi algorithm was applied to the acoustic vectors

of each sentence to determine an optimal sequence of states

which has produced the best sequence of observations. This

process is iterated several times until a stability criterion,

calculated from the paths returned by the viterbi process, has

been reached. The maximal number of iterations was 20.

C. Monophone HMM recognition

Continuous speech recognition is a difficult process because

we do not know the boundaries of the phones making up a

sentence. Furthermore the monophone HMMs assume that

speech is produced as a concatenation of phones, not affected

by the phonetic context neighbors. To perform the recognition

it is useful to infer the sequence of states that has generated

the given observations. Actually, from the sequence of states

we can easily find the phone string: this task is performed by

the Viterbi decoding algorithm applied on each test sentences

using the optimal parameters (A, πi, B). To better carry out

this task and find the adequate path, we built a bigram lan-

guage model and a duration model on the phone durations

witch we assume to follow a normal distribution (N (µ, σ2)).

III. EXPERIMENTS AND RESULTS

The Spirit system has been implemented and tested on a linux

machine with an Intel Pentium Dual CPU 1.86GHz and 2GB

of RAM. We choose to evaluate our ASR system with the

TIMIT database [8]. In this database a total of 64 phonetic

labels, generally considered too detailed for learning HMMs

models, has been reduced to 39 classes by K.F. Lee and H.W.

Hon [11]. We used the same labeling in our system. 39 pho-

netic HMMs with the same topology described in Section 2.B

(see Fig. 1) are used in the training and testing, with a total

states of 3x39 = 117. These HMMs, the bigram model and

the duration model are learned on 8 sentences ”si” and ”sx”

of 462 speakers of the TIMIT database training part, corre-

sponding to 3696 sentences. In the test 1344 sentences, pro-

nounced by 168 speakers, corresponding to a total number of

50754 phones. The ”sa” calibration sentences are excluded in

both training and testing. In continuous speech recognition,

the most common phone recognition evaluation measures are

the phone error rate (PER), or the related performance met-

ric, phone accuracy. These measures, calculated by Eq. 9

are used in this paper for making comparisons between the

different phone recognition systems.

Accuracy =
N − (S +D + I)

N
Correct =

N − (S +D)

N
(9)

Where N is the total number of labels in the reference utter-

ances and S, I and D (resp.) the Substitution, Insertion and

Deletions errors, computed by a DTW algorithm (Dynamic

Time Warping) between the correct phone strings (reference)

and the recognized phone strings (test).

Table.1 presents the accuracy obtained by our system us-

ing the complete TIMIT test set. The phone recognition

correct rate is 71.06% and the accuracy rate is 65.25%.

39 Monophone Bigram Bigram+Duration

Substitution 17.61% (8938) 17.25% (8756)

Deletion 10.46% (5310) 11.69% (5932)

Insertion 7.11% (3607) 5.81% (2951)

Correct 71.93% (36506) 71.06% (36066)

Accuracy 64.82% (32899) 65.25% (33115)

Table 1. Phone recognition results with our context-

independent phone HMM system on all the TIMIT test set

Two other measures were chosen to evaluate the speed of

our recognition system. The first is the average recognition

time. In this case, the test sentences are classified into six

categories (see Table. 2) according to their total number of

phones Nph. It is clear that the recognition time depends on

the duration of the sentences to recognize. The second mea-

sure is the Real Time Factor (RTF) defined as the total com-

putation time for recognition, divided by the total duration

of the recorded speech processed. We obtain an acceptable

speed with an RTF of 2.5.

Total number of phones Nph Average time in second (s)

10 ≤ Nph < 20 2 s

20 ≤ Nph < 30 5 s

30 ≤ Nph < 40 7 s

40 ≤ Nph < 50 9 s

50 ≤ Nph < 60 11 s

60 ≤ Nph < 75 12 s

Table 2. Average recognition times for the six categories of

Timit test sentences.

Fig. 2 shows the evolution of the phone accuracy versus

the number of iterations of the proposed training algorithm,

by varying the shift from 8 to 10ms. We note that our (ASR)

system is more efficient using a shift of 10ms. This behaviour

can be explained by the fact that by decreasing the shift value,

the number of insertion errors increased.



IV. COMPARISONS

Table.3 provides an accuracy comparison, between our

spirit system with previously published results on the Timit

database for the phone recognition task, using CI-CDHMMs.

These systems differ by their learning approach of the pho-

netic model, level complexity, time computation etc; which

makes this comparison a very difficult task. But we have

demonstrated that by using a simple minded system, we can

reach in real time a competitive accurracy in comparison with

those obtained by other researchers.

V. CONCLUSION AND FUTURE WORKS

In this paper, we built a reference system for continu-

ous speech recognition using context-independent phonetic

HMMs. We show that the obtained results compare favor-

ably with already published HMM technology. In the future

we forsee to test our system using context-dependent phone

models, and implement a new technique to locate the position

of the insertion errors, in order to remove them.
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Fig. 2. Evolution of phone accuracy versus the number of

iterations of the training algorithm.

System Correct Accuracy

discrete HMM (monophone) [11] 64.07% 53.28%

Tandem (monophone) [12] [13] 63.50% 61.48%

HTK (monophone) [6] 71.9% 62.8%

CDHMM (monophone) [5] 69.33% 63.05%

CDHMM (monophone) [4] 64.1%

CRF (monophone) [13] 66.74% 65.23%

CDHMM (monophone) this paper 71.06% 65.25%

Table 3. Phone accuracy comparisons using TIMIT
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