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T-coercivity for the Maxwell problem

with sign-changing coe�cients

Anne-Sophie Bonnet-Ben Dhia1, Lucas Chesnel2, Patrick Ciarlet Jr.3

� December 6, 2012 �

Abstract. In this paper, we study the time-harmonic Maxwell problem with sign-changing permit-
tivity and/or permeability, set in a domain of R3. We prove, using the T-coercivity approach, that the
well-posedness of the two canonically associated scalar problems, with Dirichlet and Neumann boundary
conditions, implies the well-posedness of the Maxwell problem. This allows us to give simple and sharp
criteria, obtained in the study of the scalar cases, to ensure that the Maxwell transmission problem
between a classical dielectric material and a negative metamaterial is well-posed.

Key words. Maxwell's equations, interface problem, metamaterial, compact imbedding, sign-
changing coe�cients.

1 Introduction

We investigate the time-harmonic Maxwell problem in a composite material surrounded by a perfect
conductor. A composite material is modeled by non constant electric permittivity ε and magnetic
permeability µ. It is well-known that some materials, like metals at optical frequencies, are almost dissi-
pationless and have a dielectric permittivity whose real part is negative. More surprising is the possibility
of realizing materials, called negative metamaterials, which exhibit both negative real valued permittivity
and permeability in some appropriate range of frequencies. The association of classical dielectrics and
such negative materials has very exciting potential applications such as plasmonic waveguides, perfect
lenses [31, 21, 27], photonic traps, subwavelength cavities [16] ... From a mathematical point of view,
the change of sign of the coe�cients ε and/or µ in the medium raises a lot of original questions for the
corresponding electromagnetic model, both for the mathematical analysis and the numerical simulation
[26, 28, 17]. Indeed, standard theorems proving the well-posedness of the problem and the convergence
of conventional numerical methods are no-longer valid in such situations. Consequently, and generally
speaking, the questions we have to address are the following. Can we extend the classical theory to
con�gurations with sign-changing coe�cients? And if not, is there a new functional framework in which
well-posedness and stability properties can be recovered?

For 2D con�gurations, the corresponding electromagnetic model reduces to a scalar problem involving
the operators −div (σ∇·) with Dirichlet or Neumann boundary condition, σ being equal to ε−1 or µ−1.
Those scalar problems have been thoroughly investigated [5, 35, 7, 24, 2, 12, 3, 10, 13] and sharp results
have been recently obtained using the simple variational technique of the T-coercivity. The problems
are proved to be of Fredholm type in the classical functional framework if the contrasts (ratios of the
values of σ across the interface) are outside some interval, which always contains the value −1. This
interval reduces to {−1} if (and only if) the interface is smooth (see also [14, 25] for approaches relying
on integral equations). For a contrast equal to −1, the problems are severely ill-posed (not Fredholm)
in H1. The in�uence of corners in the interface, noticed for instance in [30, 32], has been clari�ed in
[15, 8, 29]. When the interface between the dielectric and the negative material has a corner, depending
on the value of the contrast in σ, the scalar problems can be ill-posed (not Fredholm) in H1, even for
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contrasts di�erent from −1, because of the onset of �strong� singularities at the corner. Well-posedness
can be recovered by working in a new functional framework in which a radiation condition at the corner
is imposed [4].

For scalar problems, the theory is now quite mature. Now, we wish to obtain such results for Maxwell
problems, and �rst, the results of well-posedness using variational techniques. These variational methods
are interesting because they allow one to consider rather general con�gurations: Lipschitz-continuous
interface between the positive and the negative material and L∞ coe�cients ε, ε−1, µ, µ−1. However,
it appears that the geometric approach followed for studying the scalar problems is di�cult to apply
because of the nature of functional spaces used for Maxwell problems. Therefore, we will proceed
di�erently. Again, we will use the T-coercivity technique but in a di�erent form. We will prove that one
can construct T-coercivity operators which allow us to restore some coercivity property as soon as the
associated 3D scalar problems are well-posed. This will provide very simple criteria (those of the scalar
problems) to ensure that Maxwell problems are well-posed. When the contrasts in ε and/or µ lie inside
the critical intervals, the de�nition of a new functional framework taking into account the gradients of
the strong singularities, is still an open question.

The outline of the paper is the following. The de�nition of the problem and the notations are intro-
duced in Section 2. In Section 3, we give an equivalent formulation of the problems, using some classical
functional spaces for the study of Maxwell problems: VN (ε; Ω) for the electric �eld and VT (µ; Ω) for
the magnetic �eld ; some divergence free condition is included in their de�nition. Section 4 expresses the
main idea of the paper: how to build a T-coercivity operator for the Maxwell problems when the associ-
ated scalar problems are well-posed. For the sake of clarity, we present it in the canonical cases ε = 1 for
the electric �eld and µ = 1 for the magnetic �eld. Then, we use these results and a technique due to [19]
to prove some result of compact embedding of VN (ε; Ω) and VT (µ; Ω) in L2(Ω) := L2(Ω)3, extending
[6]. Again, let us underline that these results are not classical in the literature when the coe�cients ε
and µ change sign. In Section 6, we state the main theorem of this work, summing up the previous
results: electric and magnetic Maxwell transmission problems are well-posed as soon as the associated
3D scalar problems are well-posed. We illustrate this result on a series of canonical geometries. Finally,
we present some generalizations in Section 8. First, we are interested in con�gurations where the scalar
problems are well-posed in the Fredholm sense with a non trivial kernel. Second, we consider the case
of a non-simply connected domain whose boundary is not connected4. This study covers the case of non
simply connected domains with connected boundary and the case of simply connected domains with non
connected boundary.

2 Setting of the problem

Let Ω be a domain in R3, i.e. an open, connected and bounded subset of R3 with a Lipschitz-continuous
boundary ∂Ω. For some ω 6= 0 (ω ∈ R), the time harmonic Maxwell's equations are given by

curlE − iωµH = 0 and curlH + iωεE = J in Ω. (1)

Above, E and H are respectively the electric and magnetic components of the electromagnetic �eld.
The source term J is the current density. We suppose that the medium Ω is surrounded by a perfect
conductor and we impose the boundary conditions

E × n = 0 and µH · n = 0 on ∂Ω, (2)

where n denotes the unit outward normal vector to ∂Ω. We assume that the dielectric permittivity ε and
the magnetic permeability µ are real valued functions which belong to L∞(Ω), with ε−1, µ−1 ∈ L∞(Ω).
Let us introduce some classical spaces in the study of Maxwell's equations:

L2(Ω) := L2(Ω)3;

H(curl ; Ω) :=
{
u ∈ L2(Ω) | curlu ∈ L2(Ω)

}
;

HN (curl ; Ω) := {u ∈ H(curl ; Ω) |u× n = 0 on ∂Ω} ;
VN (ξ; Ω) := {u ∈ H(curl ; Ω) |div (ξ u) = 0, u× n = 0 on ∂Ω} , for ξ ∈ L∞(Ω);
VT (ξ; Ω) := {u ∈ H(curl ; Ω) |div (ξ u) = 0, ξu · n = 0 on ∂Ω} , for ξ ∈ L∞(Ω).

4The Figure 2 at the end of this paper gives an example of such a geometry.
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For simplicity, the current density J will be chosen in L2(Ω) with divJ = 0 5. We denote indistinctly
(·, ·) the inner products of L2(Ω) and L2(Ω) and ‖ · ‖ the associated norms. The spaces H(curl ; Ω),
HN (curl ; Ω), VN (ξ; Ω) and VT (ξ; Ω) are endowed with the inner product

(·, ·)curl = (·, ·) + (curl ·, curl ·).

Classically, we prove that if (E,H) satis�es (1)-(2), E and H are respectively solutions to the problems

Find E ∈ H(curl ; Ω) such that:
curl µ−1curlE − ω2εE = iωJ in Ω
E × n = 0 on ∂Ω

, (3)

Find H ∈ H(curl ; Ω) such that:
curl ε−1curlH − ω2µH = curl ε−1J in Ω
µH · n = 0 on ∂Ω
ε−1(curlH − J)× n = 0 on ∂Ω

. (4)

As already announced in the introduction, we want to �nd criteria for ε and µ to ensure that problems
(3) and (4) are well-posed in the Fredholm sense. Classically, for the study of Maxwell's equations, our
strategy will consist in working in the space VN (ε; Ω) for the electric �eld and in the space VT (µ; Ω)
for the magnetic �eld. Indeed, for example, if E satis�es (3) and if ω 6= 0, then div (εE) = 0, so E
belongs to the space VN (ε; Ω). Therefore, the Fredholm property for the problem (3) will rely on two
arguments: �rst the compact embedding of VN (ε; Ω) in L2(Ω), secondly, the isomorphism property for
the principal part curl µ−1curl · : VN (ε; Ω)→ VN (ε; Ω)∗. In a symmetric way, the Fredholm property
for the magnetic �eld relies on the compact embedding of VT (µ; Ω) in L2(Ω) and on the isomorphism
property for the principal part curl ε−1curl · : VT (µ; Ω)→ VT (µ; Ω)∗.

3 Equivalent formulations

Let us �rst give equivalent formulations to problem (1)-(2) in the spaces VN (ε; Ω) and VT (µ; Ω).

3.1 Problem for the electric �eld

Consider aε the sesquilinear form such that aε(ϕ,ϕ′) = (ε∇ϕ, ∇ϕ′) for all ϕ,ϕ′ ∈ H1
0(Ω). With the Riesz

representation theorem, we de�ne the operator Aε : H1
0(Ω) → H1

0(Ω) such that, for all ϕ,ϕ′ ∈ H1
0(Ω),

(∇(Aεϕ),∇ϕ′) = aε(ϕ,ϕ′). On H1
0(Ω), we de�ne the norm ‖·‖H1

0(Ω) = ‖∇ · ‖. Let 〈·, ·〉 designate the

duality pairing H−1(Ω)×H1
0(Ω). Now, let us introduce an assumption for the 3D scalar problem related

to the electric �eld. Here, C > 0 is a constant.

(Hε)
There exists an isomorphism Tε of H1

0(Ω) such that
|aε(ϕ, Tεϕ)| ≥ C ‖ϕ‖2H1

0(Ω) , ∀ϕ ∈ H1
0(Ω).

Lemma 3.1 Assumption (Hε) holds true if and only if Aε : H1
0(Ω)→ H1

0(Ω) is an isomorphism. In this
case, for all f ∈ H−1(Ω), there exists a unique solution to the problem

Find ϕ ∈ H1
0(Ω) such that :

aε(ϕ,ϕ′) = 〈f, ϕ′〉, ∀ϕ′ ∈ H1
0(Ω).

(5)

Besides, there exists a constant C > 0 independent of f such that ‖ϕ‖H1
0(Ω) ≤ C ‖f‖H−1(Ω).

Remark 3.2 Classically, Eq. (5) can be rewritten −div (ε∇ϕ) = f in H−1(Ω). We will see in section 7
that, in practice, it is possible to build explicitly such operators Tε, depending on the values of ε and on
the geometry of the domain. Actually, assumption (Hε) is an assumption on ε and on the geometry of
the domain only (for more details see [2]).

5The case divJ 6= 0 can be handled similarly with the tools that we propose, see Remark 6.3 below.

3



Proof. Assume (Hε) to be true. Since Tε : H1
0(Ω) → H1

0(Ω) is an isomorphism, ϕ satis�es (5) if
and only if ϕ is a solution of the problem ��nd ϕ ∈ H1

0(Ω) such that aε(ϕ, Tεϕ′) = 〈f, Tεϕ′〉, for all
ϕ′ ∈ H1

0(Ω)�. Lax-Milgram theorem then allows us to conclude that problem (5) is well-posed because
(ϕ,ϕ′) 7→ aε(ϕ, Tεϕ′) is coercive on H1

0(Ω) × H1
0(Ω) by assumption. This approach also proves that

Aε : H1
0(Ω)→ H1

0(Ω) is an isomorphism. Reciprocally, if Aε : H1
0(Ω)→ H1

0(Ω) is an isomorphism, taking
Tε = Aε, one obtains, for all ϕ ∈ H1

0(Ω), |aε(ϕ, Tεϕ)| = ‖Aεϕ‖2H1
0(Ω) ≥ C ‖ϕ‖

2
H1

0(Ω).

Theorem 3.3 Assume that ω 6= 0.
1) If (E,H) satis�es (1)-(2) then E is a solution of the problem

Find E ∈ VN (ε; Ω) such that for all E′ ∈ VN (ε; Ω):∫
Ω

µ−1curlE · curlE′ − ω2εE ·E′ = iω

∫
Ω

J ·E′. (6)

2) Assume (Hε) to be true. If E satis�es (6) then (E, (i ωµ)−1curlE) satis�es (1)-(2).

Proof. 1) If E satis�es (1)-(2), then E is a solution of (3). On the other hand, since ω 6= 0, there holds
div (εE) = 0. This allows us to show that E satis�es (6).

2) Now, let us prove that if E ∈ VN (ε; Ω) ⊂ HN (curl ; Ω) satis�es (6) then E is a solution to the
problem

Find E ∈ HN (curl ; Ω) such that for all E′ ∈ HN (curl ; Ω):∫
Ω

µ−1curlE · curlE′ − ω2εE ·E′ = iω

∫
Ω

J ·E′. (7)

For all E′ in HN (curl ; Ω), Lemma 3.1 indicates that we can build ϕ ∈ H1
0(Ω) such that div (ε∇ϕ) =

div (εE′). The element E′−∇ϕ belongs to VN (ε; Ω). Taking E′−∇ϕ as a test-�eld in (6) and observing
that (εE,∇ϕ) = 0 and (J ,∇ϕ) = 0 (recall that divJ = 0), one obtains∫

Ω

µ−1curlE · curlE′ − ω2εE ·E′ = iω

∫
Ω

J ·E′.

But (3) and (7) are equivalents. Therefore, if E satis�es (6) then E is a solution of (3). There just
remains to notice that in this case, (E, (i ωµ)−1curlE) satis�es (1)-(2).

With the Riesz representation theorem, let us introduce the bounded operator AN (ω) : VN (ε; Ω)→
VN (ε; Ω) such that for all E,E′ ∈ VN (ε; Ω),

(AN (ω)E,E′)curl = (µ−1curlE, curlE′)− ω2(εE,E′). (8)

3.2 Problem for the magnetic �eld

For the study of the magnetic �eld, we introduce the space

H1
#(Ω) :=

{
ϕ ∈ H1(Ω) |

∫
Ω

ϕ = 0

}
.

Notice that the only constant in H1
#(Ω) is 0. Using the Rellich's theorem which indicates that the

embedding of H1(Ω) in L2(Ω) is compact and using that Ω is connected, we prove by contradiction the

Lemma 3.4 The map (ϕ,ϕ′) 7→ (∇ϕ,∇ϕ′) de�nes an inner product on H1
#(Ω). The associated norm

is denoted ‖·‖H1
#(Ω).

Consider aµ the sesquilinear form such that aµ(ϕ,ϕ′) = (µ∇ϕ, ∇ϕ′) for all ϕ,ϕ′ ∈ H1
#(Ω). With

the Riesz representation theorem, we de�ne the operator Aµ : H1
#(Ω) → H1

#(Ω) such that, for all
ϕ,ϕ′ ∈ H1

#(Ω), (∇(Aµϕ),∇ϕ′) = aµ(ϕ,ϕ′). As for the study of the electric �eld, let us introduce a
property associated with this 3D scalar problem for the magnetic �eld. Again, C > 0 is a constant.

(Hµ)
There exists an isomorphism Tµ of H1

#(Ω) such that
|aµ(ϕ, Tµϕ)| ≥ C ‖ϕ‖2H1

#(Ω) , ∀ϕ ∈ H1
#(Ω).
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Lemma 3.5 Assumption (Hµ) holds true if and only if Aµ : H1
#(Ω) → H1

#(Ω) is an isomorphism. In

this case, for all ` ∈ (H1
#(Ω))′, there exists a unique solution to the problem

Find ϕ ∈ H1
#(Ω) such that:

aµ(ϕ,ϕ′) = `(ϕ′), ∀ϕ′ ∈ H1
#(Ω).

(9)

Besides, there exists a constant C > 0 independent of ` such that ‖ϕ‖H1
#(Ω) ≤ C ‖`‖(H1

#(Ω))′ .

Remark 3.6 Classically, for f ∈ L2(Ω) such that
∫

Ω
f = 0, if one de�nes ` by `(ϕ′) =

∫
Ω
fϕ′ for all

ϕ′ ∈ H1
#(Ω), Eq. (9) can be rewritten −div (µ∇ϕ) = f in L2(Ω) and µ∂nϕ = 0 in H−1/2(∂Ω). As in the

electric case, assumption (Hµ) is an assumption on µ and on the geometry of the domain only.

Proof. Assume (Hµ) to be true. Since Tµ : H1
#(Ω) → H1

#(Ω) is an isomorphism, ϕ satis�es (9) if
and only if ϕ is a solution to the problem ��nd ϕ ∈ H1

#(Ω) such that aµ(ϕ, Tµϕ′) = `(Tµϕ′), for all
ϕ′ ∈ H1

#(Ω)�. But Lemma 3.4 ensures that (ϕ,ϕ′) 7→ aµ(ϕ, Tεϕ′) is coercive on H1
#(Ω)× H1

#(Ω). Then,
one can conclude that problem (9) is well-posed with Lax-Milgram theorem. In the same way, we prove
that Aµ : H1

#(Ω) → H1
#(Ω) is an isomorphism. Reciprocally, if Aµ is an isomorphism of H1

#(Ω), taking

Tµ = Aµ, one �nds, for ϕ ∈ H1
#(Ω), |aµ(ϕ, Tµϕ)| = ‖Aµϕ‖2H1

#(Ω) ≥ C ‖ϕ‖
2
H1

#(Ω).

Adapting the proof of Theorem 3.3, one obtains the

Theorem 3.7 Assume that ω 6= 0.
1) If (E,H) satis�es (1)-(2) then H is a solution of the problem

Find H ∈ VT (µ; Ω) such that for all H ′ ∈ VT (µ; Ω):∫
Ω

ε−1curlH · curlH ′ − ω2µH ·H ′ =

∫
Ω

ε−1J · curlH ′.
(10)

2) Assume (Hµ) to be true. If H satis�es (10) then (i (ωε)−1(curlH − J),H) satis�es (1)-(2).

With the Riesz representation theorem, let us introduce the bounded operator AT (ω) : VT (µ; Ω)→
VT (µ; Ω) such that for all H,H ′ ∈ VT (µ; Ω),

(AT (ω)H,H ′)curl = (ε−1curlH, curlH ′)− ω2(µH,H ′). (11)

4 The T-coercivity approach in VN(1; Ω) and in VT (1; Ω)

For the sake of clarity, we present �rst the T-coercivity approach for the Maxwell's equations on the sim-
pler cases: ε = 1 and µ possibly sign-changing for the electric �eld; µ = 1 and ε possibly sign-changing
for the magnetic �eld. This study will be useful for two reasons. On the one hand, the results obtained
will serve to prove the compact embeddings of VN (ε; Ω) and VT (µ; Ω) in L2(Ω). On the other hand,
this will give us an insight of how to proceed to study the operators AN (0) and AT (0).

Let us recall some classical properties for the spaces VN (1; Ω) and VT (1; Ω) (cf. [33, 1]).
� The embeddings of VN (1; Ω) in L2(Ω) and of VT (1; Ω) in L2(Ω) are compact.
� Furthermore, when ∂Ω is connected (respectively when Ω is simply connected), the map (u,v) 7→
(curlu, curl v) de�nes an inner product on VN (1; Ω) (resp. on VT (1; Ω)) and the associated norm is
equivalent to the canonical norm u 7→ (u,u)

1/2
curl .

4.1 Study for the electric �eld with a permittivity ε = 1

Let us �rst study the problem for the electric �eld.

Lemma 4.1 Let Ω be a simply connected domain such that ∂Ω is connected. Assume (Hµ) to be true.
Then, there exists an isomorphism T of VN (1; Ω) such that for all u,v ∈ VN (1; Ω),

(µ−1curlu, curlTv) = (µ−1curlTu, curl v) = (curlu, curl v).
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Remark 4.2 One can prove a �reciprocal� assertion. Namely, �there exists an isomorphism T of VN (1; Ω)
such that (µ−1curlu, curlTu) ≥ ‖curlu‖2, for all u ∈ VN (1; Ω)� implies �(Hµ) is true�.

Proof. ? Definition of T. Consider v ∈ VN (1; Ω).
i) De�ne ϕ the unique element of H1

#(Ω) such that∫
Ω

µ∇ϕ · ∇ϕ′ =

∫
Ω

µ curl v · ∇ϕ′, ∀ϕ′ ∈ H1
#(Ω).

The function ϕ is well-de�ned since we have assumed (Hµ) to be true.
ii) Observe next that µ(curl v−∇ϕ) is a divergence free element of L2(Ω) such that µ(curl v−∇ϕ)·n = 0
on ∂Ω. Since Ω is simply connected and since ∂Ω is connected, according to theorem 3.17 in [1] (see also
theorem 3.6 in [18]), there exists a unique potential Tv ∈ VN (1; Ω) such that curlTv = µ(curl v−∇ϕ).
This de�nes a bounded operator T : VN (1; Ω)→ VN (1; Ω).
? Positiveness property. For all u,v ∈ VN (1; Ω), we then compute

(µ−1curlu, curlTv) = (µ−1curlu, µ(curl v −∇ϕ)) = (curlu, curl v),

because u× n = 0 on ∂Ω. Notice we have also (µ−1curlTu, curl v) = (curlu, curl v).
? T is an isomorphism of VN (1; Ω). Let us consider the operator for the electric �eld AN (ω) :
VN (1; Ω)→ VN (1; Ω) de�ned in (8). The previous identity allows us to write

(AN (0)(Tu),v)curl = (µ−1curlTu, curl v) = (curlu, curl v), ∀u,v ∈ VN (1; Ω).

Since ∂Ω is connected, the map (u,v) 7→ (curlu, curl v) de�nes an inner product on VN (1; Ω). Conse-
quently, the operator AN (0) ◦ T is an isomorphism of VN (1; Ω). Since AN (0) is selfadjoint, we deduce
that AN (0) and T are isomorphisms.

We deduce the

Proposition 4.3 Let Ω be a simply connected domain such that ∂Ω is connected. Assume (Hµ) to
be true and ε = 1. Then, the problem for the electric �eld (6) has one and only one solution which
continuously depends on the data J , for all ω ∈ C\S , where S is a discrete set.

Proof. According to Lemma 4.1, the operator AN (0), with ε = 1, is an isomorphism when assumption
(Hµ) holds true. Since VN (1; Ω) is compactly embedded in L2(Ω), AN (ω)−AN (0) is a compact operator
of VN (1; Ω) for all ω ∈ C. The analytic Fredholm theorem allows us to conclude.

Remark 4.4 The analysis presented in this paragraph also holds in the case where the assumption
�ε = 1� is replaced by the assumption �ε ≥ C > 0�. To deal with the case of a sign changing coe�cient
ε, we will have to assume in addition that (Hε) holds true to be able to build an operator T with values
in VN (ε; Ω) and to prove that the embedding of VN (ε; Ω) in L2(Ω) is compact.

4.2 Study for the magnetic �eld with a permeability µ = 1

Now, let us study the problem for the magnetic �eld.

Lemma 4.5 Let Ω be a simply connected domain such that ∂Ω is connected. Assume (Hε) to be true.
Then, there exists an isomorphism T of VT (1; Ω) such that for all u,v ∈ VT (1; Ω),

(ε−1curlu, curlTv) = (ε−1curlTu, curl v) = (curlu, curl v).

Remark 4.6 One can again prove a �reciprocal� assertion. Namely, �there exists an isomorphism T of
VT (1; Ω) such that (ε−1curlu, curlTu) ≥ ‖curlu‖2, for all u ∈ VT (1; Ω)� implies �(Hε) is true�.

Proof. The proof is very similar to the proof of Lemma 4.1, the boundary conditions being the only
changing elements.
? Definition of T. Consider v ∈ VT (1; Ω).
i) First de�ne ϕ the unique element of H1

0(Ω) such that∫
Ω

ε∇ϕ · ∇ϕ′ =

∫
Ω

ε curl v · ∇ϕ′, ∀ϕ′ ∈ H1
0(Ω).
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The function ϕ is well-de�ned since we have assumed (Hε) to be true.
ii) Then, notice that ε(curl v−∇ϕ) is a divergence free element of L2(Ω). Since Ω is simply connected
and since ∂Ω is connected, according to theorem 3.12 in [1], there exists a unique potential Tv ∈ VT (1; Ω)
such that curlTv = ε(curl v −∇ϕ). This de�nes an operator T from VT (1; Ω) to VT (1; Ω).
? Positiveness property. For all u,v ∈ VT (1; Ω), we then compute

(ε−1curlu, curlTv) = (ε−1curlu, µ(curl v −∇ϕ)) = (curlu, curl v),

because ϕ = 0 on ∂Ω. We have also (ε−1curlTu, curl v) = (curlu, curl v).
? T is an isomorphism of VT (1; Ω). Let us consider the operator for the magnetic �eld AT (ω) :
VT (1; Ω)→ VT (1; Ω) de�ned in (11). The previous identity allows us to write

(AT (0)(Tu),v)curl = (ε−1curlTu, curl v) = (curlu, curl v), ∀u,v ∈ VT (1; Ω).

Since Ω is simply connected, the map (u,v) 7→ (curlu, curl v) de�nes an inner product on VT (1; Ω).
Thus, the operator AT (0) ◦T is an isomorphism of VT (1; Ω). Since AT (0) is selfadjoint, we deduce that
AT (0) and T are isomorphisms.

Proceeding as in Proposition 4.3, one proves the

Proposition 4.7 Let Ω be a simply connected domain such that ∂Ω is connected. Assume (Hε) to be
true and µ = 1. Then, the problem for the magnetic �eld (10) has one and only one solution which
continuously depends on the data J , for all ω ∈ C\S , where S is a discrete set.

Remark 4.8 Like in Remark 4.4, let us indicate that the analysis of this paragraph also holds in the
case where the assumption �µ = 1� is replaced by the assumption �µ ≥ C > 0�. To deal with the case
of a sign changing coe�cient µ, we will have furthermore to assume that (Hµ) holds true to be able to
build an operator T with values in VT (µ; Ω) and to prove that the embedding of VT (µ; Ω) in L2(Ω) is
compact.

5 Compactness results

De�ne the spaces, for ξ ∈ L∞(Ω),

XN (ξ; Ω) :=
{
u ∈ H(curl ; Ω) |div (ξ u) ∈ L2(Ω), u× n = 0 on ∂Ω

}
;

XT (ξ; Ω) :=
{
u ∈ H(curl ; Ω) |div (ξ u) ∈ L2(Ω), ξu · n = 0 on ∂Ω

}
.

Theses spaces are equipped with the norm u 7→ (‖u‖2 + ‖div (ξ u)‖2 + ‖curlu‖2)1/2. In this paragraph,
we prove that XN (ε; Ω) and XT (µ; Ω) are compactly embedded in L2(Ω) when (Hε) and (Hµ) hold
true, extending the classical theorems of [33, 19, 23] (for another approach, based on the study of the
regularity of �elds, in 2D, when ε, µ change sign, see [11]). This constitutes a more general result than
the one we actually need for our study, namely the compact embedding of VN (ε; Ω) and VT (µ; Ω) in
L2(Ω).

5.1 Compact embedding of XN(ε; Ω) in L2(Ω)

Let us start by studying the space of electric �elds.

Theorem 5.1 Let Ω be a simply connected domain such that ∂Ω is connected. Assume (Hε) to be true.
Then the embedding of XN (ε; Ω) in L2(Ω) is compact.

Proof. Let (un) be a bounded sequence of XN (ε; Ω). De�ne fn := div (εun) and F n := curlun. The
sequences (fn) and (F n) are respectively bounded in L2(Ω) and in L2(Ω). Since (Hε) is true, according
to Lemma 3.1, there exists, for all n ∈ N, ϕn ∈ H1

0(Ω) such that div (ε∇ϕn) = div (εun). Then, we
notice that ε(un −∇ϕn) is a divergence free element of L2(Ω). Since ∂Ω is connected, there exists (see
[1], theorem 3.12) wn ∈ VT (1; Ω) such that curlwn = ε(un − ∇ϕn). Thus, for all n ∈ N, one has
un = ∇ϕn + ε−1curlwn. Let us show now we can extract sequences from (∇ϕn) and (curlwn) which
converge in L2(Ω).
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Lemma 3.1 ensures that (ϕn) remains bounded in H1
0(Ω). The operator Tε of hypothesis (Hε) is

continuous from H1
0(Ω) to H1

0(Ω), (Tεϕn) is also bounded in H1
0(Ω). But H1

0(Ω) is compactly em-
bedded in L2(Ω). Therefore, we can extract a subsequence from (ϕn) (still denoted (ϕn)) such that
(Tεϕn) converges in L2(Ω). Introduce ϕnm = ϕn − ϕm and fnm = fn − fm. By linearity, there holds:
−(ε∇ϕnm,∇ϕ′) = (fnm, ϕ

′), for all ϕ′ ∈ H1
0(Ω). Taking ϕ′ = Tεϕnm, one obtains

C ‖ϕnm‖2H1
0(Ω) ≤ |(ε∇ϕnm, ∇(Tεϕnm))| = |(fnm, Tεϕnm)| .

This shows that (∇ϕn) is a Cauchy sequence in L2(Ω), and so, that it converges.

Now, let us work on the sequence (curlwn). We know that w 7→ ‖curlw‖ de�nes a norm on VT (1; Ω).
Consequently, the sequence (wn) is bounded in VT (1; Ω). By the compact imbedding of VT (1; Ω) in
L2(Ω), we can extract a subsequence, still denoted (wn), which converges in L2(Ω). According to Lemma
4.5, there exists an isomorphism T of VT (1; Ω) such that∣∣(ε−1curlw, curlTw)

∣∣ = ‖curlw‖2 , ∀w ∈ VT (1; Ω).

Since T is continuous, the sequence (Twn) is bounded in VT (1; Ω). So, we can extract a subsequence
from (wn), still denoted (wn), such that (Twn) converges in L2(Ω). Since curl ε−1curlwn = F n in Ω
and (ε−1curlwn) × n = 0 on ∂Ω, one has (ε−1curlwnm, curlw′) = (F nm,w

′), for all w′ ∈ VT (1; Ω)
with wnm = wn −wm and F nm = F n − Fm. Testing with w′ = Twnm leads to:

‖curlwnm‖2 = |(F nm,Twnm)| .

This estimate proves that (curlwn) is a Cauchy sequence in L2(Ω). Consequently, it converges.

Corollary 5.2 Let Ω be a simply connected domain such that ∂Ω is connected. Assume (Hε) to be true.
Then, there exists a constant C such that

‖u‖2 ≤ C ‖curlu‖2 , ∀u ∈ VN (ε; Ω). (12)

Thus, the map (u,v) 7→ (curlu, curl v) de�nes an inner product on VN (ε; Ω) and the associated norm

is equivalent to the canonical norm u 7→ (u,u)
1/2
curl .

Proof. To prove this corollary, it is su�cient to show (12). Let us proceed by contradiction assuming
there exists a sequence (un) of elements of VN (ε; Ω) such that

∀n ∈ N, ‖un‖ = 1 and lim
n→∞

‖curlun‖ = 0.

According to Theorem 5.1, we can extract a sequence from (un) (still denoted (un)) which converges
to u in L2(Ω). By construction, we have ‖u‖ = 1. Then, we check easily that (un) converges to u
in HN (curl ; Ω) with curlu = 0 a.e. in Ω. Since ∂Ω is connected, one deduces (see [9], chapter 2,
theorem 8) that there exists a scalar potential ϕ ∈ H1

0(Ω) such that u = ∇ϕ in Ω. Finally, we notice that
div (εu) = 0 and so div (ε∇ϕ) = 0. Lemma 3.1 implies ϕ = 0 so u = 0. This leads to a contradiction
because we must have ‖u‖ = 1.

5.2 Compact embedding of XT (µ; Ω) in L2(Ω)

Now, let us work on the space of magnetic �elds.

Theorem 5.3 Let Ω be a simply connected domain such that ∂Ω is connected. Assume (Hµ) to be true.
Then, the embedding of XT (µ; Ω) in L2(Ω) is compact.

Proof. Let (un) be a bounded sequence of elements of XT (µ; Ω). De�ne fn := div (µun) and
F n := curlun. The sequence (fn) is bounded in L2(Ω) whereas (F n) is bounded in L2(Ω). For all
n ∈ N, since

∫
Ω

div (µun) =
∫
∂Ω
µun · n = 0, Lemma 3.5 allows us to build ϕn ∈ H1

#(Ω) such that

div (µ∇ϕn) = div (µun). Observe next that µ(un − ∇ϕn) is a divergence free element of L2(Ω) such
that µ(un −∇ϕn) · n = 0 on ∂Ω. Since Ω is simply connected, according to theorem 3.17 in [1], there
exists a potential wn ∈ VN (1; Ω) such that curlwn = µ(un − ∇ϕn). Thus, for all n ∈ N, we have
un = ∇ϕn + µ−1curlwn.

Then, we show as in the proof of Theorem 5.1, using the assumption (Hµ), that we can extract subse-
quences from (∇ϕn) and (curlwn) which converge in L2(Ω).
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As previously, this theorem allows us to obtain the

Corollary 5.4 Let Ω be a simply connected domain such that ∂Ω is connected. Assume (Hµ) to be true.
Then, there exists a constant C such that

‖u‖2 ≤ C ‖curlu‖2 , ∀u ∈ VT (µ; Ω).

Thus, the map (u,v) 7→ (curlu, curl v) de�nes an inner product on VT (µ; Ω) and the associated norm

is equivalent to the canonical norm u 7→ (u,u)
1/2
curl .

6 Well-posedness of Maxwell's equations

We extend the results of Lemmas 4.1 and 4.5 to address the problem for the electric �eld (resp. magnetic
�eld) when ε (resp. µ) changes sign. Thus, we precise Remark 4.4 (resp. Remark 4.8).

Lemma 6.1 Let Ω be a simply connected domain such that ∂Ω is connected. Assume (Hε) and (Hµ)
to be true. Then:
• There exists an isomorphism Tε of VN (ε; Ω) such that, for all u,v ∈ VN (ε; Ω),

(µ−1curlu, curlTεv) = (µ−1curlTεu, curl v) = (curlu, curl v). (13)

• There exists an isomorphism Tµ of VT (µ; Ω) such that, for all u,v ∈ VT (µ; Ω),

(ε−1curlu, curlTµv) = (ε−1curlTµu, curl v) = (curlu, curl v). (14)

Proof. The �rst steps in the construction of the operators Tε and Tµ will be the same as those of
Lemmas 4.1 and 4.5. However, we recall them for the sake of clarity. Of course, to obtain �elds which
belong to VN (ε; Ω) and VT (µ; Ω) (instead of VN (1; Ω) and VT (1; Ω)), we shall add one step.
? Definition of Tε. Consider v ∈ VN (ε; Ω).
i) Introduce ϕ the unique element of H1

#(Ω) such that∫
Ω

µ∇ϕ · ∇ϕ′ =

∫
Ω

µ curl v · ∇ϕ′, ∀ϕ′ ∈ H1
#(Ω).

The function ϕ is well-de�ned since we have assumed (Hµ) to be true.
ii) Remark next that µ(curl v−∇ϕ) is a divergence free element of L2(Ω) such that µ(curl v−∇ϕ)·n = 0
on ∂Ω. Under the assumptions on the geometry, there exists a unique potential ψ ∈ VN (1; Ω) such that
curlψ = µ(curl v −∇ϕ).
iii) Consider ζ the unique element of H1

0(Ω) such that∫
Ω

ε∇ζ · ∇ζ ′ =

∫
Ω

εψ · ∇ζ ′, ∀ζ ′ ∈ H1
0(Ω).

The function ζ is well-de�ned since we have assumed (Hε) to be true.
iv) Finally, de�ne the operator Tε : VN (ε; Ω)→ VN (ε; Ω) such that Tεv = ψ −∇ζ for v ∈ VN (ε; Ω).

? Definition of Tµ. Consider v ∈ VT (µ; Ω).
i) Introduce ϕ the unique element of H1

0(Ω) such that∫
Ω

ε∇ϕ · ∇ϕ′ =

∫
Ω

ε curl v · ∇ϕ′, ∀ϕ′ ∈ H1
0(Ω).

The function ϕ is well-de�ned since we have assumed (Hε) to be true.
ii) Then, notice that ε(curl v −∇ϕ) is a divergence free element of L2(Ω). Under the assumptions on
the geometry, there exists a unique potential ψ ∈ VT (1; Ω) such that curlψ = ε(curl v −∇ϕ).
iii) Consider ζ the unique element of H1

#(Ω) such that∫
Ω

µ∇ζ · ∇ζ ′ =

∫
Ω

µψ · ∇ζ ′, ∀ζ ′ ∈ H1
#(Ω).
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The function ζ is well-de�ned since we have assumed (Hµ) to be true.
iv) Finally, de�ne the operator Tµ : VT (µ; Ω)→ VT (µ; Ω) such that Tµv = ψ −∇ζ for v ∈ VT (µ; Ω).

A simple computation leads to (13) and (14). Proceeding as in Lemmas 4.1 and 4.5, and using Corol-
laries 5.2 and 5.4 which prove that (u,v) 7→ (curlu, curl v) de�nes an inner product on VN (ε; Ω) and
on VT (µ; Ω), one shows a posteriori that Tε and Tµ are respectively isomorphisms of VN (ε; Ω) and
VT (µ; Ω).

We now have all the tools to prove the main result of this paper.

Theorem 6.2 Let Ω be a simply connected domain such that ∂Ω is connected. Assume also that

(Hε)
There exists an isomorphism T

ε of H1
0(Ω) such that

|(ε∇ϕ, ∇(Tεϕ))| ≥ C ‖ϕ‖2H1
0(Ω) , ∀ϕ ∈ H1

0(Ω).

(Hµ)
There exists an isomorphism T

µ of H1
#(Ω) such that

|(µ∇ϕ, ∇(Tµϕ))| ≥ C ‖ϕ‖2H1
#(Ω) , ∀ϕ ∈ H1

#(Ω).

Then, the following results hold.
• There exists a unique solution to the problem for the electric �eld

Find E ∈ VN (ε; Ω) such that for all E′ ∈ VN (ε; Ω):∫
Ω

µ−1curlE · curlE′ − ω2εE ·E′ = iω

∫
Ω

J ·E′, (15)

which continuously depends on the data J , for all ω ∈ C\S where S is a discrete set.
• There exists a unique solution to the problem for the magnetic �eld

Find H ∈ VT (µ; Ω) such that for all H ′ ∈ VT (µ; Ω):∫
Ω

ε−1curlH · curlH ′ − ω2µH ·H ′ =

∫
Ω

ε−1J · curlH ′,

which continuously depends on the data J , for all ω ∈ C\S.
• Maxwell's equations (1)-(2) are uniquely solvable for all ω ∈ C∗\S.

Proof. Let us begin with the �rst point. Lemma 6.1 ensures the existence of an isomorphism Tε :
VN (ε; Ω) → VN (ε; Ω) such that (u,v) 7→ (µ−1curlu, curlTεv) is coercive on VN (ε; Ω) ×VN (ε; Ω).
Now, since Tε is an isomorphism, E satis�es (15) if and only if E satis�es the problem

Find E ∈ VN (ε; Ω) such that for all E′ ∈ VN (ε; Ω):∫
Ω

µ−1curlE · curl (TεE′)− ω2εE · (TεE′) = iω

∫
Ω

J · (TεE′).

It only remains to observe that the Fredholm alternative holds for this problem because the embedding
of VN (ε; Ω) in L2(Ω) is compact by Theorem 5.1. The second point can be proved in the same way
whereas the third statement can be obtained thanks to Theorems 3.3 and 3.7.

Remark 6.3 If in Eq. (1) one considers J such that divJ 6= 0, it follows that div (εE) = (iω)−1divJ 6=
0. However, if one assumes that (Hε) is true, one can solve (5) with right-hand side f = (iω)−1divJ .
Then, one can proceed exactly as before with (J − iωε∇ϕ,E −∇ϕ) replacing (J ,E) in Eq. (1).

7 Illustrations

We apply Theorem 6.2 in a few simple con�gurations. We focus on situations where the medium consists
of two di�erent materials. To model this problem, we assume that Ω is divided into two sub-domains Ω1

and Ω2 with Ω = Ω1∪Ω2 et Ω1∩Ω2 = ∅. We denote Σ := ∂Ω1 \∂Ω = ∂Ω2 \∂Ω. Let us introduce ε1 and
µ1 (resp. ε2 and µ2) two elements of L∞(Ω1) (resp. L∞(Ω2)). De�ne the functions ε and µ such that
ε|Ωk = εk and µ|Ωk = µk for k = 1, 2. We assume that Ω1 is �lled with a positive material and that Ω2 is
�lled with a possibly negative material (for ε and/or µ). For that, we make the following assumptions:
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Figure 1: Canonical geometries: symmetric domain, prismatic edge, Fichera's corner, non symmetric
cavity.

� there exists a constant C s.t. ε1 ≥ C > 0 and µ1 ≥ C > 0 a.e. in Ω1;
� there exists a constant C s.t. ε2 ≥ C > 0 a.e. in Ω2 or ε2 ≤ −C < 0 a.e. in Ω2 ;
� there exists a constant C s.t. µ2 ≥ C > 0 a.e. in Ω2 or µ2 ≤ −C < 0 a.e. in Ω2.

In particular, notice that ε−1 ∈ L∞(Ω) and µ−1 ∈ L∞(Ω). Then, we de�ne

σ+
1 := sup

Ω1

σ1, σ+
2 := sup

Ω2

|σ2|, σ−1 := inf
Ω1

σ1 and σ−2 := inf
Ω2

|σ2|, for σ = ε, µ.

Generally speaking, if v is a measurable function on Ω, we use the notation vk := v|Ωk , k = 1, 2. For
more details concerning the study of the scalar problems, we refer the reader to [2].

7.1 Symmetric domain

Let Ω be a symmetric domain, in the sense that Ω1 and Ω2 can be mapped from one to the other with
the help of a re�ection symmetry. Without loss of generality, we assume that the interface Σ is included
in the plane z = 0 (see Figure 1, left, for an example). Consider the operators R1 and R2 respectively
de�ned by (R1ϕ1)(x, y, z) = ϕ1(x, y,−z) and (R2ϕ2)(x, y, z) = ϕ2(x, y,−z) for ϕ ∈ H1(Ω). De�ne the
operators T1 and T2 such that:

T1ϕ =

{
ϕ1 in Ω1

−ϕ2 + 2R1ϕ1 in Ω2
; T2ϕ =

{
ϕ1 − 2R2ϕ2 in Ω1

−ϕ2 in Ω2
.

By construction, T1ϕ and T2ϕ belong to H1(Ω). As T1 ◦ T1 = T2 ◦ T2 = Id, we deduce that T1 and T2 are
isomorphisms of H1(Ω). The restrictions Tε1 and Tε2 of T1 and T2 to H1

0(Ω) are isomorphisms of H1
0(Ω).

Let us introduce the linear form γ : H1(Ω)→ R such that γ(ϕ) =
∫

Ω
ϕ/
∫

Ω
1. Note that ker(γ) = H1

#(Ω).
Then, we de�ne the operators T

µ
1 and T

µ
2 such that, for all ϕ ∈ H1

#(Ω), T
µ
1ϕ = T1ϕ − γ(T1ϕ) and

T
µ
2ϕ = T2ϕ− γ(T2ϕ). Notice that Tµ1ϕ and T

µ
2ϕ are elements of H1

#(Ω). Moreover, we have

T
µ
1 (Tµ1ϕ) = T

µ
1 (T1ϕ− γ(T1ϕ)) = T1(T1ϕ− γ(T1ϕ))− γ(T1(T1ϕ− γ(T1ϕ)))

= ϕ− T1(γ(T1ϕ))− γ(ϕ− T1(γ(T1ϕ)))
= ϕ− T1(γ(T1ϕ)) + γ(T1(γ(T1ϕ))) = ϕ.

Thus, Tµ1 ◦T
µ
1 = Id. In the same way, we �nd T

µ
2 ◦T

µ
2 = Id. Hence Tµ1 and T

µ
2 are isomorphisms of H1

#(Ω).

Proposition 7.1 (Symmetric domain)
Assume that ε satis�es ε ≥ C > 0 a.e. in Ω or max(ε−1 /ε

+
2 , ε
−
2 /ε

+
1 ) > 1.

Assume that µ satis�es µ ≥ C > 0 a.e. in Ω or max(µ−1 /µ
+
2 , µ

−
2 /µ

+
1 ) > 1.

Then, Maxwell's equations (1)-(2) are uniquely solvable for all ω ∈ C∗\S where S is a discrete set.

Proof. Apply Theorem 6.2. To check that (Hε) and (Hµ) hold true, use the following table [2].

For ε ≥ C > 0 ε−1 /ε
+
2 > 1 ε−2 /ε

+
1 > 1

Take Tε equal to Id Tε1 Tε2

For µ ≥ C > 0 µ−1 /µ
+
2 > 1 µ−2 /µ

+
1 > 1

Take Tµ equal to Id T
µ
1 T

µ
2
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In the case where ε and µ are constant on each side of the interface, the statement of Proposition 7.1
can be simpli�ed.

Proposition 7.2 (Symmetric domain: piecewise constant coefficients)
Assume that ε1, ε2, µ1 and µ2 are constant numbers. Then, if ε2/ε1, µ2/µ1 ∈ R∗\{−1}, Maxwell's
equations (1)-(2) are uniquely solvable for all ω ∈ C∗\S where S is a discrete set.

7.2 Prismatic edge

Consider the geometry of Figure 1, middle-left. Introduce the cylindrical coordinates (r, θ, z) centered
on the edge, so that the cartesian coordinates are mapped as (x, y, z) = (r cos θ, r sin θ, z). Let H > 0
denote the height of the cylinder, R > 0 its radius. Given 0 < α < 2π, de�ne

Ω1 := {(r cos θ, r sin θ, z) | 0 < r < R, 0 < θ < α, 0 < z < H} ;
Ω2 := {(r cos θ, r sin θ, z) | 0 < r < R, α < θ < 2π, 0 < z < H} .

Introduce the two operatorsR1 andR2 such that (R1ϕ1)(r, θ, z) = ϕ1(r, α
α−2π (θ−2π), z) and (R2ϕ2)(r, θ, z) =

ϕ2(r, α−2π
α θ + 2π, z) for ϕ ∈ H1(Ω).

Proceeding as for the case of the symmetric domain, one obtains the

Proposition 7.3 (Prismatic edge)
De�ne Iα := max( α

2π−α ,
2π−α
α ).

Assume that ε satis�es ε ≥ C > 0 a.e. in Ω or max(ε−1 /ε
+
2 , ε
−
2 /ε

+
1 ) > Iα.

Assume that µ satis�es µ ≥ C > 0 a.e. in Ω or max(µ−1 /µ
+
2 , µ

−
2 /µ

+
1 ) > Iα.

Then, Maxwell's equations (1)-(2) are uniquely solvable for all ω ∈ C∗\S where S is a discrete set.

Proposition 7.4 (Prismatic edge: piecewise constant coefficients)
Assume that ε1, ε2, µ1 and µ2 are constant numbers. De�ne Iα := max( α

2π−α ,
2π−α
α ). Then, if

ε2/ε1, µ2/µ1 ∈ R∗\[−Iα;−1/Iα], Maxwell's equations (1)-(2) are uniquely solvable for all ω ∈ C∗\S
where S is a discrete set.

7.3 Fichera corner

Consider the geometry of Figure 1, middle-right. More precisely, de�ne Ω := (−1; 1)3, Ω1 := (0; 1)3 and
Ω2 := Ω\Ω1.

Introduce the operator R1, R2, such that, for ϕ ∈ H1(Ω),

(R1ϕ1)(x, y, z) =



ϕ1(−x, y, z) in Ω1
2 := (−1; 0)× (0; 1)2

ϕ1(x,−y, z) in Ω2
2 := (0; 1)× (−1; 0)× (0; 1)

ϕ1(x, y,−z) in Ω3
2 := (0; 1)2 × (−1; 0)

ϕ1(−x,−y, z) in Ω4
2 := (−1; 0)2 × (0; 1)

ϕ1(−x, y,−z) in Ω5
2 := (−1; 0)× (0; 1)× (−1; 0)

ϕ1(x,−y,−z) in Ω6
2 := (0; 1)× (−1; 0)2

ϕ1(−x,−y,−z) in Ω7
2 := (−1; 0)3

;

(R2ϕ2)(x, y, z) = ϕ1
2(−x, y, z) + ϕ2

2(x,−y, z) + ϕ3
2(x, y,−z)

−ϕ4
2(−x,−y, z)− ϕ5

2(−x, y,−z)− ϕ6
2(x,−y,−z)

+ϕ7
2(−x,−y,−z).

Above, for ` = 1 . . . 7, ϕ`2 is the restriction of ϕ2 to Ω`2.
Again, proceeding as for the case of the symmetric domain, one obtains the

Proposition 7.5 (Fichera's corner)
Assume that ε satis�es ε ≥ C > 0 a.e. in Ω or max(ε−1 /ε

+
2 , ε
−
2 /ε

+
1 ) > 7.

Assume that µ satis�es µ ≥ C > 0 a.e. in Ω or max(µ−1 /µ
+
2 , µ

−
2 /µ

+
1 ) > 7.

Then, Maxwell's equations (1)-(2) are uniquely solvable for all ω ∈ C∗\S where S is a discrete set.

Proposition 7.6 (Fichera's corner: piecewise constant coefficients)
Assume that ε1, ε2, µ1 and µ2 are constant numbers. Then, if ε2/ε1, µ2/µ1 ∈ R∗\[−7;−1/7], Maxwell's
equations (1)-(2) are uniquely solvable for all ω ∈ C∗\S where S is a discrete set.
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7.4 Non symmetric cavity

Let us consider the non symmetric cavity of Figure 1. More precisely, de�ne Ω := {(x, y, z) ∈ (−a; b)×
(0; 1) × (0; 1)}, Ω1 := (−a; 0) × (0; 1) × (0; 1) and Ω2 := (0; b) × (0; 1) × (0; 1) with a > 0 and b > 0.
The interface Σ is then equal to {0}×(0; 1)×(0; 1). Assume that ε1, ε2, µ1 and µ2 are constant numbers.

Recall that in �3.1, we have de�ned the operator Aε such that, for all ϕ,ϕ′ ∈ H1
0(Ω), (∇(Aεϕ),∇ϕ′) =

(ε∇ϕ, ∇ϕ′) whereas in �3.2, we have introduced the operator Aµ such that, for all ϕ,ϕ′ ∈ H1
#(Ω),

(∇(Aµϕ),∇ϕ′) = (µ∇ϕ, ∇ϕ′). For this particular geometry, we know (see [2]) that the operator Aε

(resp. Aµ) is Fredholm of index 0 (see De�nition 8.1 below) if and only if ε2/ε1 6= −1 (resp. µ2/µ1 6= −1).
To apply Theorem 6.2, we need Aε and Aµ to be isomorphisms. Therefore, we study here the question of
the injectivity of Aε and Aµ. Let us start with Aε. Consider ϕ an element of H1

0(Ω) such that Aεϕ = 0.
The pair (ϕ1, ϕ2) satis�es the equations

∆ϕ1 = 0 in Ω1;
∆ϕ2 = 0 in Ω2;

ϕ1 − ϕ2 = 0 on Σ;
ε1∂xϕ1 − ε2∂xϕ2 = 0 on Σ.

Decomposing ϕ1 and ϕ2 in Fourier series (the family {(y, z) 7→ sin(mπy) sin(nπz)}∞m,n=1 is a basis of
L2((0; 1)× (0; 1))), one obtains

ϕ1(x, y, z) =
∑∞
n=1

∑∞
m=1 ϕ

mn
1 sinh(

√
m2 + n2π(x+ a)) sin(mπy) sin(nπz)

and ϕ2(x, y, z) =
∑∞
n=1

∑∞
m=1 ϕ

mn
2 sinh(

√
m2 + n2π(x− b)) sin(mπy) sin(nπz),

where ϕmn1 and ϕmn2 are constant numbers. Besides, the transmission conditions imply,

∀(m,n) ∈ N∗ × N∗, ϕmn1 sinh(
√
m2 + n2πa) = −ϕmn2 sinh(

√
m2 + n2πb)

ϕmn1 ε1 cosh(
√
m2 + n2πa) = ϕmn2 ε2 cosh(

√
m2 + n2πb)

. (16)

For each (m,n) ∈ N∗ × N∗, there exists a non trivial solution to the system (16) (in (ϕmn1 , ϕmn2 )) if and
only if

0 = ε2 sinh(
√
m2 + n2πa) cosh(

√
m2 + n2πb) + ε1 sinh(

√
m2 + n2πb) cosh(

√
m2 + n2πa)

⇔ ε2/ε1 = −
tanh(

√
m2 + n2πb)

tanh(
√
m2 + n2πa)

.

Consequently, Aε : H1
0(Ω)→ H1

0(Ω) is an isomorphism if and only if ε2/ε1 is not an element of

Sε := {− tanh(
√
m2 + n2πb)/ tanh(

√
m2 + n2πa), (m,n) ∈ N∗ × N∗} ∪ {−1}. (17)

Following the same way, exchanging the �sin� by �cos� and the �sinh� by �cosh� to satisfy the Neumann
condition, we prove that Aµ : H1

#(Ω)→ H1
#(Ω) is an isomorphism if and only if µ2/µ1 is not an element

of
Sµ := {− tanh(

√
m2 + n2πa)/ tanh(

√
m2 + n2πb), (m,n) ∈ N∗ × N∗} ∪ {−1}. (18)

Remark 7.7 The map g : z 7→ − tanh(zπb)/ tanh(zπa) is continuous, strictly decreasing if a > b
and strictly increasing if a < b. Besides, we have limz→+∞ g(z) = −1. As a consequence, −1 is an
accumulation point of both sets Sε and Sµ.

Remark 7.8 For this particular 3D geometry, we obtain a result speci�c to 2D con�gurations (see [3]):
the problem with Dirichlet boundary condition for the coe�cient ε is well-posed if and only if the problem
with Neumann boundary condition is well-posed for the coe�cient µ := ε−1.

We deduce the

Proposition 7.9 (Non symmetric cavity: piecewise constant coefficients)
Assume that ε1, ε2, µ1 and µ2 are constant numbers. Assume that ε2/ε1 ∈ R∗\Sε and µ2/µ1 ∈ R∗\Sµ,
with Sε and Sµ respectively de�ned in (17) and (18). Then, Maxwell's equations (1)-(2) are uniquely
solvable for all ω ∈ C∗\S where S is a discrete set.
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8 Relaxing the main hypotheses

To prove the previous results, we relied extensively on two types of assumptions. On the one hand,
hypotheses (Hε) and (Hµ) ensure that the scalar problems are well-posed. On the other hand, the
domain Ω is supposed to be simply connected, with a connected boundary. We would like now to relax
these assumptions.

Concerning the hypotheses on the geometry, the di�culty is well-known (see for instance [9]). For
instance, if the boundary ∂Ω is not connected, the space VN (ε; Ω) contains non-trivial curl free �elds
∇ϕ, so that u 7→ (u,u)

1/2
curl is not a norm on VN (ε; Ω) anymore. The same occurs for VT (µ; Ω) when

Ω is not simply connected.
At �rst glance, relaxing hypotheses (Hε) and (Hµ) has similar consequences. For instance, suppose that
the homogeneous scalar problem (5) with f = 0 has a non-trivial solution ϕ̃: the non-trivial curl free
�eld ∇ϕ̃ belongs to VN (ε; Ω). Once more, u 7→ (u,u)

1/2
curl is not a norm on VN (ε; Ω).

However, we observe a fundamental di�erence between the scalar potentials which are built in the two
cases: ϕ /∈ H1

0(Ω), whereas ϕ̃ ∈ H1
0(Ω). As a consequence, the �eld Ẽ = ∇ϕ̃ is such that:∫

Ω

εẼ ·E′ = 0, ∀E′ ∈ VN (ε; Ω),

which is not the case for E = ∇ϕ. So, Ẽ is a solution to the homogeneous problem (J = 0) for the
electric �eld (6) stated in VN (ε; Ω) but not to the homogeneous problem (3) stated in HN (curl ; Ω). In
other words, when the scalar problems have non-trivial kernels, Theorems 3.3 and 3.7 (equivalence with
the original Maxwell's problem) are no longer true.

Summing up, we see that the di�culties which occur when relaxing either hypotheses on the geome-
try or hypotheses on the scalar problem present some similarities (existence of admissible �elds which
are both divergence free and curl free) but also some fundamental di�erences (formulations in VN (ε; Ω)
and VT (µ; Ω) are no longer equivalent to the original problem when the scalar problem have kernels).
Since the non-injectivity of the scalar problems is a di�culty which is speci�c to the presence of sign-
changing coe�cients ε and/or µ, it will be treated �rst in Subsection 8.1. Then, in Subsection 8.2,
we shall check that the usual treatment for non-trivial geometries can be extended to sign-changing
coe�cients.

8.1 Extension to non injective scalar problems

8.1.1 Non injective scalar problems: a new functional framework

We have introduced the sesquilinear forms aε and aµ such that

aε(ϕ,ϕ′) = (ε∇ϕ, ∇ϕ′), ∀ϕ,ϕ′ ∈ H1
0(Ω);

aµ(ϕ,ϕ′) = (µ∇ϕ, ∇ϕ′), ∀ϕ,ϕ′ ∈ H1
#(Ω).

With the Riesz representation theorem, we have de�ned the operators

Aε : H1
0(Ω)→ H1

0(Ω) s.t. (∇(Aεϕ),∇ϕ′) = aε(ϕ,ϕ′), ∀ϕ,ϕ′ ∈ H1
0(Ω);

and Aµ : H1
#(Ω)→ H1

#(Ω) s.t. (∇(Aµϕ),∇ϕ′) = aµ(ϕ,ϕ′), ∀ϕ,ϕ′ ∈ H1
#(Ω).

Theorem 6.2 indicates that Maxwell's equations (1)-(2) are well-posed in the Fredholm sense when Aε

and Aµ are isomorphisms. In this section, we want to study the case when Aε and Aµ are non injective
Fredholm operators of index 0. Let us recall the de�nition of a Fredholm operator (see [34, 22]).

De�nition 8.1 Let X and Y be two Banach spaces, and let L : X→ Y be a continuous linear map. The
operator L is said to be a Fredholm operator if and only if the following two conditions are ful�lled

i) dim(kerL) <∞ and rangeL is closed;

ii) dim(cokerL) <∞ where cokerL :=
(
Y/rangeL

)
.
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Besides, the index of a Fredholm operator L is de�ned by indL = dim(kerL)− dim(cokerL).

For the example of the non symmetric cavity described in �7.4, this corresponds to consider the situ-
ation where κε ∈ Sε\{−1} and κµ ∈ Sµ\{−1}. For the sake of brevity, we will focus on con�gurations
where Aε and Aµ both have a kernel non reduced to zero. When only one of these two operators is not
injective, the study of the Maxwell's equations can be easily inferred from the one we present.

Up to the end of this section, we assume that the physical parameters ε, µ and the geometry are
such that Aε : H1

0(Ω)→ H1
0(Ω) and Aµ : H1

#(Ω)→ H1
#(Ω) are non injective Fredholm operators of index

0. Let us introduce {λεi}N
ε

i=1 a basis of ker Aε such that (∇λεi ,∇λεj) = δij and {λµi }N
µ

i=1 a basis of ker Aµ

such that (∇λµi ,∇λ
µ
j ) = δij . De�ne the spaces Sε and Sµ such that

H1
0(Ω) = ker Aε

⊥
⊕ Sε and H1

#(Ω) = ker Aµ
⊥
⊕ Sµ.

Consider the sesquilinear forms ãε and ãµ such that

ãε(ϕ,ϕ′) = (ε∇ϕ, ∇ϕ′), ∀ϕ,ϕ′ ∈ Sε;
ãµ(ϕ,ϕ′) = (µ∇ϕ, ∇ϕ′), ∀ϕ,ϕ′ ∈ Sµ.

With the Riesz representation theorem, de�ne the operators

Ãε : Sε → Sε s.t. (∇(Ãεϕ),∇ϕ′) = ãε(ϕ,ϕ′), ∀ϕ,ϕ′ ∈ Sε;

and Ãµ : Sµ → Sµ s.t. (∇(Ãµϕ),∇ϕ′) = ãµ(ϕ,ϕ′), ∀ϕ,ϕ′ ∈ Sµ.

Classically (see [22]), one has the

Proposition 8.2 The operators Ãε : Sε → Sε and Ãµ : Sµ → Sµ are isomorphisms.

As mentioned in the introduction of Section 8, Theorems 3.3 and 3.7 do not hold anymore. Indeed,
span(∇λε1, . . . ,∇λεNε) is included in the kernel of problem (6), stated in VN (ε; Ω), but not in the kernel
of the original problem (3), stated in HN (curl ; Ω). Our objective is therefore to write variational
formulations of Maxwell's problems in some spaces di�erent from VN (ε; Ω) and VT (µ; Ω) in order to
eliminate these arti�cial kernels. A way to achieve that is to enrich the usual spaces by setting

ṼN (ε; Ω) := {u ∈ HN (curl ; Ω) | (εu,∇ϕ) = 0, ∀ϕ ∈ Sε} ;

ṼT (µ; Ω) := {u ∈ H(curl ; Ω) | (µu,∇ϕ) = 0, ∀ϕ ∈ Sµ} . (19)

Notice that we have VN (ε; Ω) ⊂ ṼN (ε; Ω) and VT (µ; Ω) ⊂ ṼT (µ; Ω). Let us precise the relation
between these spaces.

Lemma 8.3 For i = 1 . . . Nε, there exists Λε
i ∈ ṼN (ε; Ω) such that (εΛε

i ,∇λεj) = δij, for j = 1 . . . Nε.
We deduce

ṼN (ε; Ω) = VN (ε; Ω) ⊕ span(Λε
i )
Nε

i=1.

Proof. For j = 1 . . . Nε, let us introduce the linear form `j on ṼN (ε; Ω) de�ned by `j(v) = (εv,∇λεj).
Let us prove that the family `1, . . . , `Nε is free. Let α1, . . . , αNε beNε constants such that

∑Nε

j=1 αj`j = 0.

For all v ∈ ṼN (ε; Ω), we have (εv,
∑Nε

j=1 αj∇λεj) = 0. This implies (εw,
∑Nε

j=1 αj∇λεj) = 0 for all
w ∈ HN (curl ; Ω). Indeed, for w ∈ HN (curl ; Ω), let us introduce ϕ ∈ Sε the function such that
(ε∇ϕ,∇ϕ′) = (εw,∇ϕ′) for all ϕ′ ∈ Sε; ϕ is well-de�ned according to Proposition 8.2. We have
w −∇ϕ ∈ ṼN (ε; Ω). Since (ε∇ϕ,∇λεj) = 0, j = 1 . . . Nε, we obtain (εw,

∑Nε

j=1 αj∇λεj) = 0.

Since C∞0 (Ω)2 ⊂ HN (curl ; Ω) is dense in L2(Ω), we deduce
∑Nε

j=1 αj∇λεj = 0. The family λε1, . . . , λ
ε
Nε

constitutes a basis of ker Aε, so we have α1 = · · · = αNε = 0: `1, . . . , `Nε is free. Then Theorem
8.4 (see [20, lemma 4.12]) hereafter ensures the existence of the (Λε

i ). Finally, for all v ∈ ṼN (ε; Ω),
v −

∑Nε

j=1 `j(v)Λε
j belongs to VN (ε; Ω), which ends the proof.

Theorem 8.4 Let V be a normed vector space. For all free family `1, . . . , `n ∈ V∗, there exist x1, . . . , xn ∈
V such that

`i(xj) = δij with δij = 1 if i = j and δij = 0 if i 6= j.
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Proceeding in the same way, one can prove the

Lemma 8.5 For i = 1 . . . Nµ, there exists Λµ
i ∈ ṼT (µ; Ω) such that (µΛµ

i ,∇λ
µ
j ) = δij, for j = 1 . . . Nµ.

We deduce
ṼT (µ; Ω) = VT (µ; Ω) ⊕ span(Λµ

i )N
µ

i=1.

8.1.2 Non injective scalar problems: equivalent formulations

Now, we can give equivalent formulations to problem (1)-(2) in the spaces ṼN (ε; Ω) and ṼT (µ; Ω).

Theorem 8.6 Assume that ω 6= 0 and that the operator Aε : H1
0(Ω) → H1

0(Ω) is Fredholm of index 0
with a non trivial kernel span{λεi}N

ε

i=1. Let ṼN (ε; Ω) be de�ned as in (19).
1) If (E,H) satis�es (1)-(2) then E is a solution of the problem

Find E ∈ ṼN (ε; Ω) such that for all E′ ∈ ṼN (ε; Ω):∫
Ω

µ−1curlE · curlE′ − ω2εE ·E′ = iω

∫
Ω

J ·E′. (20)

2) If E satis�es (20) then (E, (i ωµ)−1curlE) satis�es (1)-(2).

Proof. Let us focus on the proof 2)⇒ 1). For that, let us show that if E ∈ ṼN (ε; Ω) ⊂ HN (curl ; Ω)
satis�es (20) then E is a solution to the problem (7) set in HN (curl ; Ω). For all E′ in HN (curl ; Ω),
Proposition 8.2 indicates that we can build ϕ ∈ Sε such that ãε(ϕ,ϕ′) = (εE′,∇ϕ′), for all ϕ′ ∈ Sε.
The element E′ −∇ϕ belongs to ṼN (ε; Ω). Observing that (εE,∇ϕ) = 0 and (J ,∇ϕ) = 0 (recall that
divJ = 0), one obtains ∫

Ω

µ−1curlE · curlE′ − ω2εE ·E′ = iω

∫
Ω

J ·E′.

Therefore, if E satis�es (20) then (E, (i ωµ)−1curlE) satis�es (1)-(2).

Adapting the proof of Theorem 8.6, one obtains the

Theorem 8.7 Assume that ω 6= 0 and that the operator Aµ : H1
#(Ω) → H1

#(Ω) is Fredholm of index 0

with a non trivial kernel span{λµi }N
µ

i=1. Let ṼT (µ; Ω) be de�ned as in (19).
1) If (E,H) satis�es (1)-(2) then H is a solution of the problem

Find H ∈ ṼT (µ; Ω) such that for all H ′ ∈ ṼT (µ; Ω):∫
Ω

ε−1curlH · curlH ′ − ω2µH ·H ′ =

∫
Ω

ε−1J · curlH ′.
(21)

2) If H satis�es (21) then (i (ωε)−1(curlH − J),H) satis�es (1)-(2).

Now, we wish to study formulations (20) and (21). For that, we need some new compactness results.

8.1.3 Non injective scalar problems: compactness results

Let us start by proving the compactness result needed to study the problem for the electric �eld.

Theorem 8.8 Let Ω be a simply connected domain such that ∂Ω is connected. Then the embedding of
ṼN (ε; Ω) in L2(Ω) is compact.

Proof. Let (un) be a bounded sequence of ṼN (ε; Ω). For all n ∈ N, using Lemma 8.3, de�ne
vn ∈ VN (ε; Ω) and (αin) ∈ CNε (αin = `i(un)) such that un = vn +

∑Nε

i=1 αinΛε
i . To prove The-

orem 8.8, it is su�cient to show that we can extract a subsequence from (vn) which converges in L2(Ω).
De�ne F n = curl vn. The sequence (F n) is bounded in L2(Ω). For all n ∈ N, we have div (εvn) = 0.
Since ∂Ω is connected, there exists (see [1], theorem 3.12) wn ∈ VT (1; Ω) such that curlwn = εvn.
Thus, for all n ∈ N, we can write vn = ε−1curlwn. Let us show we can extract a sequence from
(curlwn) which converges in L2(Ω).

We know that w 7→ ‖curlw‖ de�nes a norm on VT (1; Ω). Consequently, the sequence (wn) is
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bounded in VT (1; Ω). Since curl ε−1curlwn = F n in Ω and (ε−1curlwn) × n = 0 on ∂Ω, one
has (ε−1curlwn, curlw′) = (F n,w

′), for all w′ ∈ VT (1; Ω).
Now, let us build a continuous operator T from VT (1; Ω) to itself, to restore some property of positivity.
Consider w ∈ VT (1; Ω).
i) First, de�ne ϕ the unique element of Sε such that∫

Ω

ε∇ϕ · ∇ϕ′ =

∫
Ω

ε(curlw −
Nε∑
i=1

βiΛ
ε
i ) · ∇ϕ′, ∀ϕ′ ∈ Sε,

where βi = (ε curlw,∇λεi ). The function ϕ is well-de�ned since Ãε : Sε → Sε is an isomorphism.
ii) Thanks to the de�nition of the coe�cients (βi), notice that ε(curlw−

∑Nε

i=1 βiΛ
ε
i−∇ϕ) is a divergence

free element of L2(Ω). Since Ω is simply connected and since ∂Ω is connected, according to theorem 3.12
in [1], there exists a unique potential Tw ∈ VT (1; Ω) such that curlTw = ε(curlw−

∑Nε

i=1 βiΛ
ε
i −∇ϕ).

This de�nes a bounded operator T : VT (1; Ω)→ VT (1; Ω).
Since T is continuous, the sequence (Twn) is bounded in VT (1; Ω). So, we can extract a subsequence
from (wn), still denoted (wn), such that (Twn) converges in L2(Ω). Since for i = 1 . . . Nε, the sequence
(βin), with βin = (ε curlwn,∇λεi ), is bounded in C, we can extract a subsequence from (wn), still
denoted (wn), such that (βin) converges. Introducing wnm := wn − wm, F nm := F n − Fm and
βinm := βin − βim, one �nds

|(F nm, Twnm)| =
∣∣(ε−1curlwnm, curlTwnm)

∣∣
≥ ‖curlwnm‖2 −

∑Nε

i=1 |βinm||(curlwnm,Λ
ε
i )|.

This estimate proves that (curlwn) is a Cauchy sequence in L2(Ω), so it converges. Thus, we can extract
a subsequence from (vn) = (ε−1curlwn) which converges in L2(Ω).

Proceeding in the same way, we can prove the

Theorem 8.9 Let Ω be a simply connected domain such that ∂Ω is connected. Then the embedding of
ṼT (µ; Ω) in L2(Ω) is compact.

8.1.4 Non injective scalar problems: well-posedness of Maxwell's equations

With the Riesz representation theorem, let us introduce the bounded operators ÃN (ω) : ṼN (ε; Ω) →
ṼN (ε; Ω) and ÃT (ω) : ṼT (µ; Ω) → ṼT (µ; Ω) such that for all E,E′ ∈ ṼN (ε; Ω) and for all H,H ′ ∈
ṼT (µ; Ω),

(ÃN (ω)E,E′)curl = (µ−1curlE, curlE′)− ω2(εE,E′),

(ÃT (ω)H,H ′)curl = (ε−1curlH, curlH ′)− ω2(µH,H ′).

Now, let us state the main result when the geometry and the physical coe�cients ε, µ are such that the
scalar problems are well-posed in the Fredholm sense with a non trivial kernel.

Theorem 8.10 Let Ω be a simply connected domain such that ∂Ω is connected. Consider J ∈ L2(Ω)
such that divJ = 0.
Assume that the operator Aε : H1

0(Ω) → H1
0(Ω) is Fredholm of index 0 with a non trivial kernel

span{λεi}N
ε

i=1.
Assume that the operator Aµ : H1

#(Ω) → H1
#(Ω) is Fredholm of index 0 with a non trivial kernel

span{λµi }N
µ

i=1.
Then, the following results hold.

• For all ω ∈ C, the operator ÃN (ω) : ṼN (ε; Ω) → ṼN (ε; Ω) is a Fredholm operator of index 0.
Moreover, for ω ∈ C∗, E ∈ ṼN (ε; Ω) satis�es (ÃN (ω)E,E′)curl = iω(J ,E′), for all E′ ∈ ṼN (ε; Ω), if
and only if the pair (E, (i ωµ)−1curlE) satis�es the Maxwell's equations (1)-(2).

• For all ω ∈ C, ÃT (ω) : ṼT (µ; Ω) → ṼT (µ; Ω) is a Fredholm operator of index 0. Moreover, for
ω ∈ C∗, H ∈ ṼT (µ; Ω) satis�es (ÃT (ω)H,H ′)curl = (ε−1J , curlH ′), for all H ′ ∈ ṼT (µ; Ω), if and
only if the pair (i (ωε)−1(curlH − J),H) satis�es the Maxwell's equations (1)-(2).
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Proof. Let us prove that ÃN (ω) is a Fredholm operator of index 0. For all ω ∈ C, using Theorem 8.8,
we can prove that ÃN (ω)− ÃN (0) is a compact operator of ṼN (ε; Ω). Consequently, according to [22,
theorem 2.26], ÃN (ω) is a Fredholm operator of index 0 if and only if ÃN (0) is a Fredholm operator of
index 0. In the sequel, we work on ÃN (0). We build a bounded operator T̃ε : ṼN (ε; Ω)→ ṼN (ε; Ω) to
restore some positivity up to a compact perturbation. Let us consider u ∈ ṼN (ε; Ω).
i) First, de�ne ϕ the unique element of Sµ such that∫

Ω

µ∇ϕ · ∇ϕ′ =

∫
Ω

µ (curlu−
Nµ∑
i=1

βiΛ
µ
i ) · ∇ϕ′, ∀ϕ′ ∈ Sµ,

where βi = (µ curlu,∇λµi ). The function ϕ is well-de�ned since Ãµ : Sµ → Sµ is an isomorphism.
ii) Then, notice that µ(curlu −

∑Nµ

i=1 βiΛ
µ
i − ∇ϕ) is a divergence free element of L2(Ω) such that

µ(curlu −
∑Nµ

i=1 βiΛ
µ
i − ∇ϕ) · n = 0 on ∂Ω. Since Ω is simply connected and since ∂Ω is connected,

according to theorem 3.17 in [1], there exists a unique potential ψ ∈ VN (1; Ω) such that curlψ =

µ(curlu−
∑Nµ

i=1 βiΛ
µ
i −∇ϕ).

iii) Consider ζ the unique element of Sε such that∫
Ω

ε∇ζ · ∇ζ ′ =

∫
Ω

εψ · ∇ζ ′, ∀ζ ′ ∈ Sε.

The function ζ is well-de�ned since Ãε : Sε → Sε is an isomorphism.
iv) Finally, de�ne the operator T̃ε : ṼN (ε; Ω) → ṼN (ε; Ω) such that T̃εu = ψ −∇ζ and the operator
K̃ε : ṼN (ε; Ω)→ ṼN (ε; Ω) such that

(K̃εu,v)curl = (u,v) +

Nµ∑
i=1

(µ curlu,∇λµi )(Λµ
i , curl v), ∀v ∈ ṼN (ε; Ω).

According to Theorem 8.8, we know that the embedding of ṼN (ε; Ω) in L2(Ω) is compact. Consequently,
K̃ε is the sum of a compact operator and a �nite rank operator. Therefore, it is a compact operator.
Now, for all u,v ∈ ṼN (ε; Ω), we obtain

(ÃN (0)(T̃εu),v)curl = (µ−1curl (T̃εu), curl v)

= (curlu, curl v) + (u,v)− (K̃εu,v)curl .

We deduce ÃT (0) ◦ T̃ε + K̃ε = Id. This proves that T̃ε is a right parametrix for ÃN (0). Thus, the
selfadjoint operator ÃN (0) is Fredholm of index 0 (use [22, Lemma 2.23]). In the same way, we prove
that ÃT (ω) : ṼT (µ; Ω) → ṼT (µ; Ω) is a Fredholm operator of index 0 for all ω ∈ C. Finally, the
equivalence with Maxwell's equations (1)-(2) comes from Theorems 8.6 and 8.7.

Remark 8.11 To apply the analytic Fredholm theorem to prove that Maxwell's equations (1)-(2) are
uniquely solvable for all ω ∈ C∗\S where S is a discrete set, it remains to show that there exists ω ∈ C
such that ÃN (ω) or ÃT (ω) is invertible. However, we have not been able to prove this result.

8.2 Extension to a non trivial geometry

8.2.1 Non trivial geometry: a decomposition of the functional spaces

Classical con�gurations for Maxwell's equations include non-topologically trivial domains, and/or do-
mains with a non-connected boundary. We study these con�gurations here. To avoid multiple sub-cases,
we focus our work on the case of a non simply connected domain whose boundary is not connected.
Figure 2 presents an example of such a geometry. In these geometries, the functions u of VN (ε; Ω)
(resp. VT (µ; Ω)) do not necessarily write under the form u = ε−1curlψ (resp. u = µ−1curlψ) where
ψ belongs to VT (1; Ω) (resp. VN (1; Ω)). However, imposing more restrictive conditions to the functions
of VN (ε; Ω) and VT (µ; Ω), we can recover these results of existence for the potentials.
To introduce the spaces adapted to the study of Maxwell's equations in this kind of domains, we use the
notations of [1].
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Figure 2: An example of domain which is not simply connected and whose boundary is not connected.
The domain is made of the torus without the purple inclusions. It is not simply connected because of
the toroidal structure. The boundary is not connected because the boundary of the torus and the ones
of the spheres are not connected. The green disk represents a cut Σ1 which is such that Ω \Σ1 is simply
connected.

Notations for domains with a non connected boundary. We denote Γi, i = 0 . . . I, the
connected components of the boundary ∂Ω. Since we assume that ∂Ω is not connected, we have I ≥ 1.
Let us introduce

H1
Γ(Ω) :=

{
ϕ ∈ H1(Ω) |ϕ|Γ0

= 0, ϕ|Γi = cst, i = 1 . . . I
}
.

Let us start by characterizing this space. Using a lifting function, we prove the

Proposition 8.12 Assume (Hε) to be true. Then, for i = 1 . . . I, there exists a unique solution pi to
the problem

Find pi ∈ H1
Γ(Ω) such that:

div (ε∇pi) = 0 in Ω
pi = δik on Γk, k = 1 . . . I.

Then, we have
H1

Γ(Ω) = H1
0(Ω) ⊕ span(pi)

I
i=1.

De�ne
V̂N (ε; Ω) :=

{
u ∈ HN (curl ; Ω) | (εu,∇ϕ) = 0, ∀ϕ ∈ H1

Γ(Ω)
}
.

Notice that V̂N (ε; Ω) ⊂ VN (ε; Ω). Let us precise the link between these two spaces.

Lemma 8.13 Assume (Hε) to be true. For i = 1 . . . I, there exists P i ∈ VN (ε; Ω) such that (εP i,∇pk) =
δik, for k = 1 . . . I. We deduce

VN (ε; Ω) = V̂N (ε; Ω) ⊕ span(P i)
I
i=1

and HN (curl ; Ω) = V̂N (ε; Ω) ⊕ span(P i)
I
i=1 ⊕ ∇H1

0(Ω).

Proof. For k = 1 . . . I, let us de�ne the linear form `k on VN (ε; Ω) such that `k(v) = (εv,∇pk). Let
us prove that the family `1, . . . , `I is free. Consider I constants α1, . . . , αI such that

∑I
k=1 αk`k = 0.

For all v ∈ VN (ε; Ω), we have (εv,
∑I
k=1 αk∇pk) = 0. We deduce (εw,

∑I
k=1 αk∇pk) = 0 for all

w ∈ HN (curl ; Ω). Indeed, if w ∈ HN (curl ; Ω), let us de�ne ϕ ∈ H1
0(Ω) the function such that

(ε∇ϕ,∇ϕ′) = (εw,∇ϕ′) for all ϕ′ ∈ H1
0(Ω). We have w − ∇ϕ ∈ VN (ε; Ω). Since (ε∇ϕ,∇pk) = 0,

k = 1 . . . I, we �nd (εw,
∑I
k=1 αk∇pk) = 0.

Since C∞0 (Ω)2 ⊂ HN (curl ; Ω) is dense in L2(Ω), we obtain
∑I
k=1 αk∇pk = 0. But the family p1, . . . , pI

is free. Consequently, we have α1 = · · · = αI = 0 and the family `1, . . . , `I is also free. Theorem 8.4 then
allows us to obtain the desired result.

Notations for non simply connected domains. We will assume that there exist connected open
surfaces Σj , j = 1 . . . J called �cuts� such that:

i) each surface Σj is an open subset of a smooth variety;
ii) the boundary of Σj is contained in ∂Ω, j = 1 . . . J ;
iii) the intersection Σj ∩ Σk is empty for j 6= k;
iv) the open set Ω̇ := Ω \

⋃J
i=1 Σj is pseudo-lipschitz [1] and simply connected.
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The domain Ω is said topologically trivial when we can take J = 0. The extension operator from L2(Ω̇)
to L2(Ω) is denoted ·̃ whereas [·]Σj denotes the jump through Σj , j = 1 . . . J . In this de�nition of
the jump, we assume that a convention has been established for the sign. We also assume that a unit
vector n normal to Σj , j = 1 . . . J , is chosen, consistent with the choice of the sign of the jump. Let us
introduce the space of scalar potentials

Θ(Ω̇) :=

{
ϕ ∈ H1(Ω̇) |

∫
Ω

ϕ̃ = 0 and [ϕ]Σj = cst, j = 1 . . . J

}
.

Let us present a result of decomposition of this space.

Proposition 8.14 Assume (Hµ) to be true. Then for j = 1 . . . J , there exists a unique solution qj to
the problem

Find qj ∈ Θ(Ω̇) such that:

div (µ∇qj) = 0 in Ω̇
µ∂nqj = 0 on ∂Ω
[qj ]Σk = δjk, k = 1 . . . J

[µ∂nqj ]Σk = 0, k = 1 . . . J.

(22)

We then have
Θ(Ω̇) = H1

#(Ω) ⊕ span(qj)
J
j=1.

Proof. Since we have assumed (Hµ) to hold true, problem (22) has at most one solution. Let us build
it. For 1 ≤ j ≤ J , let rj ∈ Θ(Ω̇) be a function such that [rj ]Σk = δjk for k = 1 . . . J . Then, let us de�ne
qj = rj − ϕ where ϕ is the unique element of H1

#(Ω) such that∫
Ω

µ∇ϕ · ∇ϕ′ =

∫
Ω

µ∇̃rj · ∇ϕ′, ∀ϕ′ ∈ H1
#(Ω).

One classically checks that qj satis�es problem (22). This allows to obtain the result of decomposition
of the space Θ(Ω̇).

Let us introduce

V̂T (µ; Ω) :=
{
u ∈ H(curl ; Ω) | (εu, ∇̃ϕ) = 0, ∀ϕ ∈ Θ(Ω̇)

}
.

Observe that we have V̂T (µ; Ω) ⊂ VT (µ; Ω). Working as in the proof of Lemma 8.13, we can precise
the relation between these two spaces.

Lemma 8.15 Assume (Hµ) to be true. For j = 1 . . . J , there existsQj ∈ VT (µ; Ω) such that (µQj , ∇̃qk) =
δjk, for k = 1 . . . J . We deduce

VT (µ; Ω) = V̂T (µ; Ω) ⊕ span(Qj)
J
j=1

and H(curl ; Ω) = V̂T (µ; Ω) ⊕ span(Qj)
J
j=1 ⊕ ∇H1

#(Ω).

Remark 8.16 Theorem 3.12 in [1] states that every element u of V̂N (ε; Ω) can be written as u =

ε−1curlψ with ψ belonging to V̂T (1; Ω). Similarly, theorem 3.17 of [1] ensures that for every u ∈
V̂T (µ; Ω), there exists a unique ψ ∈ V̂N (1; Ω) such that u = µ−1curlψ. In the sequel, we will adapt
the proofs of the previous sections using these results of existence of vector potentials.

Assume (Hε) and (Hµ) to be true. Remark that Theorems 3.3, 3.7 which prove the equivalence
between initial Maxwell's equations and formulations in VN (ε; Ω), VT (µ; Ω) do not require any as-
sumption concerning the topology of the domain. Therefore, they are true for the geometry we are
considering. In the sequel, we will work with these formulations set in VN (ε; Ω), VT (µ; Ω). We should
prove the compactness results of Theorems 5.1, 5.3 in the case where Ω is not simply connected with a
non connected boundary. This will be the subject of the next Subsection.
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Remark 8.17 Can we work with formulations set in V̂N (ε; Ω), V̂T (µ; Ω)? A priori, the electric �eld

which satis�es Maxwell's equations has no reason to belong to the space V̂N (ε; Ω). To see this, we use
Lemma 8.13 and we decompose E under the form

E = Ê +

I∑
i=1

αiP i,

with Ê ∈ V̂N (ε; Ω) and (α1, . . . , αI) ∈ CI . For i = 1 . . . I, testing with ∇pi in (6), we �nd

αi = (εE,∇pi) = (iω)−1(J ,∇pi) = (iω)−1〈J · n, 1〉Γi ,

where 〈·, ·〉Γi denotes the duality product between H1/2(Γi) and its dual space. Above, we have used the
properties divJ = 0 in Ω and pi = δik on Γk, k = 1 . . . I. Thus, if there exists 0 ≤ i ≤ I such that
〈J ·n, 1〉Γi 6= 0, then E does not belong to V̂N (ε; Ω). But this also proves that to know the �eld E, it is
su�cient to determine Ê. Following the same reasoning, we can check that the magnetic �eld is always
an element of V̂T (µ; Ω), regardless of the source term J .

8.2.2 Non trivial geometry: compactness results

Let us work �rst on the space of electric �elds.

Theorem 8.18 Let Ω be a bounded connected open subset of R3 with a Lipschitz-continuous boundary.
Assume (Hε) to be true. Then the embedding of VN (ε; Ω) in L2(Ω) is compact.

Proof. Let (un) be a bounded sequence of VN (ε; Ω). For all n ∈ N, using Lemma 8.13, let us de�ne
vn ∈ V̂N (ε; Ω) and (α1n, . . . , αIn) ∈ CI the elements such that un = vn +

∑I
i=1 αinP i. To prove

Theorem 8.18, it is su�cient to show that we can extract a subsequence from (vn) which converges in
L2(Ω). De�ne F n = curl vn. The sequence (F n) is bounded in L2(Ω). In addition, for all n ∈ N,
there holds (εvn,∇ϕ) = 0 for all ϕ ∈ H1

Γ(Ω). Therefore, according to theorem 3.12 in [1], there exists
wn ∈ V̂T (1; Ω) such that curlwn = εvn. Thus, for all n ∈ N, we have vn = ε−1curlwn. Let us prove
that we can extract a subsequence from (curlwn) which converges in L2(Ω).

We know that w 7→ ‖curlw‖ de�nes a norm on V̂T (1; Ω) (cf. [1, corollary 3.16]). Consequently, the
sequence (wn) is bounded in V̂T (1; Ω). Since curl ε−1curlwn = F n in Ω and (ε−1curlwn) × n = 0

on ∂Ω, we have (ε−1curlwn, curlw′) = (F n,w
′) for all w′ ∈ V̂T (1; Ω).

Now, let us build a bounded operator T̂ from V̂T (1; Ω) to V̂T (1; Ω) to recover some positivity. Consider
w ∈ V̂T (1; Ω).
i) First, de�ne ϕ the unique element of H1

0(Ω) such that∫
Ω

ε∇ϕ · ∇ϕ′ =

∫
Ω

ε curlw · ∇ϕ′, ∀ϕ′ ∈ H1
0(Ω).

The function ϕ is well-de�ned because we have assumed (Hε) to be true.
ii) De�ning βi := (ε curlw,∇pi) for i = 1 . . . I, let us then notice that we have (ε(curlw−

∑I
i=1 βiP i−

∇ϕ),∇ϕ′) = 0 for all ϕ′ ∈ H1
Γ(Ω). Consequently, according to theorem 3.12 of [1], there exists a unique

potential T̂w ∈ V̂T (1; Ω) such that curl T̂w = ε(curlw −
∑I
i=1 βiP i − ∇ϕ). This de�nes a bounded

operator T̂ from V̂T (1; Ω) to V̂T (1; Ω).
Since T̂ is continuous, the sequence (T̂wn) is bounded in V̂T (1; Ω). So we can extract a subsequence
from (wn), still denoted (wn), such that (T̂wn) converges in L2(Ω). Since for i = 1 . . . I, the sequence
(βin), with βin = (ε curlwn,∇pi), is bounded in C, we can extract a subsequence from (wn), still
denoted (wn), such that (βin) converges. Let us introduce wnm := wn − wm, F nm := F n − Fm and
βinm := βin − βim. We have∣∣∣(F nm, T̂wnm)

∣∣∣ =
∣∣∣(ε−1curlwnm, curl T̂wnm)

∣∣∣
≥ ‖curlwnm‖2 −

∑I
i=1 |βinm||(curlwnm,P i)|.

This estimate proves that (curlwn) is a Cauchy sequence of L2(Ω). Therefore, it converges. Thus, we
can extract a subsequence from (vn) = (ε−1curlwn) which converges in L2(Ω).
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Proceeding in the same way, we prove the

Theorem 8.19 Let Ω be a bounded connected open subset of R3 with a Lipschitz-continuous boundary.
Assume (Hµ) to be true. Then the embedding of VT (µ; Ω) in L2(Ω) is compact.

8.2.3 Non trivial geometry: well-posedness of Maxwell's equations

Let us state now the main result of this section concerning the well-posedness of Maxwell's equations in
non trivial geometries.

Theorem 8.20 Let Ω be a bounded connected open subset of R3 with a Lipschitz-continuous boundary.
Consider J ∈ L2(Ω) such that divJ = 0. Assume (Hε) and (Hµ) to be true. Then, we have the following
results.

• For all ω ∈ C, the operator for the electric �eld AN (ω) : VN (ε; Ω) → VN (ε; Ω) de�ned in (8) is
a Fredholm operator of index 0. Moreover, for ω ∈ C∗, E ∈ VN (ε; Ω) satis�es (AN (ω)E,E′)curl =
iω(J ,E′), for all E′ ∈ VN (ε; Ω), if and only if the pair (E, (i ωµ)−1curlE) satis�es the Maxwell's
equations (1)-(2).

• For all ω ∈ C, AT (ω) : VT (µ; Ω) → VT (µ; Ω) de�ned in (11) is a Fredholm operator of index 0.
Moreover, for ω ∈ C∗, H ∈ VT (µ; Ω) satis�es (AT (ω)H,H ′)curl = (ε−1J , curlH ′), for all H ′ ∈
VT (µ; Ω), if and only if the pair (i (ωε)−1(curlH − J),H) satis�es the Maxwell's equations (1)-(2).

Proof. Let us prove that AN (ω) is a Fredholm operator of index 0. For all ω ∈ C, using Theorem 8.18,
one can prove that AN (ω)−AN (0) is a compact operator of VN (ε; Ω). So, it is su�cient to show that
AN (0) is Fredholm of index 0. Again, we are going to build a right parametrix Tε : VN (ε; Ω)→ VN (ε; Ω)
for the operator AN (0). Consider u ∈ VN (ε; Ω).
i) First, de�ne ϕ the unique element of H1

#(Ω) such that∫
Ω

µ∇ϕ · ∇ϕ′ =

∫
Ω

µ curlu · ∇ϕ′, ∀ϕ′ ∈ H1
#(Ω).

The function ϕ is well-de�ned because we have assumed (Hµ) to hold true.
ii) De�ning βj := (µ curlw, ∇̃qj) for j = 1 . . . J , notice that we have (µ(curlw −

∑J
j=1 βjQj −

∇ϕ), ∇̃ϕ′) = 0 for all ϕ′ ∈ Θ(Ω̇). Therefore, according to theorem 3.17 in [1], there exists a unique
potential ψ ∈ V̂N (1; Ω) such that curlψ = µ(curlw −

∑J
j=1 βjQj −∇ϕ).

iii) Consider ζ the unique element of H1
0(Ω) such that∫

Ω

ε∇ζ · ∇ζ ′ =

∫
Ω

εψ · ∇ζ ′, ∀ζ ′ ∈ H1
0(Ω).

The function ζ is well-de�ned because we have assumed (Hε) to hold true.
iv) Finally, let us de�ne the operator Tε : VN (ε; Ω) → VN (ε; Ω) such that Tεu = ψ − ∇ζ and the
operator Kε : VN (ε; Ω)→ VN (ε; Ω) such that

(Kεu,v)curl = (u,v) +

J∑
j=1

(µ curlu, ∇̃qj)(Qj , curl v), ∀v ∈ VN (ε; Ω).

According to Theorem 8.18, we know that the embedding of VN (ε; Ω) in L2(Ω) is compact. Conse-
quently, Kε is the sum of a compact operator and a �nite rank operator. Therefore, it is a compact
operator. Now, for all v ∈ VN (ε; Ω), we �nd

(AN (0)(Tεu),v)curl = (µ−1curl (Tεu), curl v)

= (curlu, curl v) + (u,v)− (Kεu,v)curl .

Thus, we have AT (0) ◦ Tε +Kε = Id. We deduce that Tε is indeed a right parametrix for AN (0). This
proves that the selfadjoint operator AN (0) is Fredholm of index 0. Similarly, we prove that AT (ω) :
VT (µ; Ω) → VT (µ; Ω) is a Fredholm operator of index 0 for all ω ∈ C. Finally, the equivalence with
Maxwell's equations (1)-(2) comes from Theorems 3.3 and 3.7.
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Remark 8.21 Again, to apply the analytic Fredholm theorem to prove that Maxwell's equations (1)-(2)
are uniquely solvable for all ω ∈ C∗\S where S is a discrete set, it remains to show that there exists
ω ∈ C such that AN (ω) or AT (ω) is invertible. This results does not seem simple to obtain. However,
according to Remark 8.17, we observe that the elements of ker AN (ω) (resp. ker AT (ω)) always belong

to V̂N (ε; Ω) (resp. V̂T (µ; Ω)). On the other hand, the map u 7→ ‖curlu‖ de�nes a norm on V̂N (ε; Ω)

and on V̂T (µ; Ω). But one ingredient is still missing to achieve the injectivity of AN (ω) or AT (ω).
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