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A Packed Memory Array to

Keep Moving Particles Sorted

Marie Durand1,2,3, Bruno Raffin1,2,3 and François Faure3,4,1

1INRIA, 2LIG, 3University of Grenoble, 4LJK-CNRS,

Abstract

Neighbor identification is the most computationally intensive step in particle based simulations. To
contain its cost, a common approach consists in using a regular grid to sort particles according to the
cell they belong to. Then, neighbor search only needs to test the particles contained in a constant number
of cells. During the simulation, a usually small amount of particles are moving between consecutive
steps. Taking into account this temporal coherency to save on the maintenance cost of the acceleration
data structure is difficult as it usually triggers costly dynamics memory allocations or data moves. In
this paper we propose to rely on a Packed Memory Array (PMA) to efficiently keep particles sorted
according to their cell index. The PMA maintains gaps in the particle array that enable to keep particle
sorted with O(log2(n)) amortized data moves. We further improve the original PMA data structure to
support efficient batch data moves. Experiments show that the PMA can outperform a compact sorted
array for up to 50% element moves.

1. Introduction

Particle systems are commonly used for simulating flu-
ids, crowds, molecular dynamics, granular materials as
well as impacts on concrete structures. These meth-
ods rely on particles whose state is updated according
to interactions with neighbor particles (we consider
here only short range interactions). Neighbor search
is a computationally intensive step. Acceleration data
structures are classically used to reduce its cost. A
common approach consists in partitioning the simu-
lated space with a regular grid, identifying the parti-
cles each cell contains. Cell size is defined according to
the interaction range to limit neighbor search to the
particles contained in the local and neighbor cells.

Given the large number of particles a simulation
may require, performance can be significantly im-
pacted by the memory layout. Having particles be-
longing to the same cell close by in memory enables to
preserve a low cache miss ratio. But maintaining this
locality as particles move may require costly mem-
ory copies or dynamic allocations. The challenge is
thus to find a data structure that offers a good trade-
off between particle locality and maintenance cost. To
reach this goal it is important to take into consider-

ation the strong temporal locality that usually show
particle simulations: only a small ratio of particles ac-
tually change of cell between consecutive iterations.

In this paper we propose to store particles in a
Packed Memory Array (PMA). Particles are stored
sorted (according to their cell index) and evenly dis-
tributed in an array larger than the actual number of
particles. To further improve spatial coherency, cells
are indexed following a Z-curve pattern. An amor-
tized scheme enables to maintain the PMA in a co-
herent state at a low cost. Inserting a new particle
while maintaining the PMA state has a O(log2(n))
amortized cost. Range query or PMA scanning leads
to a controlled cache miss overhead proportional to the
PMA density. To optimize performance we adapt the
PMA to move particles by batches, further reducing
the cost of the PMA maintenance. Experiments show
that the PMA can outperform a compact sorted array
up to 50% elements moving amongst 10M ones. Perfor-
mance is improved by a factor of 9 for 1% moves and
by 50% for 50% moves. Experiments with a Smoothed
Particle Hydrodynamics (SPH) simulation confirm the
interest of the PMA data structure for keeping moving
particles sorted.
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The paper is organized in 6 sections. After review-
ing related work (Sec. 2), we remind some basics about
particle simulation and give an overview the PMA in-
tegration (Sec. 3). The PMA data structure is detailed
(Sec. 4) with experimental results on random integers.
An SPH simulation is then used to probe the PMA
for particle simulation (Sec. 5). The conclusion sum-
marizes our contribution and discusses future research
directions (Sec. 6).

2. Motivation and Related Work

The naive approach for computing particle neighbors
tests each particle pair, leading to O(N2) tests. The
Verlet list [Fom11] improves this approach by using a
neighborhood distance larger than the actual cut-off
distance required by the simulation. Thus, the Ver-
let list, storing the neighbor list of each particle, does
not need to be updated at every time step, amortizing
its maintenance cost. Using a uniform grid to parti-
tion the simulation space, particles are distributed in
each cell. Filling the grid is O(N). Finding a parti-
cle’s neighbors is O(1) assuming that each cell can
only contain a constant maximum number k of par-
ticles [Fom11]. To avoid costly memory allocations,
usually an array of size k is allocated for each cell,
making it a O(k ∗m) size data structure, m being the
number of cells. All cells, even empty ones, are stored,
impairing memory consumption for very large simula-
tion domains [IABT11].

Spatial Hashing proposes to improve memory con-
sumption [THM∗03]. Particles are distributed in a
hash map according to their cell index. Filling the hash
map is thus O(N) and finding a particle’s neighbors
is O(1). The authors note that having 2 ∗N entries in
the hash function enables to have a low collision rate.
To avoid numerous dynamics memory allocations, the
non empty cells are stored in a compact array with
room for storing k particles per cell [IABT11].

Index sorting consists in sorting the particles in an
array according to their cell index [MCG03]. The con-
struction cost is thus O(N). Memory usage is limited
to the actual number of particles. If all cells store a
pointer, set to null for empty cells or pointing to the
cell first particle, finding a particle’s neighbors is O(1),
but simulating large domains can be memory consum-
ing. Memory can be traded for computations by stor-
ing only non empty cells, and performing a O(log(N))
binary search to find the neighbor cells of a given par-
ticle.

Given the growing memory complexity of modern
processors, being CPUs or GPUs, data layout in mem-
ory can significantly affect the cache hit or coalesced
access ratios [TDR10]. Sorting particles to keep spatial

locality, i.e. keeping the spatial locality when mapping
the data in memory, can significantly decrease the re-
quired number of memory transfers. The Z-curve, also
called Morton order, or Hilbert order are two clas-
sical memory layout patterns that show good local-
ity properties. The Hilbert order often outperforms
the Z-curve in term of locality preservation, but at
the price of a more complex index computation. On
the contrary, the Z-index can be efficiently computed
by bitwise operations on the 3D coordinates [But71].
For particles simulations, the Z-curve is often used to
improve the probability that data related to neigh-
bor cells are stored close by and then are likely to be
accessed consecutively. Thus, index sorting classically
rely on a Z-curve. Ihmsen et al. [IABT11] improve
spatial hashing, called compact hashing, by storing
the actual particle data in a Z-order sorted array. In
both cases, sorting is usually not performed at each
iteration to amortize the sorting cost. Experiments
in [IABT11] show performance improves significantly
when relying on a Z-curve.

Particle simulations usually show a high tempo-
ral locality, i.e. only a small ratio of particles move
between cells in consecutive time steps. Ihmsen et
al. [IABT11] mention a 2% move ratio, while we ex-
perienced up to 25% moves with the fluid simula-
tor [Hoe08]. One idea is to take advantage of this lo-
cality to build specific data structures that support an
efficient incremental update, while still ensuring a fast
neighborhood search and a low cache miss ratio.

The basic approach often reported is to rely on clas-
sical data structures and simply sort the particles peri-
odically. For instance in [IABT11], particles are sorted
once every 100 iterations, leading to a good trade-off
between sorting cost and cache efficiency drop as the
simulation shows only a 2% move ratio. As our exper-
iments will show (Fig 6 ), sorting at every time step
can be beneficial for higher move ratios.

[AE97] presents a general approach to make range
query data structures dynamics. The idea is to han-
dle several structures of varying 2i sizes. When a new
element needs to be inserted, all elements gathered in
the smallest full j data structures are gathered in a
2(j+1) size one. The cost of data structure building is
thus amortized: the more elements the less often the
data structure is rebuilt. This scheme is adapted to
insertions but does not support efficient deletions. Fol-
lowing the same principle and inserting gaps amongst
the elements of a sorted array, Bender introduced the
library sort [BFCM06]. To support efficient element
removals as well as insertions in a sorted array, the
data structure was further modified leading to Packed
Memory Arrays (PMA) [BDFC05,BH07]. A controlled
gap density is maintained into an array of sorted el-
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ements enabling to insert or delete an element in
O(log2(N)) amortized element moves. These gaps ob-
viously require extra storage space and generate addi-
tional memory transfers during scans. The PMA thus
enables to control the trade-off between maintenance
cost and memory dispersion. PMAs have been devel-
oped for large databases in conjonction with Cache
Oblivious B-Trees [BDFC05], and, to our knowledge,
never used for numerical simulations. We propose in
this paper to keep particles Z-sorted using a PMA.
In simulation, contrary with databases, the updates
are applied in large batches at the end of each time
step. Thus we extended the PMA to support batch
insertions, deletions and moves.

3. Overview

Before detailing the PMA and its application to par-
ticle sorting, we review some of the basics of particle
simulations and give an overview of the PMA use with
particles. Particle simulations classically perform first
a neighbor search, based on a cut-off distance. The
entire list of particles is next scanned several times to
update particle states. For most particle-based simula-
tions, (Alg. 1), densities and next forces are updated
based on particle neighborhoods, before the integra-
tion and position update that only require to access
particle local data. A naive neighborhood search is
thus O(N2) while all other scan steps are O(N).

Algorithm 1 Particle simulation update

State neighborhood search
for all particles do

compute density, pressure from neighborhood
for all particles do

compute force from interaction with neighbors
for all particles do

update positions

As mentioned in previous section, a classical ap-
proach to accelerate neighborhood search is to divide
the simulation space into a uniform 3D grid of cells.
Each particle is assigned to the cell its centroid belongs
to. Finding the neighbor particles only requires to test
the particles belonging to the current and neighbor
cells.

Particles belonging to the same cell can simply be
linked. Though it avoids data movements, it can se-
riously affect cache performance. The particles of a
cell are accessed together. If the particles of a cell
are spread in memory, accessing them may potentially
lead to load numerous cache lines with a low relevant
content (one particle per cache line in the worst case).
To avoid this issue, particles can be sorted according

Figure 1: Particles (in brown) placed into a collision
detection grid in 2D. Cells are Z-curve ordered (blue
segmented line).

to their cell index (Fig 1). To further improve mem-
ory locality, cells can be indexed following a Z-curve.
Thus the particles of spatially close cells will tend to
be stored nearby in memory. Though cache efficiency
is increased, sorting particles introduces an extra cost.
With an array of contiguous particles, moving one of
them can lead to shift every other element, whatever
the method we choose (re-sorting the whole array with
standard sorting algorithms, or moving particles using
an insertion sort like pattern).

Inside an array, the only way to reduce the amount
of memory moves is to anticipate insertions keeping
extra (empty) spaces. With enough gaps, there is al-
ways an empty space close to the target insertion lo-
cation that can be used to make room for the ele-
ment to insert with a low number of memory moves.
The space density should nevertheless be limited to
avoid increasing the memory consumption and mem-
ory transfers. Indeed, these gaps will obviously make
the overall array bigger and decrease the ratio of the
relevant data a loaded cache line can contain.

The PMA structure implements this apparently
simple idea with an amortized scheme for keeping a
bounded gap density as elements are removed or in-
serted. As already mentioned we propose to use the
PMA to store particles and keep them sorted accord-
ing to their cell index.

4. PMA

We present the PMA algorithm as introduced in
[BDFC05,BH07]. A PMA consists in an array of size
N . Gaps are empty array elements, opposed to filled
array elements, called elements, that actually con-
tain the sorted data. The PMA is evenly divided into
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Figure 2: PMA representation with S = 4 segments
of size 5. Every level of the segments tree owns its
minimum and maximum element densities.

Θ(N/logN) pieces called segments (Fig. 2). The den-
sity of segments, i.e. the ratio of elements against gaps,
is maintained between the density bounds ρ0 and τ0.
The density of a pair of consecutive segments, level
l = 1, is maintained between ρ1 and τ1. This scheme
repeats by doubling the number of segments consid-
ered up to include the full array bounded by densities
ρh and τh. Densities are linearly staged between the
different levels. At level l, the density of a window of
2l segments is bounded by:

τl = τh + (τ0 − τh)
(h− l)

h
(1)

ρl = ρh + (ρ0 − ρh)
(h− l)

h
(2)

The density gap between two consecutive levels l and
l + 1 is O(1/ logN) to ensure the complexity of the
algorithm [BH07].

Extra constraints on maximum and minimum den-
sities ensure that:

ρ0 < ... < ρh < τh < ... < τ0 (3)

Thus, if a window of size l respects its density
bounds, then all sub-windows also respect their den-
sity bounds.

When inserting a new element inside a PMA
(Alg. 2), the destination segment is first found. Before
proceeding to the insertion, we check that the target
segment density, counting the element to insert, re-
spects the segment upper density bound τ0. If not,
we look for the smallest windows at level l enclosing
the segment that respects its upper density bound τl.
We next proceed to an operation called rebalance that
shares out the gaps among the different segments in
that window and insert the new element. A rebalance
consists in two steps. First elements are packed at one
end of the window. Then they are moved into their
destination segment, by one scan of the concerned seg-
ments. The obtained PMA respects all density bounds.

If no window can be found, i.e. τh is not respected, the
PMA size is doubled and rebalanced. Element deletion
is similar except that the ρl densities must be consid-
ered. If the whole PMA becomes too empty, i.e. ρh
is not respected, the PMA size is divided by two. To
make sure that when halving or doubling the array
size, the new PMA is within the density bounds, the
extra constraint on densities must be respected:

2ρh < τh (4)

Algorithm 2 Pseudo algorithm for one element in-
sertion inside a PMA.

binary search the segment s the new element should
go into
if τ0 exceeded then

search for the l window that fits τl
if τh not respected then

double PMA, l← h
rebalance elements

else

rebalance window of 2l segments
end if

end if

search and insert element in the 2l segments window

This scheme ensures that any insertion or deletion
is performed in O(log2 N) amortized element moves
and that for special patterns, like random insertions,
the cost is reduced to O(logN) [BDFC05,BH07].

The PMA is a cache-oblivious data structure: the
PMA is built without taking into account a given
cache line or total cache size. The performance is any-
way guaranteed, with O(1 + S/B) memory transfers
when scanning S consecutive elements on a machine
with a B size cache line. Cache-oblivious data struc-
tures have the advantage, over cache-aware ones, to
be more flexible. For instance, they usually can be ef-
ficiently shared between a GPU and a CPU.

4.1. Batch Moves

We now present how we extended the PMA to im-
prove the performance of moving batches of elements.
An element is moving when its key, i.e. cell index,
is changed. A move can be implemented by first re-
moving and next inserting this element. However this
may lead to rebalance twice the same window inside
the PMA. When several elements are moving at the
same time, the chances that some array section get
rebalanced several times increases. To save memory
movements we propose to apply moves batchwise.

First, moving elements are removed from the PMA
without rebalance. A gap is simply set where the el-
ement to remove is. Moving elements are copied in

c© The Eurographics Association 2012.



M. Durand, B. Raffin & F. Faure / PMA for Moving Particles

a temporary array, called moving array. All moving
elements are then processed together.

The moving array is sorted using a classic sort algo-
rithm like qsort. We then consider the first element of
the PMA middle segment. The position of this pivot
is searched (binary search) in the moving array. The
moving elements on the left of the pivot need to be
inserted in the first half of the PMA, the others in
the right part. We then test the density against its
allowed bounds, counting the elements to insert, for
each of these 2 windows delimited by the pivot.

If the window density does not respect the bounds,
its rebalance is triggered. The elements to insert as
well as the element in the PMA are already sorted.
The rebalance can then be implemented in a single
scan on the window, using an extra temporary array
to store elements that need to be shifted forward to
leave room either for an element to insert or to a gap.

If the density bounds are respected, the process is
recursively applied down to individual segments as
long as no rebalance is triggered in a larger window.
As long as elements need to be inserted, we need to
check the window density against its upper and lower
bound. Since moving element were previously removed
from the PMA without rebalance, some window den-
sities may be below the lower threshold, even if some
elements need to be inserted. Once no more element
need to be inserted in a window, only the lower density
bound needs to be probed.

This approach equally applies to raw suppressions
or new insertions. New elements to insert are sorted
with the moving elements in the moving array. The
recursive process starts one level higher, testing the
density of the full PMA to check if halving or doubling
the PMA size is necessary.

In case of random uniform moves, rebalance will
take place on the smallest windows, i.e. at segment
level, with a high probability. The move cost is dom-
inated by the sorting of the moving array and the re-
balance of each segment. For a high move ratio, it is
probably more efficient to simply sort all element in a
dense array and next spread them in a PMA, thus sav-
ing the overhead associated with the recursive descent
along the PMA windows.

4.2. Experimental Results

4.2.1. Density Bounds and Segment Size

The size of the PMA, N , is the smallest power of 2
greater than or equal to K/τh, where K is the number
of valid elements to be sorted in PMA. The number of
segments, S, is the smallest power of two larger than
N/ log(N) as suggested in [BFCM06]. Thus the size

K qsort isort PMA

100 000 13.4±0.06 1247±5 3.86±0.02
1 000 000 169±0.6 xx 38.9±0.06

10 000 000 2088±8 xx 372.2±0.5

Table 1: Average update times (ms) and standard de-
viation for quicksort (qsort), insertion sort (isort) and
PMA with 5% of moves applied to K sorted elements.

of a segment is given by N/S. The minima densities
for the segments (ρ0) and the whole array (ρh) are
chosen by symmetry around 0.5 from the maxima ones
(τ0 and τh resp.). The densities ρh and τh must also
comply with the constraint 2ρh < τh (Eq. 4).

No explicit parameter space exploration was per-
formed but we tested various maxima densities τ0 and
τh for various K values. We observed in particular
that given a number K of elements, τh should be cho-
sen such as the final density is between 50% and 95%.
When the final density is lower than 50%, there are
too many gaps with respect to the number of elements,
elements are then spread out accross a larger mem-
ory space, creating more memory transfers. Moreover,
the size of the PMA being bigger (actually, the dou-
ble) than the optimal one, it leads to more segments,
thus extra PMA maintenance. On the other hand, if
the final density is higher than 95%, the segments are
almost all full. The insertion is more likely to cause
rebalance at a high level.

In the experiences presented in next sections, we
take τ0 = 0.92, τh = 0.7, ρh = 0.3, ρ0 = 0.08 as these
values gave good results for different PMA sizes.

4.2.2. PMA Evaluation

We compare the performance of the PMA against a
dense array sorted using a quicksort and an insertion
sort for different percentages of moves. All data struc-
tures are initialized with random sorted integers (uni-
form distribution). A defined percentage of elements
are randomly elected and assigned new (random) keys.
The dense array is sorted again with a quicksort or in-
sertion sort. A batch move is executed on the PMA.
We measure the time taken to update all these data
structures.

The CPU used is a 4-core Intel Xeon E5520
@2.27GHz (only one core is used for running a sim-
ulation) with 18Go of memory. The compiler used is
g++-4.6.2. We average execution times over 32 passes.

We use the highly optimized implementation of the
quicksort algorithm provided by the libc, qsort, and
a home made insertion sort code, isort. Table 1 gives
average execution times for 5% moves on various num-
ber of elements. The PMA outperforms the quicksort
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Figure 3: Speed-up of PMA versus qsort against % of
moves, for 100 000, 1 000 000 and 10 000 000 elements.
The speed-up is the ratio of the sort execution time
using qsort to the sort execution time using the PMA.

and the insertion sort. The insertion sort, often rec-
ognized as the most efficient sort for almost sorted
arrays, is not competitive even with the quick sort.
The insertion is efficient for almost sorted arrays for
K small. But for large K values as the one tested here,
the cost of data movements becomes prohibitive. Thus
experiments were not performed for insertion sort with
K ≥ 1 000 000.

Figure 3 presents the results for a move ra-
tio ranging from 1% to 50% on 100 000, 1 000 000
and 10 000 000 integers. The results show that with
10 000 000 elements, the PMA is about 9 times faster
than qsort for 1% moves. With 50% moves, the speed-
up is 2. As expected, the PMA performance decreases
along with the percentage of moves. Also notice that
the PMA efficiency increases along with the number
of elements.

4.2.3. PMA Overhead

If gaps enable to efficiently maintain moving elements
sorted, they also introduce an overhead during range
queries. Compared to a dense array, the valid elements
are spread on a larger memory region, causing extra
memory transfers, and a check is required at every
location to probe the element validity (validity check).
We evaluated this overhead through a scan operation
on all the elements of a PMA in the following way:
we build a PMA with a set of random elements and
we benchmark the time to compute the sum of all the
elements. We compare to the time needed for summing
the same elements stored in sorted dense array.

K array PMA ratio

100 000 0.21 0.78 3.7
1 000 000 2.2 8.3 3.7

10 000 000 22.3 68.8 3.1

Table 2: Execution time (ms) and performance ra-
tio (ratio) for summing K elements stored in a dense
array (array) and a PMA.

A direct implementation (one loop iterating on the
PMA and a validity check for each element) leads to
a poor performance. Beyond the expected overhead,
we suspect that the validity check impairs some com-
piler optimizations and cause stalling in the processor
pipe-line. After experimenting several approaches, the
most efficient one consists in storing the element va-
lidity in a bitmask array. When reading one element
of this bitmask array, we get 64 bits encoding the va-
lidity of 64 PMA elements. The scan is then written
using 2 loops, an outer loop iterating on the bitmask
elements, i.e. considering 64 PMA elements per itera-
tion, and an inner loop probing the validity of these
64 elements. For K = 1000 000 elements (Table 2),
stored in a PMA array of size N = 2097 152 = 2.09K,
the scan is 3.7 times slower than the scan on a dense
array. For K = 10 000 000 elements, the size of the
PMA is N = 16 777 216 = 1.7K, explaining the im-
proved performance ratio (3.1 for a fill ratio of 59%
instead of 3.7 for 48%).

The sum operation performed per element is
lightweight. More time consuming operations will
make the overhead less noticeable. If many range
queries operations need to be performed, like for a
fluid simulation, other approaches can be considered
to amortize this overhead. As we discuss in Section 5.2,
we build an indirection array pointing to the PMA
valid elements to save on the validity check.

5. Particle Simulation with the PMA

Next step is to use the PMA for a particle simula-
tion. We tested the PMA in Fluids [Hoe08], an Open
Source fluid simulator. We detail implementation and
performance issues in the following.

The native Fluids implementation relies on a double
array, one storing all cells, even empty ones, and a
second one storing particles. By default particles are
not sorted. Fluids fills the cells through a scan, each
cell pointing to its first particle, while the remaining
particles of the cell are chain linked, this operation is
called particles insertion in grid.

We replaced the particle data array by a PMA that
takes care of maintaining the particles sorted. To avoid
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Figure 4: Collision detection grid in 2D with particles (in brown) sorted according to their cell index (blue Z-
curve) in two dense arrays (top right) or using two PMA data structures,one for storing each non empty cell and
a pointer toward the cell first particle, and one for the particles (bottom right).

size, #nb tested pairs valid pairs ratio CD

2h, 8 36878962 2691708 13.7 298
h, 27 16472058 2691708 6.1 232
h, 14 8236029 2691708 3.1 145

Table 3: Impact of the cell size (size), and of the
number of neighbor cells tested (#nb) on the number
of tested pairs and the collision detection (CD) time
(ms) with native Fluids implementation.

the creation of a big array for all cells of the simulation
space, we can also use a PMA to store non empty cells
(Fig. 4). The batch insertions and deletes described in
section 4.1 are used to keep up to date the non empty
cells. The sizes of the arrays are thus only dependent
on the particle number, and not on the simulation do-
main size.

We implemented a Z-curve cell indexing used to sort
the cells and particles. A parameter enables to control
the frequency of particle sorting for the native Fluids
code, while the PMA maintains the particles sorted at
each iteration.

As mentioned by [IABT11], sorting particle indices
first and then updating accordingly the actual parti-
cle data can improve performance. This optimization
could be implemented for both cases, but the exper-
iments presented here rely on direct sort of particle
data.

Fluids originally uses a cell size of 2 times the influ-
ence radius h. This choice allows to test only 8 neigh-
bor cells per particle, provided that we take into ac-
count the position of the particle inside the cell.

We implemented a more classical grid, with a cell
size of h that requires to test for proximity the par-
ticles of the 27 neighbor cells. We can further reduce
the number of particle pairs to test by taking into ac-
count the symmetry of interactions. Indeed, we can
test only 14 neighbor cells to find only once each pair.
In that case, we need to update the neighbors of both
interacting particles. Table 3 presents experimental re-
sults comparing the different methods for a scene of
130 000 particles, using the standard contiguous arrays
CD from Fluids. The collision detection execution time
can be divided by 2 when testing only the particles of
14 cells compared to the initial Fluid implementation
testing the content of 8 larger cells.

5.1. Performance Results

Figure 5 presents the execution time of the sort op-
eration during a corner breaking dam (CBD) sim-
ulation with 2 900 000 particles and 1 830 180 cells
(354x94x55). The PMA performance is compared to
the fluid simulation code in the situation where par-
ticles are sorted at every time step, called reference
implementation. All cells (empty or not) are stored in
a dense array.

The reference sort implementation is organized in
four steps. A first pass builds an array of pairs con-
sisting of every particle position in memory and their
key according to the Z-curve. Qsort is then applied to
that array and not on the whole data array. Then a
temporary data array is used to copy the particles to
their target position in memory. Finally, we copy the
temporary array to the main particle data array. This
saves time because the sort itself is, in this case, ap-
plied to smaller element sizes. In spite of this optimiza-
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Figure 5: Sort execution time (s) and move ratio (%)
per iteration during a CBD simulation of 2 900 000
particles, for Fluids with particles sort at every time
step (Reference) and for the PMA.

step %

sort 4.5
detect neighbors 49.1
compute pressures 6.3
compute forces 36.8
update positions 3.2

Table 4: Relative weights of the different steps of the
simulation. % values are averaged over 4000 time steps
simulating 180 000 particles with Fluids code sorting
particles at every time step.

tion, which benefits only to the reference implementa-
tion, the PMA is three times faster than the reference
implementation for about 10% of particle moves. Per-
formances are similar around 20% of particle moves.

The corner breaking dam simulation starts with
particles falling down till they reach the ground. At
this time, particles move quickly, leading to a high
move ratio. With the stabilization of the system (here
after about 100 frames), the number of moves de-
creases. We globally experienced with the Fluid simu-
lator a high level of particle moves compared to the 2%
discussed in [IABT11]. Particle simulations with such
a low level of particle move will significantly benefit
from using a PMA data structure.

5.2. PMA Overhead Impact on the Whole

Simulation

Table 4 presents the relative execution times of the dif-
ferent steps of a CBD simulation of 180 000 particles.
Here the collision detection execution time is an order
of magnitude higher than the sort execution time. This

is again a noticeable difference with [IABT11], where
the authors even discuss the possibility of recomput-
ing neighbors several time per time step rather than
storing them. Such approach is of course not relevant
with such a high cost for collision detection.

This high collision detection cost versus sorting time
is also not favorable to the PMA. The overheads ab-
sorb all the benefit of the fast particle sorting. The
timing of the different steps reveals that PMA over-
head is almost not noticeable for the pressure and force
computations neither for position updates. The over-
head is small compared to the time consuming opera-
tions executed for every particle. However, we initially
experienced a high overhead during the collision detec-
tion step. To reduce this cost, we build an indirection
array of PMA valid positions before the beginning of
the neighborhood search. The goal is to remove the
validity test that can prevent compiler optimizations
and filling the processor pipe-line, and replace it with
an access to an indirection array pointing to the valid
elements in the PMA.

If particles are sorted in memory, it is easy to in-
sert particles in the different cells in one single scan
because particles of the same cell are contiguous in
memory. Thus we can use the indirection array to store
only the first and the last particle of each non empty
cell. This latter improvement is suitable as well for
Fluids as long as the particles are sorted in memory.
It saves 12% of time for the whole collision detection
(particles insertion in grid and neighbor search) for
Fluids. Combined with the use of the indirection ar-
ray, it saves 35% for the PMA.

Figure 6 presents the total execution time for
simulation with 180 000 particles and 132963 cells
(141x41x23). The PMA performance is compared to
the native fluid simulation when we never sort parti-
cles in memory (no sort), when particles are sorted ev-
ery 100 time steps and when they are sorted every time
step. It is clear that sorting particles improves sig-
nificantly the performance of the native Fluids code,
showing the benefit of maintaining a good memory lo-
cality. On the other hand, for the whole simulation,
sorting every time steps saves 5% of the computa-
tion time against sorting every 100 time steps. This is
another difference we noticed compared to [IABT11]
where they get the best trade-off between cache ef-
ficiency and sort overhead by sorting only every 100
time steps. Finally, using the PMA gives the best per-
formance, saving 4 extra % of the total execution time.

6. Conclusion

In this paper, we proposed to store particles in a
Packed Memory Array. A PMA maintain gaps be-
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Figure 6: Total execution times (s) for a CBD simulation of 180 000 particles with native code when particles are
never sorted in memory after initialization (No Sort), when they are sorted every 100 time step (Sort Every 100),
every time step (Reference), and using the PMA. On the left, we show the execution time for 1 000 time steps. On
the right, we focus on the 580− 720 range to highlight differences between sort politics.

tween particles, reducing significantly the cost of mov-
ing particles. The PMA significantly outperforms a
classical quick sort for a reduced ratio of particle
moves, a common situation for particle simulations
that show a high level of temporal coherency. The
PMA thus appears as a trade-off between a dense ar-
ray storage leading to costly element moves, and linked
arrays requiring either a large, often unused, amount
of memory, or costly dynamics memory allocations.
Experiments with a fluid simulator code show that
the gain for sorting can be significant, even if the over-
all performance benefit is limited due to the reduced
weight of sorting.

The mechanism could benefit as well to other
particle-based simulations such as crowds, molecular
dynamics, granular materials, or boids simulations.
Future work also include evaluating the benefits of
PMAs for other particle based simulations, and de-
veloping parallel PMA implementations for multi-core
CPUs and GPUs.
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