
HAL Id: hal-00763317
https://hal.inria.fr/hal-00763317

Submitted on 10 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Embedding Polychrony into Synchrony
Jens Brandt, Mike Gemünde, Klaus Schneider, Sandeep Kumar Shukla,

Jean-Pierre Talpin

To cite this version:
Jens Brandt, Mike Gemünde, Klaus Schneider, Sandeep Kumar Shukla, Jean-Pierre Talpin. Embed-
ding Polychrony into Synchrony. IEEE Transactions on Software Engineering, Institute of Electrical
and Electronics Engineers, 2013. �hal-00763317�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49838798?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00763317
https://hal.archives-ouvertes.fr

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, JANUARY 2000 1

Embedding Polychrony into Synchrony
Jens Brandt, Mike Gemünde, Klaus Schneider, Sandeep K. Shukla, and Jean-Pierre Talpin

Abstract—This article presents an embedding of poly-
chronous programs into synchronous ones. Due to this em-
bedding, it is not only possible to deepen the understanding of
these different models of computation but more importantly,
it is possible to transfer compilation techniques that were de-
veloped for synchronous programs to polychronous programs.
This transfer is nontrivial because the underlying paradigms
differ more than their names suggest: since synchronous
systems react deterministically to given inputs in discrete
steps, they are typically used to describe reactive systems with
a totally ordered notion of time. In contrast, polychronous
system models entail a partially ordered notion of time, and
are most suited to interface a system with an asynchronous en-
vironment by specifying input/output constraints from which
a deterministic controller may eventually be refined and
synthesized. As particular examples for the mentioned cross-
fertilization, we show how a simulator and a verification
backend for synchronous programs can be made available
to polychronous specifications, which is a first step towards
integrating heterogeneous models of computation.

I. INTRODUCTION

The development of embedded systems is a challenging task:
For the hardware platforms, developers have to cope with
tight resource constraints, heterogeneous and application-
specific hardware architectures, and virtual prototypes, all
of which lead to many problems. On the software side, sev-
eral concurrent tasks are executed on the available hardware
with or without the help of special operating systems, some-
times statically or dynamically scheduled to the available
hardware platforms, and sometimes tightly coupled with
the hardware platforms themselves (implementing memory
barriers etc.). Finally, many non-functional aspects have
to be considered as well such as the energy consumption,
reliability and efficiency of the systems. As many embedded
systems are real-time systems, it is not sufficient to perform
the right computations; in addition, the outputs have to
appear at the right points of time to achieve the desired
functionality.

For these reasons, model-based design flows became
popular where one starts with an abstract model of the
embedded system. Many languages are discussed for such
model-based approaches, but most of them are based on
only a few models of computation. A model of compu-
tation [23], [29], [17] thereby defines when and how an
action of the system is executed, taking into account the
timeliness, the causality and the concurrency of the overall
computations. Classic models of computation are data-flow

J. Brandt, M. Gemünde and K. Schneider are with the Department
of Computer Science, University of Kaiserslautern, Germany. S. Shukla
is with the Department of Electrical and Computer Engineering, Vir-
ginia Tech, Blacksburg, VA, USA. J.-P. Talpin is with INRIA Rennes-
Bretagne-Atlantique, Rennes, France.

process networks [28], where computations can take place
as soon as sufficient input data are available, discrete-event
based systems [12], where each process is sensitive to
the occurrence of a set of given events, and synchronous
systems [2], which are triggered by a timing signal or a
clock. It is not surprising that all models of computation
have their advantages and disadvantages.

Synchronous specifications such as Esterel [5], Quartz
[39] or Lustre [19] are all based on the synchronous ab-
straction of time, which splits execution traces into typically
infinitely many discrete reaction steps: in each reaction step,
the system reads all its inputs, computes values for all of
its outputs and determines its next state. Since all variables
have unique values within one reaction step, it is often said
that computation takes zero time. This abstraction from
physical time to abstract (clocked) time guarantees many
desirable properties for the development of safety-critical
embedded systems: in particular, it enforces deterministic
concurrency, which has many advantages in system design,
e.g. avoiding Heisenbugs (i.e. bugs that disappear when one
tries to simulate/test them), predictability of real-time be-
havior, as well as provably correct-by-construction software
synthesis [42]. Furthermore, the concise formal semantics
of synchronous specifications allows one to formally reason
about program properties [41], compiler correctness [35],
[37], [38] and worst-case execution time [30], [9].

Polychronous specifications, such as Signal [26] or UML
MARTE’s CCSL standard [33], or MRICDF [24] are based
on a more elaborate time model than the synchronous
specifications: executions are not scheduled to a totally
ordered set of instants. Instead, instants of time are con-
sidered as a partially ordered set so that for certain pairs
of instants it is not specified whether the one occurs before
the other one or vice versa. This allows one to directly
express asynchronous computations which possibly need
to synchronize intermittently. For some specifications this
partial order may turn out to be a total order. In such a
case, the instants become totally ordered, and we say that
a global clock has been found.

The lack of a global clock in general, for polychronous
specifications, offers interesting features for the design of
embedded system software. First, it allows one to model
globally asynchronous locally synchronous (GALS) sys-
tems, where components based on different clock domains
are integrated at the system level. Given the advent of multi-
core embedded processors, formal models and automated
synthesis of multi-threaded code from polychronous mod-
els is an attractive option for embedded system design-
ers. Second, polychronous specifications avoid unnecessary
synchronization in the model, thereby offering optimization
opportunities without an expensive data-flow analysis that

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, JANUARY 2000 2

is needed to reconstruct such opportunities from a synchro-
nized program. Although not supported by the current state-
of-the-art tools, polychrony gives developers the possibility
to refine the system in different ways, and compilers can
choose from different schedules for computation, according
to non-functional constraints. The implementation gov-
erned in a large part by non-functional constraints is quite
common in embedded system design. On the other hand,
polychronous specifications are often better suited than
more general models. On one extreme, untimed models lack
the notion of clocks or other forms of time at all, making
it very difficult to recognize and reorganize interrelated
fragments. On the other extreme, explicitly timed models
directly bind clocks to physical time, which does not only
make models unnecessarily concrete but generally poses the
question whether those systems can be implemented on a
given platform with the specified real-time requirements.

However, polychrony challenges its compiler, analysis
and synthesis tools in several ways, and it is not straight-
forward to provide an appropriate tool support. On the one
hand, there are issues common with synchronous specifi-
cations such as causality problems, which result from the
synchronous abstraction of time (where trigger conditions
can be modified by the action they trigger). On the other
hand, there are specific issues which are e.g. handled by
the clock calculus, which statically analyzes the different
clocks of a polychronous specification in order to check its
consistency and to generate code from it.

This article presents an embedding of polychronous spec-
ifications into synchronous programs, which is interesting
for several reasons. First, the embedding is interesting on its
own, since it allows us to better understand the relationship
between synchrony and polychrony. Second, the embedding
gives us access to the methods and tools that already exist
for synchronous specifications, especially for simulation
and verification. In contrast to state-of-the-art analysis of
polychronous specifications, where simulation is done by
execution of generated code and is therefore restricted to
compilable specifications, our approach can also handle
erroneous specifications to trace their erroneous behaviors
back to the errors in the simulation. Standard polychrony
compilers do not accept erroneous specifications for code
generation but code generation is required for simulation.
Also verification, which typically relies on sophisticated
transformations accomplished by the compiler, can be di-
rectly done with our embedding using verification methods
and tools available for synchronous programs.

The rest of this article is organized as follows: In
Section II, we first review the foundations of synchrony and
polychrony before Section III shows the first part of our
contribution, namely the embedding of the polychronous
language Signal in synchronous guarded actions. Section IV
then explains its usage for simulation, while Section V
considers verification. Finally, we conclude the article with
a short summary in Section VI.

II. FOUNDATIONS

A. Abstraction of Time

This section presents the foundations of the two models of
computation which are considered in this article, namely
synchrony and polychrony. Both share the same abstraction
of time, namely the introduction of logical time in terms
of clocks which requires that computation and commu-
nication can be performed in zero time [18], [2]. Under
this assumption, the executions of programs are divided
into a set of instants I. In each of these instants (also
called reactions or macro steps [22]), the system reads
its inputs and computes and writes its outputs. According
to this abstraction, the actions (sometimes called micro
steps) that take place within an instant (sometimes called
macro step) are not explicitly ordered. Instead, micro steps
are assumed to occur simultaneously, i.e. in the same
variable environment. Hence, variables seem to be constant
during the execution of the micro steps and only change
synchronously for macro steps. From the semantic point
of view, which postulates that a reaction is atomic, neither
communication nor computation take time. In reality, all
actions within an instant are executed according to their
data dependencies (which establishes the illusion of zero-
time computations).

Next, we list some formal definitions used in the article.
We start with the definition of an order for the set of all
possible events E , which reflect the execution of micro steps
of a program.

Definition 1 (Event Order). Let � ⊆ E×E be a preorder on
E such that for any two events e1, e2 ∈ E , we say e1 � e2
iff e1 occurs before e2, or if both of them occur together. Let
≈ be the equivalence relation induced by �: thus e1 ≈ e2
iff e1 � e2 ∧ e2 � e1. We also define a precedence relation
≺ ⊆ E×E on events such that e1 ≺ e2 iff e1 � e2∧¬(e1 ≈
e2).

The order gives rise to the macro steps or instants I of an
execution.

Definition 2 (Instants). The set of instants I is the quotient
of E with respect to the equivalence relation ≈, i.e. I =
E�≈, and each instant I ∈ I groups simultaneous events.
The relations � and ≺ can be naturally lifted to I, i.e. I1 ≺
I2 iff for all events in e1 ∈ I1, e2 ∈ I2 it holds that e1 ≺ e2,
and I1 � I2 iff for all events in e1 ∈ I1, e2 ∈ I2 it holds
that e1 � e2.

Thus, instants define a (partial) order of events. The events
can be also grouped in a different way. All actions, which
write to the same variable, describe a signal. Formally:

Definition 3 (Signals and Clocks). A signal x consists of
a totally ordered sequence of events (xt)t∈NAT, i.e. xi ≺
xi+1. For each signal x, let Instants(x) ⊆ I be the possibly
infinite set of instants at which the signal has events. This
set gives rise to the clock x̂ of a signal x, which holds in
instant I ∈ I iff I ∈ Instants(x). The signal x is present
in an instant iff x̂ holds, otherwise the signal x is absent.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, JANUARY 2000 3

Furthermore, two signals x1 and x2 are synchronous to
each other iff Instants(x1) = Instants(x2).

These basic definitions help us to describe the founda-
tions of the considered subclasses. In the following, we
first describe single-clocked synchronous programs in Sec-
tion II-B, before the second model, namely polychronous
specifications will be introduced in Section II-C.

B. Synchrony

The synchronous model of computation [18], [2] assumes
that the executions of programs consist of totally ordered
sequences of instants I = (It)t∈NAT (with Ii ≺ Ii+1).
Due to the analogy to synchronous hardware circuits, one
often assumes a dedicated clock signal that triggers the
computation of a synchronous system (even though the
physical time required for the computations may differ from
step to step). In each of these instants, the system reads its
inputs and computes and writes its outputs. In the single-
clocked case, which we will consider in the following, all
signals have the same clock, i.e. for all signals x1, x2:
Instants(x1) = Instants(x2) = I and thereby x̂1 = x̂2.

The introduction of this logical time scale is not only
a very convenient programming model, it is also the key
to generate deterministic single-threaded code from multi-
threaded synchronous programs. Thus, synchronous pro-
grams can be directly executed on simple micro-controllers
without using complex operating systems. Another ad-
vantage is the straightforward translation of synchronous
programs to hardware circuits [3], [34].

In this article, we make use of synchronous guarded
actions [11]. This allows us to use the Averest system1 for
simulation and verification purposes. Synchronous guarded
actions are designed in the spirit of classical guarded
commands [13], [14], [25], which are a well-established
formalism for the description of concurrent systems. How-
ever, note that in contrast to many other applications
where guarded commands are used, the guarded actions
considered here follow the synchronous abstraction of time
as described above. The system is represented by a set of
synchronous guarded actions of the form 〈γ ⇒ A〉 defined
over a set of variables V . The Boolean condition γ is called
the guard and A is called the action of the guarded action.
In this article, guarded actions are either
• γ ⇒ x = τ (immediate assignment),
• γ ⇒ next(x) = τ (delayed assignment),
• γ ⇒ assume(σ) (assumption), or
• γ ⇒ assert(σ) (assertion).

Both kinds of assignments evaluate the right-hand side
expression τ in the current macro step. Immediate assign-
ments x = τ write the obtained value of τ immediately to
the variable x, whereas delayed ones next(x) = τ write
the value in the following step. If there is no action which
determines the current value of a variable x (i.e. immediate
ones of the current step and delayed ones of the previous
step), the variable x will be determined by the default

1http://www.averest.org

module Example(
nat ?i1 , ?i2 ,
nat !o1 , event nat !o2)

{
nat x = 0;

i1 > 5 => o1 = i1 + x + 1;
i1 < 5 => o1 = i1 + o2;
o1 > 10 => next(x) = i1;
o1 < 10 => next(x) = i2;
i1 > 5 => o2 = i2 + o1;
i1 < 5 => o2 = i2 + x + 1;

true => assume(i1 >0);
true => assume(i2 >0);

}

Fig. 1. Synchronous Guarded Actions

1 2 3 4 5 . . .

i1 6 5 1 5 9 . . .
i2 2 4 6 8 10 . . .

x 0 2 4 1 5 . . .

o1 7 7 12 12 15 . . .
o2 9 0 11 0 25 . . .

Fig. 2. Trace of Example in Figure 1

reaction. The default reaction generally depends on the
storage type of a variable: event variables (indicated by the
modifier event) are reset to false/zero, while (ordinary)
memorized variables keep the value from the previous step
(and get the default value in the initial step).

Immediate assignments define a causal dependency
within the instant from all the read variables (i.e. variables
occuring in the guard γ and on the right-hand side τ) to
the written variable x. The former ones must be known
before the value of x becomes known. In contrast, delayed
assignments do not have causal dependencies within the
instant since x is written in a different instant. Assumptions
assume(σ) provide a condition σ the developer guaran-
tees, i.e. they restrict the set of states the user cares about.
In contrast, an assertion assert(σ) defines a verification
goal σ, which has to be proved. Both of them do not impose
any causal dependencies since they do not change values.

An example for a synchronous system which is described
by guarded actions is given in Figure 1. The system has the
inputs i1, i2, the outputs o1, o2, and uses the local variable
x. The guarded actions are synchronously evaluated based
on the given inputs. An example execution trace is given
in Figure 2. The evaluation order of the guarded actions is
based on the data dependencies.

In the first instant, the input i1 has the value 6 and
i2 has value 2. The local variable x is determined by
its default value 0, and output o1 is determined by the
first guarded action, while output o2 is determined by its
first guarded action which requires the value of o1. In the
second instant, the outputs o1 and o2 are determined by
their default values, which is the previous value in case of

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, JANUARY 2000 4

o1, and the default value 0 in case of o2. In the third instant,
input i1 is 1, and therefore the second guarded actions of
o1 and o2 are enabled. Thus, one first determines the value
of o2 and then the value of o1 using the current value of
o1.

C. Polychrony

In contrast to synchronous systems, polychronous specifi-
cations [16], [26] are based on a partially ordered model
of time. Partially ordered time allows one to express asyn-
chronous computations which possibly need to synchronize
intermittently. As the name suggests, polychrony makes use
of several clocks, which means that signals do not need to
be present at all instants. Since the used clocks may not
imply each other, polychronous models are not based on a
linear model of time, so that the reactions of a polychronous
system are only partially ordered. Two instants can be only
compared on the time scale if both contain events of a
shared signal x.

Another aspect of polychronous specifications is that
they are relational, rather than functional. A polychronous
behavior is not described in an operational way, but rather,
it is constrained by relational clauses. Obviously, due to the
relational approach, polychronous specifications are gener-
ally nondeterministic, when constraints do not sufficiently
specify the suited functional behavior. Even in the presence
of the same input values, various temporal alignments,
which fulfill the constraints, may lead to different output
values. In contrast, synchronous modules deterministically
react to any possible input configuration. The primary
concern of a polychronous system are the constraints to
interface the system with possibly asynchronous inputs.
This problem is solved by, first, providing the specification
of (possibly non-deterministic) input/output constraints and,
second, determining a solution by the automatic synthesis
of a controller enforcing the specified input/output timing
constraints. Hence, polychronous models may be seen as
specifications, which describe a set of acceptable imple-
mentations. There are three different types of clauses, which
restrict the overall behavior:

• equations define the values of signals in terms of each
other,

• clock constraints define the presence and absence of
signals in an instant, i.e. how signals are temporally
aligned (according to Definition 3, we denote the clock
of x by x̂, which holds if and only if x is present (i.e.
x has an event) in a given instant.), and

• causal dependencies describe the order in which the
values of the signals are determined within an instant
(x

φ−→ y means that there is a dependency from x to
y in all instants where φ holds.)

Each signal implicitly defines the dependency x̂
x̂−→ x,

i.e. the status (presence or absence) of a signal x must
be known before we can determine its value. In the same
way, operators and equations also impose clock constraints
and causal dependencies.

expression causal dependencies

x (signal) x̂
x̂−→ x

y := f(x1, . . . xn) x1
ŷ−→ y, . . . , xn

ŷ−→ y

y := x $ init c

y := x1 when x2 x1
ŷ−→ y

y := x1 default x2 x1
x̂1−→ y, x2

x̂2∧¬x̂1−−−−−→ y

Fig. 3. Causal Dependencies of Signal Statements

In the following, we use Signal programs as poly-
chronous specifications, which generally consist of a com-
position of several nodes. Each node has an input interface
consisting of input signals, an output interface consisting
of output signals and several possible internal signals. Its
body is given by the composition of other nodes and/or a
set of basic equations, which can be built from one of the
following four primitive operators:

Function. A general function 〈y := f(x1, . . . , xn)〉
can have an arbitrary number of inputs x1, . . . , xn and an
arbitrary number of outputs y = (y1, . . . , ym). The output
values are determined by applying the given function to
the input values. This node requires that all inputs have
the same clock, and it produces the outputs also at the
same instant, i.e. x̂1 = . . . = x̂n = ŷ1 = . . . = ŷm.
Obviously, there are causal dependencies from the inputs
to the output of the node (each time there are values),
i.e. x1

ŷj−→ yj , . . . , xn
ŷk−→ yk.

Delay. The delay operator 〈y := x $ init c〉 has
exactly one input x and one output y. Its behavior consists
of two micro steps: Each time a new incoming value arrives,
it outputs the previously stored value and stores the new
value. For the initial value, the buffer simply returns the
given value c. By definition, the input and the output have
the same clock, i.e. x̂ = ŷ. Since the output never depends
on the input of the same instant, this node does not impose
any causal dependencies.

When. The downsampling operator 〈y := x1 when x2〉
has two inputs, x1 of arbitrary type and x2 of Boolean type,
and one output y. Each time a new x1 arrives, it checks
whether there is an input at x2. If there is one and if it is
true, a new output event with the value of x1 is emitted for
y. In all other cases, i.e. if x1 or x2 is absent or x2 has the
value false, no event will be produced. Thus, we obtain the
following clock constraint ŷ = x̂1∧ x̂2∧x2. As the input is
immediately forwarded, there is a causal dependency from
x1 to y: x1

ŷ−→ y. Note that there is no dependency from
the second input x2 to the value of the output y since it
only influences its status.

Default. The merge operator 〈y := x1 default x2〉
has two inputs x1 and x2 and a single output y. Each time
an input arrives at x1, it will be forwarded to y. If there
are events present at both inputs in a particular instant, the
value of x1 will be forwarded, and the value of x2 will
be discarded. If x1 is absent, and there is only a value for

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, JANUARY 2000 5

process Counter =
(? integer n;
! integer o;)

(| c := o $ init 0
| o := n default (c−1)
| n ^= (when (c=0))
|)

where
integer c;

end;

n = [2,�,�, 1,�]
c = [0, 2, 1, 0, 1]
o = [2, 1, 0, 1, 0]

Trace 1

n = [2,�, 1,�]
c = [0, 2, 1, 1]
o = [2, 1, 1, 0]

Trace 2

Fig. 4. Signal Example: Counter

x2, x2 will be forwarded. Hence, the operator always gives
priority to its first input, i.e. we have the clock constraint
ŷ = x̂1∨x̂2, and the dependencies x1

x̂1−→ y and x2
x̂2∧¬x̂1−−−−−→

y.
In addition to these basic nodes, programs may contain

additional clock constraints to restrict the behavior. For
example, clocks can be declared to be equal x̂ = ŷ,
mutually exclusive x̂ ⊕ ŷ, or a clock can be declared to
be a subclock of another one x̂ < ŷ. Figure 3 recapitulates
the dependencies of all statements, which will be needed
later in Section III-B.

The idea of Signal is illustrated with two examples. These
examples are also used in the subsequent sections. The first
example of a Signal specification is given in Figure 4. It
implements a simple counter which has one input n and one
output o. The intention of the process is that for each input
value n, the output values n, n − 1, . . . , 0 are produced.
To this end, the local signal c stores the last value of
the produced output, whereas o is produced by subtraction
of 1 from c. If a new value for the input n arrives,
the output is updated by this value. The clock constraint
n ^= (when (c = 0)) ensures that new inputs are read
when the local signal c reaches 0. Thus, the countdown is
never aborted, and the initial value for the next countdown
is guaranteed to be read in time.

On the right hand side of the figure, two sample traces
for this example are shown. In the figures, � indicates the
absence of a signal, i.e. it is not present in the instant.
The first trace is a valid one and shows the desired
behavior. First, 2 arrives as input and the output produces
the sequence of the values 2, 1, 0. After that, the local signal
c is 0 and a new input is read. The second trace is an
invalid one, because the second input value of n arrives too
early and thus, the clock constraint is not fulfilled by this
execution. Note that without the given clock constraint both
traces would be valid. However, the second one does not
comply to the given constraint (n ^= (when (c = 0))
is violated in the third step) so that only the first one is
a valid trace of the example. This example shows also the
relational character of polychronous specifications.

The second example is given in Figure 5. The example
illustrates the relational aspect of Signal processes and
shows that the clock flow does not necessarily follow the
data flow. The data dependencies of this process are drawn
in Figure 6. Consider the signal y which is produced by

process Causality =
(? integer i;
! integer o;)

(| y := (y $ init 0) + 1
| x := y default i
| o := x + y
|)

where
integer x, y;

end;

Fig. 5. Example: Causality

$

0

+1

D

+y

x

o

i

clk

Fig. 6. Data Flow of Example Causality

the buffered loop that increments the previous value. The
buffer is initialized with 0. Thus, the signal y will hold the
values 1, 2, 3, . . . , but it is not specified at which instants
the values have to be present. The input i is fed into the
default operator which is basically a merge node with
priority given to its first input. Thus, if i is present, x
is also present, but its value is still unknown, because if
also y is present, its value is used instead of the value
of i. However, since x is present, the addition node also
requires its second input to be present. Therefore, also
y must be present and the value of x will be the value
of y. To summarize, the presence of i also forces y to
be present which is against the data flow direction. The
clock information follows a path which is not given by
the data flow of the program. Even worse: we cannot
build the clock flow in a bottom-up way as we do for
the data-flow. This example illustrates the consequences of
the relational nature of Signal specifications, and also the
difficulty of describing it operationally. In a forthcoming
article, we provide a constructive semantics for polychrony,
which makes operational reasoning about Signal programs
possible, which is however beyond the scope of this article.

III. EMBEDDING POLYCHRONY

A. Mapping Polychronous Instants

Synchronous and polychronous models both partition the
execution of a program into logical instants. The compu-
tation within an instant follows the data dependencies in
the synchronous model. An embedding of polychrony into
a synchronous specification does not have to model the
data dependencies explicitly since it also orders the actions
within an instant implicitly. Instead, it lets the data flow
percolate every time at least one signal has some data (i.e. in
every instant).

However, a polychronous specification is based on a
partial order of time, whereas the instants of a synchronous

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, JANUARY 2000 6

execution are in a linear order. Therefore, a one-to-one map-
ping of logical instants is not possible. In order to capture
all different linear executions of the partially ordered model,
we introduce additional clock inputs, which choose between
different executions. Thereby, the inherent nondeterminism
(with respect to the asynchronous signal flows) is made
explicit at the interface. By setting the additional clock
inputs (according to clock constraints of the system) we
choose among the possible embeddings.

The interesting part of this nondeterministic embedding
of polychrony into synchrony is that now the synchronous
steps have barriers at the end of each logical instant. In our
embedding, no clock of S can tick more than once within
one logical synchronous instant. This gives us the power to
simulate any nondeterministic path through a system and
observe and interact with the system at these well defined
barrier points.

Thus, a simulation of S amounts to choosing a linear
sequence of logical instants from the partial order of logical
instants of S by giving the system S not only the values
of the input signals but also the presence or absence of
clocks of the signals (i.e. C) according to the constraints
on clocks in S.

These signals C must be always given in order to make
the polychronous specification work. As the later sections
will show, there are basically two different ways to obtain
them, either by (1) a dedicated procedure, usually known
as the clock calculus, which will be used in our simulation
in Section IV or (2) general controller synthesis, which is
a generalization of the verification presented in Section V.

In contrast to simulation, for formal verification, we are
interested in the entire partial order of all the possible
instants of the system for verification. Due to modeling
the clock signals C as additional inputs, they are left open.
By automatically creating a transition system, where C is
nondeterministically chosen so that they are consistent with
the clock constraints, we can analyze all possible sequences
of logical instances respecting the partial order �. Thus,
we can formally verify properties of the specification S
(invariants, causal loops etc.) as shown in Section V.

More formally, let S be a Signal specification, and let
(I,�) describe all possible executions of the system spec-
ified by S. Now, for simulation, and verification purposes,
we want to embed these logical instants I into a linearly
ordered sequence of logical instants, say, (R,≤) where ≤
is a total order on R. In order to gain control over which
instant R ∈ R is selected for an I ∈ I, we add all the
clocks in the system as extra inputs. So if C is a vector
representing the clocks of all signals in the system, then
one can envision the embed function as

embed : (I,�)× C → (R,≤)

Thus, our embedding maps each logical instant I ∈ I of
the polychronous model to an instant embed(I, C) ∈ R
on the synchronous one depending on the signals of the
vector C = (C1, . . . , Cn). This embedding has to meet the
following requirements:

1) The image instant of I contains at least the same
events as I: ∀e ∈ I. e ∈ embed(I).

2) The mapping preserves the partial order (I,�),
i.e. ∀I1, I2 ∈ I, I1 � I2. embed(I1) ≤ embed(I2).

3) The signals (Cit)t∈NAT, i = 1, . . . , n comply to the
clock constraints in S.

Independent polychronous instances I1 and I2 may be
mapped in any order (embed(I1, C) ≤ embed(I2, C), or
embed(I2, C) ≤ embed(I1, C)) or may be even collapsed
to a single instant (embed(I1, C) = embed(I2, C)).

Our approach to map the polychronous instants is in
the spirit of previous work. For example, Milner [31],
[32] showed that asynchronous systems can be always
simulated by stuttering and silent synchronous ones. Halb-
wachs et al. [20], [21] formalized the concept of sporadic
activation and oracle-driven nondeterminism to simulate
and verify (partially) asynchronous systems by synchronous
ones. The oracle variables of their scheduler in [20],
[21] correspond to our additional inputs for the clocks.
Imperative synchronous specifications such as Esterel and
Quartz also follow this approach to support the modeling
of asynchronous concurrency [4], [7], [36].

B. Embedding Operators

Having explained the overall idea of the embedding, we
have to define the basic polychronous operators with the
help of synchronous guarded actions. Each of them is
implemented as a separate module with the same signals
at its interface as the original operator. In addition, for
each variable x, we add a clock variable clk_x to the
interface. Our interpretation is that whenever clk_x holds,
the corresponding variable x holds a valid value. Otherwise,
x may have an arbitrary value, which is never read. Thus,
the tuple (x, clk_x) encodes the value and the status of the
original Signal signal.

Our embedding has to mimic all three aspects of the Sig-
nal operators: in the synchronous implementation, values,
clocks and dependencies must be implemented according
to the semantics as described in Section II-C. If we can
achieve a one-to-one correspondence, we can relate the
definitions from both the worlds.
module Function (

event bool ?clk_o , !o,
?clk_i1, ?i1, . . . , ?clk_in, ?in,

) {
clk_o => o = f(i1, . . . , in);
assume(clk_o == clk_i1);
assume(clk_i1 == clk_i2);

. . .
assume(clk_in−1 == clk_in);

}

Function. We describe the case of single output functions
here, but this can be easily generalized for multiple output
functions. Each function operator f is translated to a
module as given above. For each input and output of the
function, an additional clock variable is added as input.
The value of output o is simply computed by applying
the function to the inputs. It is only assigned if its clock
clk_o holds. Thereby, we encode a causal dependency

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, JANUARY 2000 7

from clk_o to o in the synchronous model according to
the polychronous semantics. In addition, clock constraints
are added with the help of assume statements so that all
inputs and the output need to have the same clock. By using
assumptions, we do not introduce causal dependencies
between the inputs, which would break the correspondence
to the original semantics.

module Delay (
bool ?init
event bool ?clk_o , !o,
event bool ?clk_i , ?i

) {
bool q = init;

clk_i => next(q) = i;
clk_o => o = q;
assume(clk_o == clk_i);

}

Delay. The synchronous description of the delay operator
is similarly wrapped into a synchronous module. Again,
clock signals for the input and the output are added. The
additional input init allows one to set an initial value for
the buffer. The buffer stores the last value of the input
stream, i.e. the last value of the stream i when clk_i held,
in a local variable q that is initialized in the first step (which
is indicated by the special expression start) with the given
initial value. Then, on each occurrence of a new input value,
i.e. when clk_i holds, the content of the local variable
is copied to the output and the current value of the input
stream is stored. The assumption forces the clocks of input
and output streams to be the same.

module When (
event bool ?clk_o , !o,
event bool ?clk_i1 , ?i1,
event bool ?clk_i2 , ?i2

) {
assume(clk_o == clk_i1 & clk_i2 & i2);
clk_o => o = i1;

}

When. The embedding of the when operator copies the first
input i1 to the output o if its clock clk_o holds. This clock
variable should be true if both the first and the second inputs
are present and the second input is true. By construction,
we have the desired causal dependencies from the input
clocks (clk_i1 and clk_i2) and the value i2 to the clock
of the output clk_o.

module Default (
event bool ?clk_o , !o,
event bool ?clk_i1 , ?i1,
event bool ?clk_i2 , ?i2

) {
assume(clk_o == clk_i1 | clk_i2);
clk_o & clk_i1 => o = i1;
clk_o & clk_i2 & !clk_i1 => o = i2;

}

Default. Finally, the default operator is described by
the synchronous module as given above. The assumption
guarantees that whenever an input is present, the output will
be also present. When the clock of the first input holds, its
value is copied to the output, otherwise the second input

module Counter (
event bool ?clk_n , nat ?n,
event bool ?clk_o , nat !o,
event bool ?clk_c

) {
nat c;

// c := o $ init 0
nat q = 0;
clk_o => next(q) = o;
clk_c => c = q;
assume(clk_c == clk_o);

// o := n default (c−1)
clk_o & clk_n => o = n;
clk_o & ! clk_n & clk_c => o = c−1;
assume(clk_o == (clk_n | clk_c));

// n ^= (when (c=0))
assume(clk_n == (clk_c & (c == 0)));

}

Fig. 7. Example Counter Translated to Guarded Actions

module Causality (
event bool ?clk_i , nat ?i,
event bool ?clk_o , nat !o,
event bool ?clk_x , ?clk_y

) {
nat x, y;

// y := (y $ init 0) + 1
nat q = 0;
clk_y => next(q) = y;
clk_y => y = q + 1;
assume (clk_y == clk_y);

// x := y default i
clk_x & clk_y => x = y;
clk_x &! clk_y & clk_i => x = i;
assume(clk_x == (clk_y | clk_i));

// o := x + y
clk_o => o = x + y;
assume (clk_o == clk_x);
assume (clk_x == clk_y);

}

Fig. 8. Example Causality Translated to Guarded Actions

is copied to the output. Thus, the priority is preserved, and
the guarded actions model the causal dependencies.

A complete Signal specification can then be translated
to synchronous guarded actions by instantiating the corre-
sponding modules for the primitive operators and adding
additional clock constraints. Additional clock constraints,
which are either implicitly given by the polychronous
operators or explicitly by the programmer, are modeled
by assumptions, which constrain the valid behaviors of the
program to the cases where the clocks are related according
to the specification.

Note that in the above discussion, we use operators
with Boolean inputs and outputs, but they can be trivially
generalized to any other data types.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, JANUARY 2000 8

The translation of the Signal example Counter from
Figure 4 to synchronous guarded actions is shown in Fig-
ure 7. The interface of the module is extended by the clock
variable clk_c of the internal signal. The translation of
the second example Causality from Figure 5 is shown in
Figure 8. Also this translation is straightforward according
to the given guarded actions of each original operator.

IV. SIMULATION

After embedding a Signal specification as presented in the
previous section, we obtain a synchronous system based
on synchronous guarded actions. As already mentioned
in Section II-B, we use the AIF format as a concrete
system representation. As this is the common intermediate
format of the Averest system, we can use all its tools, in
particular its simulator and verification procedures. In the
following Section IV-A, we first sketch its general structure
to understand its limitations and the adaptations made to
leverage its application to polychronous systems, which is
presented in Section IV-B.

A. Synchronous Systems

The simulator for synchronous guarded actions takes an AIF
system and simulates the instants, one by one: inputs are
read, the internal state and the outputs are computed and
the result is presented to the user. A detailed description is
given in Figure 9. It formalizes the operational semantics
briefly sketched in Section II-B. In the following descrip-
tion, we make use of the symbols:

• V is the set of all variables of the system, whereas A
is the set of its guarded actions.

• Eprv, Ecur, Enxt are partial variable environments. They
map each variable x of domain dom(x) to an element
of the set dom(x) ∪ {?, }2, where ? means that the
actual value of x has not yet been determined and
means that x cannot be given a value (due to runtime-
failures like division by zero or write conflicts due
to multiple assignments). Ecur denotes the variable
values for the current macro step, Eprv for the previous
one and Enxt collects the delayed assignments for the
following one. Thereby, we use the following notations
to access the values of the environment: we write E(x)
to retrieve the current value of x in environment E , and
similarly JτKE to evaluate expression τ with respect
to the values in environment E . To set a value v for
a variable x in environment E , we use the notation
E(x) := v and we write ∅ for the empty environment,
which assigns ? to all variables.

2In publications related to synchronous causality analysis (e.g. [40]), the
symbols ⊥ and > are often used for these purposes. However, since [16]
⊥ and > represent the absence of presence of a signal in the polychronous
community, we introduce new symbols.

function SimulateGuardedActions
(1) initialization
forall x ∈ V do Ecur(x) := default(x) end
Enxt := ∅

do
(2) begin of macro-step
Eprv := Ecur
Ecur := Enxt

⊔
ReadInputs()

Enxt := ∅

(3) immediate actions and reaction to absence
do
E ′ := Ecur;
forall 〈γ ⇒ x = τ〉 do

if JγKEcur = true ∧ (JτKEcur 6= ?) then
Ecur(x) := Ecur(x) t JτKEcur

forall x ∈ V do
if ∀ 〈γ ⇒ x = τ〉 . JγKEcur = false then
Ecur(x) := Eprv(x)

while Ecur 6= E ′

(4) delayed actions
forall 〈γ ⇒ next(x) = τ〉 do

if JγKEcur = true ∧ (JτKEcur 6= ?) then
Enxt(x) := JτKEcur

(5) end of macro-step
if ∃x ∈ V. Ecur(x) ∈ {?, } then Fail()
if ∃ 〈γ ⇒ assume(σ)〉 .γ ∧ ¬σ then Fail()
if ∃ 〈γ ⇒ assert(σ)〉 .γ ∧ ¬σ then Fail()
WriteOutputs(Ecur);

while true
end function

Fig. 9. Interpreting synchronous guarded actions.

• To combine two values v1, v2 or to merge two envi-
ronments E1, E2, we use the following notations:

v1 t v2 :=


v1 if v2 = ?

v2 if v1 = ?

v1 if v1 = v2

 otherwise

(E1
⊔
E2)(x) := E1(x) t E2(x)

A synchronous system is valid, if it leads to a complete
execution by the interpreter for all possible input traces.
The particular steps of the interpreter are described in the
following:

Step (1): The initialization consists of setting the
default values for Ecur and ? for Enxt, since before the first
macro step, no delayed action can be collected.

Step (2): The following loop is iterated for each macro
step. At the beginning of a macro step, the environments are
re-initialized, where Eprv now obtains the values previously
stored in Ecur and Ecur is set to the values collected with

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, JANUARY 2000 9

delayed assignments of the previous step. Additionally, the
inputs must be read and are also assigned to the current
environment. Enxt is set to the empty environment, since
no delayed assignments are collected yet for the new macro
step.

Step (3): This loop evaluates the guarded actions and
assigns values to the variables of the current environment
Ecur. The actions are also evaluated with the current envi-
ronment and a value is set, if an immediate action fires. If a
write conflict occurs, i.e. two actions with different values
fire for the same variable, the value is set to . If none
of the actions of a variable can be fired, i.e. the guards
of all actions possibly writing the variable are evaluated
to false, then the value from the previous step is used.
The loop determines a fixpoint of the environment, which
must be obviously reached, since all assignments to Ecur
are monotonic3 and only finitely many variables occur in a
system, the fixpoint is reached after finitely many iterations.
Note that this is different to the simulation of discrete-event
languages such as VHDL or SystemC, where the inner loop
(known as delta-cycles) may not terminate [10].

Step (4): The delayed actions are evaluated with the
previously computed environment. This is done after the
fixpoint iteration, since delayed assignments influence the
following step and do not take part in the current one. The
values evaluated for the next step are stored in Enxt.

Step (5): At the end of a step, it is possible that
some variables have either value ? or (which indicates a
causality problem or write conflict). If this is the case, the
interpreter fails. It also fails if any activated assumption
or assertion evaluates to false. If all checks succeed, the
outputs are written to the environment and a new macro
step is started.

The fixpoint iteration in Step 3 takes care about the
simultaneous execution of guarded actions. Indeed, the
actions are not really executed in parallel, but along their
data dependencies. Therefore, the execution of an action
does not influence any already executed action and the
environment of the current macro step can be completed
in this way.

As usual, the simulation can be used to get an impression
of the specified behavior. The inputs can be given interac-
tively or at once by a testbench.

B. Polychronous Systems

In Signal, two kinds of information flows must be distin-
guished: the values of the signals and their clocks. This
separation already became apparent in the introduction of
the Signal operators in Section II-C, and it is reflected in
the synchronous embedding, which uses two variables for
each signal x: its clock clk_x and its value x. Clocks may
not be determined in the same way as the data flows, as it
had already been illustrated by the example Causality in
Figure 5. In particular, if we only consider a single function
node, we do not know which signal will become present

3We assume here the partial order where ? is less than the other values,
 is greater than the other values, and all other values are incomparable.

first and thereby triggers the presence of all other signals.
This is exactly the reason why the synchronous modules
in our embedding (see Section III-B) do not set clocks but
only constrain them. Thereby, we do not fix an evaluation
order but only determine the conditions which have to be
fulfilled.

However, only the actions influence the values of the
variables, the assumptions and assertions are just checked
at the end of each instant by the synchronous simulator (as
shown in the previous section). For a reasonable simulation,
we need an alternative operational description, which com-
plies to all of the given constraints. The usual way to obtain
this description is to use the Signal clock calculus [27],
[8], [15]. It primarily aims at constructively determining
normalized definitions of the clocks, i.e. it tries to create a
primitive Signal equation that binds the clock of a signal
to other clocks and values4. Naturally, some clocks of the
system cannot be bound and remain free, e.g. the clocks of
completely unrelated input signals.

Although not used in the following examples, we can
use the result of the clock calculus to build a wrapper
around the system created by our embedding. All free
clocks are simply forwarded by the wrapper, while it
hides all bound clocks from the environment. They are
converted to local variables, which are set by the definitions
determined by the clock calculus. As a result, we obtain a
synchronous system that only exposes the free clocks to
the outside, while all other ones are automatically inferred
by the system. Thereby, developers are given the maximum
degree of freedom for the simulation without the burden to
consistently set all clocks of the system in each step. For
example, in process Counter, the clock of the input signal
i can be computed accordingly to the clock constraint by
the value of n. Hence, due to the clock constraints and due
to the possible backward clock-flow, the computation is not
directly given by the operators, but the system needs to be
analyzed completely to determine the clocks. If a wrapper
can be build which sets all clocks but one (the so-called
master clock which triggers all the behavior), the whole
process is said to be endochronous [1], [27].

The classical way to simulate a Signal specification is to
synthesize code for it, i.e. generate a C program, which can
be compiled and executed. This does not only require the
clock calculus but also to schedule all the actions within
an instant according to their dependencies so that they are
executed in the right order by the C program. Programs
which do not have such an order (since they have cyclic
causal dependencies) cannot be translated to C and thus,
they cannot be executed. Since our simulation is based on
synchronous guarded actions, we do not need to statically
schedule the actions. The simulator automatically performs
this task at run-time. As a consequence, we can even
simulate causally incorrect programs or programs, which
were rejected due to the conservative checks (precise ones
would be infeasible) of the C program generation. The

4Notice that one may alternatively use controller synthesis to generate
these clock definitions so as to enforce satisfaction of all clock assumptions
inferred from the translation into guarded actions.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, JANUARY 2000 10

1 2 3 4 5

n 2 2 2 1 1
clk_n true false false true false

c 2 1 0 1 0
clk_c true true true true true

o 0 2 1 0 1
clk_o true true true true true

Fig. 10. Simulation Trace for Example Counter

1 2 3 4 5

i 3 3 7 7 1
clk_i true false true false true

x 1 1 2 3 4
clk_x true false true true true

y 1 1 2 3 4
clk_y true false true true true

o 2 2 4 6 8
clk_o true false true true true

Fig. 11. Simulation Trace for Example Causality

simulator will run until the causal problem is noticed (when
Fail() is called in the first line of Step (5) in Figure 9)
and will then present the current situation. This greatly
improves the debugging phase since the developers can
not only see the effect, e.g. which variables could not be
determined due to cyclic dependencies, but they can also
see the situation and the path that lead to the problem.

A simulation trace for the already shown example
Counter in Figure 7 is shown in Figure 10. It illustrates
the simulation of the Trace 1 of Figure 4 where the original
Signal process has been introduced. Take care while reading
this trace, because the signals are not grouped by inputs
and outputs. The simulation of Trace 2 would lead to
an error, because in the third step, the assumption which
comes from the clock constraint of the signal process is not
fulfilled. The simulation trace also shows the characteristics
of the embedding. In the original trace, the signal n is not
present in each instant, whereas the variable n is, because
a synchronous system is considered. However, the tuple
(n, clk_n) encodes the value and the status of the original
signal and in each instants where clk_n does not hold,
the value is not of interest. Due to the definition of the
embedding, in these instances, the value from the previous
instance is kept, but it could also be any arbitrary value as
well.

A simulation trace for the second example Causality
in Figure 5 is shown in Figure 11. Note, that also the case
where i is not present but y is present can be simulated.

V. VERIFICATION

A. Synchronous Systems

The concise formal semantics of synchronous specifications
allows one to formally reason about program properties.
Due to the underlying model of computation, which syn-
chronizes concurrent computations and groups them into
instants, the state space can be kept smaller compared to
asynchronous models. This is the reason why synchronous
systems are better suited for automatic verification tech-
niques such as model checking, on which we will focus in
the following.

For model checking, the system generally needs to be
represented by a transition system. This basically consists
of a triple (S,S0, T) with set of states S, initial states
S0 ⊆ S and a transition relation T ⊆ S × S. Each state
s is a mapping from variables V to values, i.e. s assigns
to each variable a value of its domain. As we aim for a
symbolic description, we do not enumerate S, S0 and T
explicitly but describe them by their characteristic functions
ΦS , ΦS0 and ΦT over the variables V . This representation
is used by symbolic model checking tools. 5

In the following, we show how these formulas are
generated for a given system represented by synchronous
guarded actions. Thereby, assume that we group all the
guarded actions according to the variable on the left-hand
side x so that we generally have for each variable x the
following sets of immediate and delayed actions:

(γ1,x = τ1), . . . , (γp,x = τp)
(χ1,next(x) = π1), . . . , (χq,next(x) = πq)

Furthermore, we have a set of assumptions constraining the
system behavior:

(δ1,assume(σ1)), . . . , (δr,assume(σr))

As already noted in Section II-B, there is a default reaction,
which determines the value of a variable in the case no ac-
tion explicitly determines it: ordinary memorized variables
keep their previous value, while event variables are reset
to false or zero. In order to simplify the presentation in
the following, we assume that for each variable the default
reaction is given by two terms default0(x) and default+(x)
for the initial and all other steps. Thus, e.g. for a mem-
orized Boolean variable x, we have default0(x) = false
and default+(x) = x, and for a Boolean event variable
default0(x) = false and default+(x) = false.

Figure 12 now shows the translation of the immediate
and delayed actions writing variable x to clauses of the
characteristic functions ΦS , ΦS0 and ΦT , which describe
the symbolic transition system.
• The first part ΦS(x) constrains the set of states.

Invariantly, whenever the guard γj of an immediate
action holds, the action leads to the equation x = τj ,
which must hold in the state.

• From the set of states, the initial ones can be selected
by simply adding the default reaction of the first step

5For example, SMV can be given the transition system by INVAR (ΦS),
INIT (ΦS0) and TRANS (ΦT) formulas.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, JANUARY 2000 11

ΦS(x) :≡

 p∧
j=1

(γj → x = τj)



ΦS0(x) :≡

 p∧
j=1

¬γj

→ x = default0(x)



ΦT (x) :≡

  q∧
j=1

(χj → next(x) = πj)

 ∧
next(

p∧
j=1

¬γj) ∧

 q∧
j=1

¬χj

→ next(x) = default+(x)

 

Fig. 12. Transition System for Synchronous Guarded Actions

as done in ΦS0(x): whenever there is no action writing
x, its value is given by default0(x).

• The transition relation describes how the system
moves from one state to another. To this end, a sym-
bolic description does not only use the variables x ∈ V
but also variables next(x), x ∈ V , which refers to the
following step. With its help, we can define the clause
ΦT (x) for the transition relation. Whenever the trigger
condition χj of a delayed assignment next(x) = πj
holds, then x must have the value πj at the next point
of time (i.e. next(x)). Note that πj is evaluated with
the current variables to determine the value of x for
the next point of time. If neither a trigger condition γj
of an immediate assignment in the following step nor
a trigger condition of a delayed assignment χj in the
current step holds, then we take the value specified by
the default reaction default+(x).

Basically, this concludes the generation of the character-
istic functions. We only need to collect the clauses for
all writable variables VW and the additional assumptions,
which also constrain the sets of states. Thus, we obtain the
following final result:

ΦS =
∧
x∈VW ΦS(x) ∧

∧r
j=1(δj → σj)

ΦS0 =
∧
x∈VW ΦS0(x)

ΦT =
∧
x∈VW ΦT (x)

To illustrate the construction of the transition system,
consider the synchronous guarded actions given in Figure 1.
Applying the definitions above leads to the symbolically
described transition system shown in Figure 13. The first
four lines of ΦS come from the immediate actions of the
system, while the last one stems from the assumptions. The
behavior for o1 and o2 in the initial step is determined
by ΦS if the immediate actions fire - otherwise, they are
initialized by the default reaction as described by ΦS0 . As
x is only set by delayed actions, it is always initialized
to zero. The first two lines of the transition relation ΦT
model the default reactions for o1 and o2. If there is no
action in the following step setting the variable, o1 is kept
(memorized variable) while o2 is reset to 0 (event variable).
The last three lines of ΦT model the behavior of x: it is

ΦS = (i1 > 5→ o1 = i1 + x + 1)∧
(i1 < 5→ o1 = i1 + o2)∧
(i1 > 5→ o2 = i2 + o1)∧
(i1 < 5→ o2 = i2 + x + 1)∧
(i1 > 0) ∧ (i2 > 0)

ΦS0 = (i1 = 5→ o1 = 0)∧
(i1 = 5→ o2 = 0)∧
(x = 0)

ΦT = (next(i1 = 5)→ next(o1) = o1)∧
(next(i1 = 5)→ next(o2) = 0)∧
(o1 > 10→ next(x) = i1)∧
(o1 < 10→ next(x) = i2)∧
(o1 = 10→ next(x) = x)

Fig. 13. Transition System for Example of Figure 1

either set by one of the two delayed actions given in the
original system or by its default reaction.

When constructing the transition system as described
above, one should be aware of (1) write conflicts and (2)
cyclic causal dependencies in the original system.

Write conflicts (1) are due to several synchronous
guarded actions firing in the same step and assigning
a different value to the same variable, e.g. consider the
following two guarded actions

i > 0 => x = 1;
i < 5 => x = 2;

which lead to a contradiction if i is between 0 and 5. These
states (and thereby all paths to them) are removed from
the transition system if we apply the construction of the
previous section. Cyclic causal dependencies (2) may also
lead contradictions or to nondeterministic behavior , e.g.

true => x1 = x2;
true => x2 = x1;

which do not fix a concrete value for x1 and x2. Cyclic
causal dependencies (2) may also show no problems during
verification, e.g.

x1 => x1 = x2;
true => x2 = !x1;

which has a single consistent behavior. Although the be-
havior is well-defined in the transition system, this example

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, JANUARY 2000 12

satisfies {
observer (nat{16} last_o = 0)
{ // remember last value of o

clk_o => next(last_o) = o;
}
S1:assert A G(clk_n −> clk_o & n==o);
S2:assert A G(clk_n −> clk_o);
S3:assert A G(!clk_n −> o>= last_o);
S4:assert A G(clk_n −> (last_o ==0));
// should be false
S5:assert A G(clk_n −> o==0);

}

Fig. 14. Specifications for Example Counter

can never be turned into efficient executable code due to
the cyclic dependencies [6], [40].

Verification is still possible in the context of write con-
flicts and causal dependencies: however, these issues need
always be resolved before final code generation. Hence,
the functional behavior can be verified correctly when it is
ensured that those issues do not occur.

B. Polychronous Systems

As previously highlighted, the additional aspect we have to
consider for polychronous specifications is the treatment of
the clocks. In our original embedding of Section III-B, the
clocks are addressed by assumptions. For the simulation, we
needed to apply the clock calculus to obtain an operational
description, because the simulation needs to compute the
clocks. For the transition system, however, this is not
needed, since it is declarative and is able to consider all
possibilities. Thereby, it neglects the data dependencies: the
immediate action x=τ and the assumption assume(x==τ)
are both mapped to the same clause x = τ in the transition
system. Instead, it just collects all the clock constraints,
and thereby considers all the paths that comply to them.
Similar to the simulation, all free clock variables are
additional inputs to the system. Thus, the model checker
always verifies that a given property holds for all possible
assignments.

The Averest tools can be used for verification of Signal
processes with our translation. However, the specifications
have to be given in the synchronous world by temporal
logics. Figure 14 shows some specifications based on
an observer, which is also given in guarded actions, for
the already considered example Counter (Figure 7). The
specifications have to be placed in the file of the module to
be used. The temporal operator X considers the next instant,
but there is no means to express the next value of a stream,
i.e. the next value when its clock will hold. Therefore, the
observer is used to store the last output value of the output
o. With this value the specifications are formulated. As
expected, the specifications S1 to S4 can be verified by
using the Averest tools and SMV, whereas specification S5
can be disproved.

Finally, consider the verification of the example
Causality. Some specifications for this process are given

satisfies {
S1:assert A G(clk_i −> clk_o);
S2:assert A(

G F (clk_i | clk_o | clk_x | clk_y)
−> F (clk_o & (o == 12))

);
S3:assert A G (clk_o −> (o % 2 == 0));

}

Fig. 15. Specifications for Example Causality

in Figure 15. The specification S1 verifies the clock de-
pendency between i and o which ensures that an out-
put is produced whenever an input is given. The second
specification S2 considers traces which do not end up in
stuttering, i.e. traces where again and again at least one
clock holds. The specification ensures that on these traces
finally the value 12 is produced as output. Since the output
o is produced by y + y, it cannot have an odd number,
which is ensured with specification S3.

VI. SUMMARY

In this article, we presented an embedding of the poly-
chronous language Signal into synchronous guarded ac-
tions. While instances of time are totally ordered in
synchronous systems, they are only partially ordered in
polychronous systems. For this reason, each variable is
explicitly endowed by its clock to select one of the possible
behaviors.

The mapping of instants in our embedding helps to
get some insights about the relationship between syn-
chronous and polychronous models. It clearly shows the
asynchronous aspects of the polychronous specifications.
Furthermore, by separating the temporal part, the relational
aspects of polychronous specifications become very clear.

In addition to these theoretical insights, we also obtain
significant practical benefits. With the help of the em-
bedding, we are now able to use simulators and model
checkers of the Averest framework, which has been orig-
inally implemented for synchronous systems. Thereby, we
improve the tool support for the analysis and verification
of polychronous systems.

A. Acknowledgement

We thank the INRIA Associated project POLYCORE for
travel support that enabled the authors to get together
to work on this project, and an US Air Force Contract
(FA8750-11-1-0042) for partial support of one of the au-
thor’s work.

REFERENCES

[1] A. Benveniste, B. Caillaud, and P. Le Guernic. Compositionality in
dataflow synchronous languages: Specification and distributed code
generation. Information and Computation, 163:125–171, 2000.

[2] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic,
and R. de Simone. The synchronous languages twelve years later.
Proceedings of the IEEE, 91(1):64–83, 2003.

[3] G. Berry. A hardware implementation of pure Esterel. In Formal
Methods in VLSI Design, Miami, Florida, USA, 1991.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, JANUARY 2000 13

[4] G. Berry. Preemption and concurrent systems. In R.K. Shyama-
sundar, editor, Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), volume 761 of LNCS, pages 72–93,
Bombay, India, 1993. Springer.

[5] G. Berry. The foundations of Esterel. In G. Plotkin, C. Stirling,
and M. Tofte, editors, Proof, Language and Interaction: Essays in
Honour of Robin Milner. MIT Press, 1998.

[6] G. Berry. The constructive semantics of pure Esterel, July 1999.
[7] G. Berry and E. Sentovich. Multiclock Esterel. In T. Margaria

and T.F. Melham, editors, Correct Hardware Design and Verifica-
tion Methods (CHARME), volume 2144 of LNCS, pages 110–125,
Livingston, Scotland, UK, 2001. Springer.

[8] L. Besnard, T. Gautier, P. Le Guernic, and J.-P. Talpin. Compilation
of polychronous data flow equations. In S.K. Shukla and J.-P.
Talpin, editors, Synthesis of Embedded Software – Frameworks and
Methodologies for Correctness by Construction. Springer, 2010.

[9] M. Boldt, C. Traulsen, and R. von Hanxleden. Compilation and
worst-case reaction time analysis for multithreaded Esterel process-
ing. EURASIP Journal on Embedded Systems, 2008. Article ID
594129.

[10] J. Brandt and K. Schneider. How different are Esterel and SystemC?
In Forum on Specification and Design Languages (FDL), pages 98–
103, Barcelona, Spain, 2007. Electronic Chips and Systems Design
Initiative (ECSI).

[11] J. Brandt and K. Schneider. Separate translation of synchronous
programs to guarded actions. Internal Report 382/11, Department
of Computer Science, University of Kaiserslautern, Kaiserslautern,
Germany, March 2011.

[12] C.G. Cassandras and S. Lafortune. Introduction to Discrete Event
Systems. Springer, 2 edition, 2008.

[13] K.M. Chandy and J. Misra. Parallel Program Design. Addison-
Wesley, Austin, Texas, USA, May 1989.

[14] D.L. Dill. The Murphi verification system. In R. Alur and T.A.
Henzinger, editors, Computer Aided Verification (CAV), volume 1102
of LNCS, pages 390–393, New Brunswick, New Jersey, USA, 1996.
Springer.

[15] A. Gamatie. Designing Embedded Systems with the SIGNAL Pro-
gramming Language. Springer, 2010.

[16] A. Gamatié, T. Gautier, P. Le Guernic, and J.P. Talpin. Polychronous
design of embedded real-time applications. ACM Transactions
on Software Engineering and Methodology (TOSEM), 16(2), April
2007.

[17] A. Girault, B. Lee, and E.A. Lee. Hierarchical finite state ma-
chines with multiple concurrency models. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (T-CAD),
18(6):742–760, June 1999.

[18] N. Halbwachs. Synchronous programming of reactive systems.
Kluwer, 1993.

[19] N. Halbwachs. A synchronous language at work: the story of Lustre.
In Formal Methods and Models for Codesign (MEMOCODE), pages
3–11, Verona, Italy, 2005. IEEE Computer Society.

[20] N. Halbwachs and S. Baghdadi. Synchronous modelling of asyn-
chronous systems. In A.L. Sangiovanni-Vincentelli and J. Sifakis,
editors, Embedded Software (EMSOFT), volume 2491 of LNCS,
pages 240–251, Grenoble, France, 2002. Springer.

[21] N. Halbwachs and L. Mandel. Simulation and verification of
asynchronous systems by means of a synchronous model. In
Application of Concurrency to System Design (ACSD), pages 3–14,
Turku, Finland, 2006. IEEE Computer Society.

[22] D. Harel and A. Naamad. The STATEMATE semantics of State-
charts. ACM Transactions on Software Engineering and Methodol-
ogy (TOSEM), 5(4):293–333, 1996.

[23] A. Jantsch. Modeling Embedded Systems and SoCs. Morgan
Kaufmann, 2004.

[24] Bijoy A. Jose and Sandeep K. Shukla. An alternative polychronous
model and synthesis methodology for model-driven embedded soft-
ware. In ASP-DAC [24], pages 13–18.

[25] H. Järvinen and R. Kurki-Suonio. The DisCo language and temporal
logic of actions. Technical Report 11, Tampere University of
Technology, Software Systems Laboratory, 1990.

[26] P. Le Guernic, T. Gauthier, M. Le Borgne, and C. Le Maire.
Programming real-time applications with SIGNAL. Proceedings of
the IEEE, 79(9):1321–1336, 1991.

[27] P. Le Guernic, J.-P. Talpin, and J.-C. Le Lann. Polychrony for
system design. Journal of Circuits, Systems, and Computers (JCSC),
12(3):261–304, June 2003.

[28] E.A. Lee and T. Parks. Dataflow process networks. Proceedings of
the IEEE, 83(5):773–801, May 1995.

[29] E.A. Lee and A. Sangiovanni-Vincentelli. A framework for compar-
ing models of computation. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (T-CAD), 17(12):1217–
1229, December 1998.

[30] G. Logothetis and K. Schneider. Exact high level WCET analysis
of synchronous programs by symbolic state space exploration. In
Design, Automation and Test in Europe (DATE), pages 10196–10203,
Munich, Germany, 2003. IEEE Computer Society.

[31] R. Milner. On relating synchrony and asynchrony. Technical
Report CSR- 75-80, Department of Computer Science, University
of Edinburgh, Edinburgh, Scotland, UK, 1981.

[32] R. Milner. Calculi for synchrony and asynchrony. Theoretical
Computer Science (TCS), 25(3):267–310, 1983.

[33] Object Management Group OMG. Modeling and
analysis of real-time and embedded systems (MARTE).
http://www.omg.org/omgmarte/Documents/Specifications, June
2008.

[34] F. Rocheteau and N. Halbwachs. Implementing reactive programs on
circuits: A hardware implementation of LUSTRE. In J.W. de Bakker,
C. Huizing, W.P. de Roever, and G. Rozenberg, editors, Real-Time:
Theory in Practice, volume 600 of LNCS, pages 195–208, Mook,
The Netherlands, 1992. Springer.

[35] K. Schneider. A verified hardware synthesis for Esterel. In F.J. Ram-
mig, editor, Distributed and Parallel Embedded Systems (DIPES),
pages 205–214, Schloß Ehringerfeld, Germany, 2000. Kluwer.

[36] K. Schneider. Embedding imperative synchronous languages in
interactive theorem provers. In Application of Concurrency to System
Design (ACSD), pages 143–154, Newcastle Upon Tyne, England,
UK, 2001. IEEE Computer Society.

[37] K. Schneider. Improving automata generation for linear temporal
logic by considering the automata hierarchy. In R. Nieuwenhuis
and A. Voronkov, editors, Logic for Programming, Artificial Intelli-
gence, and Reasoning (LPAR), volume 2250 of LNCS, pages 39–54,
Havana, Cuba, 2001. Springer.

[38] K. Schneider. Proving the equivalence of microstep and macrostep
semantics. In V. Carreño, C. Muñoz, and S. Tahar, editors, Theorem
Proving in Higher Order Logics (TPHOL), volume 2410 of LNCS,
pages 314–331, Hampton, Virginia, USA, 2002. Springer.

[39] K. Schneider. The synchronous programming language Quartz.
Internal Report 375, Department of Computer Science, University
of Kaiserslautern, Kaiserslautern, Germany, December 2009.

[40] K. Schneider, J. Brandt, and T. Schuele. Causality analysis of
synchronous programs with delayed actions. In Compilers, Architec-
ture, and Synthesis for Embedded Systems (CASES), pages 179–189,
Washington, District of Columbia, USA, 2004. ACM.

[41] K. Schneider, J. Brandt, and T. Schuele. A verified compiler for
synchronous programs with local declarations. Electronic Notes in
Theoretical Computer Science (ENTCS), 153(4):71–97, 2006.

[42] B.L. Titzer and J. Palsberg. Nonintrusive precision instrumentation
of microcontroller software. In Y. Paek and R. Gupta, editors,
Languages, Compilers, and Tools for Embedded Systems (LCTES),
pages 59–68, Chicago, Illinois, USA, 2005. ACM.

Jens Brandt Jens Brandt is a research asso-
ciate in the Embedded Systems Group at the
University of Kaiserslautern. He studied applied
computer science at the same university from
1998 to 2003, where he also received his Ph.D.
from the Department of Computer Science.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, JANUARY 2000 14

Mike Gemünde Mike Gemünde received his
diploma in computer science from the University
of Kaiserslautern in 2008. He is now working
towards his Ph.D. in the Embedded Systems
Group at the University of Kaiserslautern.

Klaus Schneider Klaus Schneider studied com-
puter science from 1987 to 1992 at the University
of Karlsruhe in Germany. Between 1992 and
2002, he worked as a research associate at the In-
stitute of Computer Design and Fault Tolerance
at the University of Karlsruhe. He received his
Ph.D. for his research in hardware verification
from the department of computer science at the
University of Karlsruhe in 1997, and wrote a
habilitation thesis in 2001 about the verification
of reactive systems. In April 2002, he became

a full professor at the University of Kaiserslautern and since then, he is
heading the Embedded Systems Group there. His main research interests
are innovative design methods for the model-based design of embedded
systems including their formal verification. To this end, he studies various
system level design languages and their models of computation, in
particular, synchronous specifications.

Sandeep K. Shukla Sandeep K. Shukla (SM’03)
received the Ph.D. degree from the State Uni-
versity of New York at Albany in 1997, M.S
from the same university in 1995 and B.E from
Jadavpur University, Kolkata, India in 1991. He
is a Professor in the Department of Electrical and
Computer Engineering at Virginia Polytechnic
and State University, Blacksburg. He is also the
director of the Center for Embedded Systems for
Critical Applications (CESCA). Prof. Shukla is
Associate Editor of IEEE Transactions on Com-

puters and IEEE Embedded Systems Letters. He was associate editors for
IEEE Design and Test of Computers (2003–2011), and IEEE Transctions
on Industrial Informatics (2005–2006). He was awarded the PECASE in
2004, Virginia Tech Engineering Faculty Fellow award in 2005, SUNY
Albany Distinguished Alumni Award in 2007, and Humboldt Foundation’s
Bessel award in 2008. He is an IEEE Computer Society Distinguished
Visitor, and an ACM Distinguished Speaker.

Jean-Pierre Talpin Jean-Pierre Talpin is Senior
Researcher with INRIA and leads the project-
team who develops the open-source Polychrony
environment. He received his PhD from Univer-
sité Paris VI Pierre et Marie Curie in 1993. He
then was a research associate with the European
Computer-Industry Research Centre in Munich
before to join INRIA in 1995. Jean-Pierre edited
two books with Elsevier and Springer, guest-
edited more than ten special issues of ACM and
IEEE scientific journals, and authored more than

20 journal articles and book chapters and 60 conference papers. He
received the 2004 ACM Award for the most influential POPL paper, for
his 2nd conference paper with Mads Tofte, and the 2012 LICS Test of
Time Award, for his 1st conference paper with Pierre Jouvelot.

