
HAL Id: hal-00763495
https://hal.inria.fr/hal-00763495

Submitted on 11 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automated verification of termination certificates
Frédéric Blanqui, Kim Quyen Ly

To cite this version:
Frédéric Blanqui, Kim Quyen Ly. Automated verification of termination certificates. 15th National
Symposium of Selected ICT Problems, Dec 2012, Hanoi, Vietnam. �hal-00763495�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49838638?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00763495
https://hal.archives-ouvertes.fr


Automated verification of termination certificates

Frédéric Blanqui and Kim Quyen Ly

INRIA, France

and

Institute of Software of the Chinese Academy of Sciences

4 South Fourth Street, Zhong Guan Cun

Beijing 100190, China

Abstract—In order to increase user confidence, many auto-
mated theorem provers provide certificates that can be inde-
pendently verified. In this paper, we report on our progress
in developing a standalone tool for checking the correctness
of certificates for the termination of term rewrite systems, and
formally proving its correctness in the proof assistant Coq. To
this end, we use the extraction mechanism of Coq and the library
on rewriting theory and termination called CoLoR.

I. INTRODUCTION

Being able to prove the correctness of a program is impor-

tant, especially for critical applications (banking, aeronautics,

etc). But this is generally undecidable. So, many different and

complementary approaches have been developed for tackling

this problem: software engineering methodologies, testing,

model-checking, formal proof, etc.

Instead of trying to prove that every possible output of a

program is correct, one possible approach consists in making

the tool provide, at each run, an evidence that its output is

correct. This certificate can then be checked independently by

another tool. Although it seems to only move the problem

from one program to the other, the certificate verifier, there is

in fact a gain in complexity. Typically, a program which goal

is to find a solution to some numerical or symbolic problem,

will use complex heuristics and optimizations, while checking

that the solution found is indeed correct is often much easier.

For instance, finding a boolean assignment satisfying some

boolean formula (SAT problem) is (in the worst case) expo-

nential in the number of boolean variables, while verifying the

correctness of a given assignment (the certificate) is linear in

the size of the formula.

Since certificate verifiers are simpler programs, they are

more easily amenable to a complete formalization and proof

using some proof assistant tool. In fact, various such tools (e.g.

Coq [1]) are themselves based on this two-level approach:

they are composed of a small and hopefully safe kernel

responsible of checking the correctness of proofs, and a proof

development environment providing unsafe proof tactics and

decision procedures for building step by step proofs that, in

the end, have to be checked by the kernel to be included in

the proof database.

Termination, that is, the fact that a program eventually

provides an output to the user, is an important property that

is also undecidable [2]. Term rewriting [3], [4] is a simple yet

very general programming paradigm and framework, based

on the notion of rewrite rule, that generalizes or in which

to easily encode other programming paradigms like functional

or logic programs. Examples of programming languages based

on rewriting are [5], [6], [7], [8]. A few years ago, a formal

language called CPF [9] has been developed that defines

a notion of certificate for the termination of term rewrite

systems.

In this paper, we consider the problem of developing a

standalone tool for checking the correctness of CPF certifi-

cates, and formally proving its correctness. In [10], the first

author describes a CPF verifier called Rainbow1 based on the

following architecture: a compiler (written in OCaml [11])

from CPF to Gallina, the language of the Coq proof assistant

[1], generates a Gallina script that is then checked by Coq

itself using the Coq library CoLoR [10]. This architecture has

some advantages: it provides a way to automatically generate

Coq representations of term rewrite systems and termination

arguments that can be used for proving the termination of Coq

functions. Indeed, in Coq, no function can be defined with-

out proving its termination, because allowing non-terminating

functions would make proof verification undecidable. But this

architecture has also some disadvantages. First, compared to

more standard programming languages, computation in Coq

is very slow (and indeed too slow to check some complex

termination certificates). Second, the compiler from CPF to

Coq is not proved and can thus introduce errors not present

in the certificate.

Here, we consider a different architecture based on Coq’s

ability to generate OCaml [11], Haskell [12] or Scheme [13]

programs equivalent to the functions defined in it [14]. It

consists in defining the CPF verification program directly

in Coq (except the parsing part), and prove its correctness.

Then, Coq’s extraction mechanism provides us with an OCaml,

Haskell or Scheme standalone program that can be compiled

and efficiently executed independently of Coq or the CoLoR

library.

A similar approach has been undertaken successfully for the

CPF verifier CeTA [15] with the proof assistant Isabelle/HOL

[16], [17], which implements classical higher-order logic with

the axiom of choice [18]. Here, we want to test this approach

1http://color.inria.fr/rainbow.html

http://color.inria.fr/rainbow.html


in the proof assistant Coq, which implements an extension

of intuitionist higher-order logic [19], [20], and by using the

CoLoR library.

The first problem to address is the representation in Coq of

CPF certificates. The second one is the formalization and proof

of the CPF verifier program using the Coq library on rewriting

theory and termination called CoLoR [10]. In particular, it

requires to translate the CPF data structures into the data

structures used in CoLoR.

This paper is organized as follows. In section II, we in-

troduce term rewriting systems and give some examples of

termination techniques used in current automated termination

provers. In section III, we describe the formal language CPF

for termination certificates used in the international competi-

tion of automated termination provers [21]. In section IV, we

introduce the proof assistant Coq and how to formalize and

prove the correctness of a certificate verifier in it. In section

V, we give some details on the representation of certificates

in Coq. Finally, in section VI, we give some details on the

formalization and proof of the verifier using the CoLoR library.

II. TERM REWRITE SYSTEMS AND THEIR TERMINATION

We first recall what is rewriting: “rewrite systems are

directed equations used to compute by repeatedly replacing

subterms of a given formula with equal terms until the simplest

form possible is obtained” [3]. More formally:

Definition 1 (Term rewrite system) Let X be an infinite set

of variables. Given a set F of function symbols (disjoint from

X ) and an arity function α : F → N, the set T (F ,X ) of

(first-order) terms over F and X is the smallest set containing

X and such that, if f ∈ F and t1, . . . , tα(f) are terms, then

f(t1, . . . , tα(f)) is a term.

A substitution σ is a map from variables to terms that

is extended to terms in the obvious way (xσ = σ(x) and

f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ)). A context C is a term

with a unique occurrence of a distinguished variable [], which

substitution by u is written C[u]. A (rewrite) rule is a pair

of terms written l → r. The rewrite relation →R generated

by a set R of rules is the smallest relation containing R and

stable by substitution (t →R u ⇒ tσ →R uσ) and context

(t →R u ⇒ C[t] →R C[u]).
A relation → terminates (or is well-founded, or noetherian)

if there is no infinite sequence t0 → t1 → . . .

A simple example of rewrite system is given by the addition

on unary natural numbers:

add(zero, x) → x add(succ(x), y) → succ(add(x, y))

The termination of a TRS is undecidable in general, even

with a single rule [2]. So, there has been active research

for finding powerful sufficient conditions. An important one

consists in interpreting function symbols by monotone poly-

nomials on natural numbers N [22], [23]:

Theorem 2 (Polynomial interpretation) Let R be a TRS

and ϕ be a function mapping a polynomial ϕf ∈

Z[X1, . . . , Xn] to each function symbol f of arity n. Given a

valuation α : X → N, let [[x]]ϕα = α(x) and [[f(t1, . . . , tn)]]
ϕ
α =

ϕ(f)([[t1]]
ϕ
α, . . . , [[tn]]

ϕ
α) be the interpretation of terms in Z

induced by ϕ, and t >ϕ u if, for all α, [[t]]ϕα >N [[u]]ϕα, the

well-founded ordering on terms induced by ϕ.

If every ϕf is monotone in every xi, R1 ⊆ >ϕ and →R2

terminates, then →R1∪R2
terminates.

For instance, the previous system can be proved terminating

by using the following polynomial interpretation on N:

ϕadd(x, y) = 2x+ y ϕsucc(x) = x+ 1 ϕzero = 1

Indeed, for the first rule, we have 2(1)+x >N x and, for the

second rule, we have 2(x+1)+ y >N (2x+ y)+ 1, whatever

are the values of x, y ∈ N.

Another very important method, at the basis of all current

TRS termination provers, consists in transforming a TRS into

a dependency pair (DP) problem [24]:

Definition 3 (Dependency pair) Given a set of symbols F ,

the set F ♯ = F ⊎ {f♯ | f ∈ F} which consists of the disjoint

union of F with some copy of F , is the set of marked and un-

marked symbols (f♯ is taken to be of same arity as f). Given a

set R of rules, a symbol f is said defined if there is a rule whose

left hand-side is of the form f(l1, . . . , ln). Let D(R) be the

set of defined symbols. The set of dependency pairs DP(R)
is then the set of marked rules f♯(l1, . . . , ln) → g♯(r1, . . . , rp)
such that f(l1, . . . , ln) → r ∈ R for some r, g(r1, . . . , rp)
is a subterm of r not occurring in some li, and g is defined.

The dependency graph whose nodes are DP(R) has an edge

between (l1, r1) and (l2, r2) if there are two substitutions σ1

and σ2 such that r1σ1 →∗
R l2σ2.

Indeed, →R terminates on T (F ,X ) iff the composition

of the reflexive-transitive closure of →R with the closure by

substitution of DP(R), written →∗
R→DP(R)h, terminates on

T (F ♯,X ). Intuitively, dependency pairs generalizes the notion

of recursive calls and call graph in functional programming

[25]. Interpretations in a well-founded domain are easily

extended to deal with this more general kind of relations.

Moreover, since we only consider the closure by substitution

of DP(R), only one dependency pair need to strictly decrease

in every cycle or, more simply, in every connected component

of the dependency graph. This allows to split a DP problem

into various independent DP sub-problems [26].

For instance, in our simple example, there is only

one dependency pair, add♯(succ(x), y) → add♯(x, y), the

termination of which can be proved by taking ϕadd♯(x, y) = x.

III. TERMINATION CERTIFICATES

The theorem on polynomial interpretation can be described

as a conditional deduction rule on termination problems:

(rule-removal-PI)
Mon(ϕ) R1 ⊆ >ϕ WF(→R2

)

WF(→R1∪R2
)



where Mon(ϕ) means that every ϕf is monotone in every xi,

R1 ⊆ >ϕ that every rule of R1 is strictly decreasing in the

interpretation, and WF(→R2
) that →R2

terminates (is well-

founded).

Similar conditional deduction rules can be written for most

if not all termination methods used in current termination

provers [27]. Hence, a termination proof can be described by

a deduction tree obtained by composing deduction rules like

(rule-removal-PI) and axioms like:

(empty)
R = ∅

WF(→R)

For the international competition of automated termination

provers [21], a formal language called CPF [9] has been

collectively defined for representing such deduction trees. It

is given as an XML Schema or XSD file [28], [29]. An XSD

file is like a grammar: it describes the set of XML files that are

admissible. XML is a well established W3C text file standard

[30] for describing tree-structured data. For instance, in CPF,

a rewrite rule has to be described by the following XML text:

<rule><lhs>...</lhs><rhs>...</rhs></rule>

It represents a labeled tree, which root is labeled by the

tag rule, having two sub-trees: the first one describes the rule

left hand-side and has its root labeled by the tag lhs, and the

second one describes the rule right hand-side and its root is

labeled by the tag rhs. The XML Schema language (which

is a subset of XML) allows to describe some set of valid

XML texts by declaring what are the possible labeled trees.

For instance, the XSD type used in CPF for rewrite rules is:

<xs:element name="rule">

<xs:complexType>

<xs:sequence>

<xs:element name="lhs">

<xs:complexType>

<xs:group ref="term"/>

</xs:complexType>

</xs:element>

<xs:element name="rhs">

<xs:complexType>

<xs:group ref="term"/>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

The main type constructors allowed in XSD are, informally:

• element: if T is an XSD type and x is a string,

then <element name="x">T </element> denotes the set

of trees which root is labeled by x and which children

belong to the set of trees corresponding to T .

• sequence: if T1, . . . , Tn are XSD types, then

<sequence>T1 . . . Tn</sequence> denotes2 the set

of tuples of trees (t1, . . . , tn) such that t1 is of type T1,

. . . , tn is of type Tn.

2In the complete definition, every type Ti can be equipped with two
attributes a ∈ N and b ∈ N ∪ {∞} specifying the minimum and maximum
numbers (∞ meaning arbitrary) of children of type Ti.

• choice: if T1, . . . , Tn are XSD types, then

<choice>T1 . . . Tn</choice> denotes the union of

the sets of trees corresponding to T1, . . . , Tn.

IV. FORMALIZATION AND PROOF OF A CERTIFICATE

VERIFIER IN COQ

The Coq proof assistant [1] is a tool that allows one to

formally define mathematical objects and prove statements

about them. It has been successfully used in the certification

of various important applications, either industrial: a JavaCard

platform [31] or a C compiler [32], or academical: the four

color theorem [33] or Kepler’s conjecture [34].

It is based on an extension of Girard’ system F [35] and

Martin-Löf type theory [36], called the calculus of inductive

constructions [19], [20]. It allows function definitions by

pattern-matching [37] and provides a programmable proof

tactic language [38], various decision procedures, and other

important features like modules, type classes, etc.

It is therefore possible to define in Coq an inductive data

type cpf for representing CPF predicates, a boolean function

check:trs->cpf->bool verifying the correctness of a certifi-

cate wrt a termination problem, and formally prove that this

function is correct, that is, in Coq syntax:

Theorem check_is_correct:

forall R x, check R x = true -> WF (red R).

Proof. ... Qed.

In fact, in order to provide useful error messages if a

certificate appears to be incorrect, to deal with certificates that

the verifier does not know how to handle yet (there many

different certificates in CPF and it is a really huge work to

handle all of them), instead of a boolean output, we use an

error monad [39]. And since many auxiliary functions are

necessary for translating CPF data structures into CoLoR data

structures, we use a polymorphic error monad:

Inductive result (A : Type) : Type :=

| Ok : A -> result A

| Ko : error -> result A.

Definition term : cpf_term -> result color_term :=

...

Theorem check_is_correct:

forall R x, check R x = Ok unit -> WF (red R).

Finally, since Coq includes a typed λ-calculus with induc-

tive data types and pattern-matching, the extraction of ML-like

function definitions [40] from Coq to OCaml [14] is almost

straightforward34 and looks about the same since Coq syntax

is very close to OCaml syntax.

V. PARSING AND COQ REPRESENTATION OF CERTIFICATES

The CPF format is extended every year with new certificates

and can be modified sometimes. In Rainbow, the data type

3Note however that parallel pattern-matching and pattern-matching with
patterns of depth greater than 1 are not primitive in Coq. They are compiled
into sequences of non-parallel pattern-matching with patterns of depth 1,
leading to important code duplication in some cases.

4This is however not the case of more complex Coq constructions [14],
[41].



used for representing certificates internally and the parsing

function used to create a value of this data type from a text

file are written by hand (the parsing function uses the XML-

Light library [42]). This is a possible source of errors and is

time-consuming.

To avoid these problems, we developed a compiler from

XSD to Coq and OCaml that, from an XSD file, generates a

Coq file (and hence an OCaml file after extraction from Coq)

providing a data type definition for representing XML data

valid wrt the given XSD file, and an OCaml file providing a

parsing function for this data type (also based on XML-Light).

This compiler is not intended to cover all aspects of XSD but

only the one used in CPF.

The XSD type constructors described above are translated

to standard OCaml data structures as follows (with some

optimizations):

• sequence: tuple or list (an optional child being mapped

to the OCaml option type);

• choice: data type with a constructor for each case.

For instance, in CPF, the type for function symbols is

defined as follows:
<xs:group name="symbol">

<xs:choice>

<xs:element ref="name"/>

<xs:element name="sharp">

<xs:complexType>

<xs:sequence>

<xs:group ref="symbol"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="labeledSymbol">

<xs:complexType>

<xs:sequence>

<xs:group ref="symbol"/>

<xs:group ref="label"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:choice>

where <group name="x"> is a way in XSD to introduce a

type definition that can be referred to by x. This XSD type is

translated by our compiler to the following inductive OCaml

data type:

type symbol =

| Symbol_name of name

| Symbol_sharp of symbol

| Symbol_labeledSymbol of symbol * label

Other solutions could be chosen. Note however that not

every OCaml value corresponds to an XML file validating

CPF. To do so, we would need to use private data types [43]

or a stronger type system like the one of CDuce [44], [45].

More importantly, in XSD, type definitions are unordered

and a type definition can refer to types defined later in the file.

This is not a problem in itself for OCaml or Coq since these

languages support mutually defined types too. However, if CPF

is represented in Coq as a single big set of mutually defined

types, then Coq will generate a single big induction principle

for all types that will be very difficult to use in proofs. It

is therefore better to have as many minimal sets of mutually

defined types as possible. And because in Coq and OCaml,

the type names used in a type definition can only refer to

type names of the same set of mutually defined types or to

previously defined types, it is necessary to order the XSD type

definitions wrt their dependencies:

Definition 4 (Type dependency relation) For our purpose5,

we can consider that a type T is defined by a finite set of

constructors the arguments of which are of type T1, . . . ,Tn

respectively. Then, we say that a type T depends on a type U,

written U⊳T, if there is a constructor of T having an argument

of type U. And we say that a type U must be defined before

a type T, written U � T, if (U,T) is in the reflexive and

transitive closure of ⊳. We then denote by ≃ the symmetric

closure of � (it is an equivalence relation), and by ≺ = � − ≃
its strict part.

The minimal sets of mutually dependent types correspond

then to the equivalence classes of the ≃ equivalence relation,

and these classes can be ordered topologically by using ≺.

VI. DEFINITION AND PROOF OF A TERMINATION

CERTIFICATE VERIFIER IN COQ

The first problem to address is the translation of CPF data

structures for symbols, terms, rules, polynomials, etc. to the

corresponding CoLoR data structures. In fact, this is more or

less straightforward except for terms.

In CoLoR, every definition or theorem is parametrized by

a given signature:

Record Signature : Type := mkSignature {

symbol :> Type;

arity : symbol -> nat;

beq_symb : symbol -> symbol -> bool;

beq_symb_ok :

forall x y, beq_symb x y = true <-> x = y }.

providing the set of symbols, their arity and a boolean function

on symbols ensuring that equality on symbols is decidable.

Then, new sets are introduced when needed, like it is the

case for marked symbols in the dependency pairs transforma-

tion. Moreover, some termination techniques may change the

arity of symbols. For instance, arguments filtering [24] may

transform a TRS where f is of arity n ≥ 1 into a TRS where

f is of arity n−1 by removing the first argument of f in every

rule where f occurs.

Hence, in CoLoR, the set of symbols and their arity may

evolve dynamically during the verification of a certificate, and

differently wrt the deduction branch followed (a certificate has

a tree structure), while, in CPF, there is only one big type for

all the possible symbols. Defining a function for converting

a CPF term into a CoLoR term following the same dynamic

would be complicated.

Instead, we use the fact that the CPF type for symbols

include all possible symbols that can be generated in the

course of a verification, and chose the CPF type itself for

the set of CoLoR symbols. Hence, only the arity function

5This is the class of OCaml types to which XSD types are compiled.



needs to evolve dynamically. Note that this is correct to do

so since signature extension reflects termination: given a set

R of rules on T (F ,X ), if F ⊆ G, then →F
R terminates iff

→G
R

terminates, where →A
R is the relation generated by R on

T (A,X ) [46].

As a consequence, we need to translate CoLoR data struc-

tures for new symbols back into the cpf data type. To

prove that this transformation reflects termination, we use

the following theorem on signature morphisms formalized in

CoLoR:

Theorem 5 (Signature morphism) Let F and G be two sets

of symbols whose arity functions are α and β respectively,

and let ϕ be a map from F to G that respects arities, i.e.

forall f ∈ F, βϕ(f) = αf . The map ϕ then naturally extends

to terms as follows: ϕ(x) = x and ϕ(f(t1, . . . , tn)) =
ϕ(f)(ϕ(t1), . . . , ϕ(tn)).

If R is a set of rules on T (F ,X ) and →ϕ(R) terminates

on T (G,X ), then →R terminates on T (F ,X ).

Note that no property is required for ϕ other than to respect

arities. In particular, it does not need to be injective.

We now show how this applies on the DP transformation.

Let F be the set of symbols corresponding to the data type

symbol defined in the previous section. To simplify, we do not

consider the constructor Symbol_labeledSymbol. So, F can be

seen as the solution of the equation X = N ⊎ {f@ | f ∈ X},

where N is the set of values of type name and @ stands

for the constructor Symbol_sharp to distinguish it from the

symbol ♯ used in the DP transformation. Let R be a set

of rules on F with no symbol of the form f@ such that

→∗
R→Dh terminates, where D = ϕ(DP(R)) with ϕ(f♯) = f@

and ϕ(f) = f otherwise. Then, by the theorem on signature

morphisms, →∗
R→DP(R)h terminates and, by the DP theorem,

→R terminates.

VII. CONCLUSION

We started to develop a standalone tool for verifying the

correctness of termination certificates for term rewrite systems

[3] following the CPF format [9] used in the international com-

petition of automated termination provers [21], and formally

prove its correctness in the proof assistant Coq [1] using the

Coq library on rewriting theory and termination CoLoR [10]

and Coq extraction mechanism [14].

We first developed a simple compiler for generating a Coq

data type definition for representing XML Schema data types,

and an XML parser for CPF. We also defined and proved in

Coq a small verifier for two important termination techniques:

dependency pairs [24] and polynomial interpretations [23]. But

much more has to be done to be able to compete with the

verifier CeTA developed in the proof assistant Isabelle/HOL

[15].

REFERENCES

[1] Coq Development Team, The Coq Reference Manual, Version 8.4,
INRIA, France, 2012, http://coq.inria.fr/.

[2] M. Dauchet, “Termination of rewriting is undecidable in the one-rule
case,” in Proceedings of the 13th International Symposium on Mathe-

matical Foundations of Computer Science, Lecture Notes in Computer
Science 324, 1988.

[3] N. Dershowitz and J.-P. Jouannaud, “Rewrite systems,” in Handbook of
Theoretical Computer Science, J. van Leeuwen, Ed. North-Holland,
1990, vol. B, ch. 6.

[4] TeReSe, Term Rewriting Systems, ser. Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 2003, vol. 55.

[5] A. T. Nakagawa, T. Sawada, and K. Futatsugi, CafeOBJ 1.4.2 User

Manual, JAIST, Japan, 1999, http://www.ldl.jaist.ac.jp/cafeobj/.

[6] P. Borovanský, H. Cirstea, E. Deplagne, H. Dubois, C. Kirchner,
H. Kirchner, P.-E. Moreau, Q.-H. Nguyen, C. Ringeissen, and M. Vittek,
ELAN 3.7 User Manual, INRIA Nancy, France, 2006, http://elan.loria.fr/ .

[7] J.-C. Bach, E. Balland, P. Brauner, R. Kopetz, P.-E. Moreau, and
A. Reilles, TOM 2.7 Manual, INRIA & LORIA, Nancy, France, 2009,
http://tom.loria.fr/.

[8] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer,
and C. Talcott, Maude 2.6 Manual, Computer Science Laboratory, SRI
International and Department of Computer Science, University of Illinois
at Urbana-Champaign, USA, 2011, http://maude.cs.uiuc.edu/.

[9] “Certification Problem Format,” http://cl-informatik.uibk.ac.at/software/cpf/,
2012.

[10] F. Blanqui and A. Koprowski, “CoLoR: a Coq library on well-founded
rewrite relations and its application to the automated verification of
termination certificates,” Mathematical Structures in Computer Science,
vol. 21, no. 4, pp. 827–859, 2011.

[11] X. Leroy, D. Doligez, A. Frisch, J. Garrigue, D. Rémy, and J. Vouillon,
The Objective Caml system release 3.12, Documentation and user’s
manual, INRIA, France, 2010, http://caml.inria.fr/.

[12] S. Peyton-Jones, Ed., Haskell 98 Language and Libraries, The revised

report. Cambridge University Press, 2003.

[13] M. Sperber, R. K. Dybvig, M. Flatt, A. van Straaten, R. Findler, and
J. Matthews, “Revised6 report on the algorithmic language Scheme,”
Journal of Functional Programming, vol. 19, no. S1, pp. 1–301, 2009.

[14] P. Letouzey, “Certified functional programming: pro-
gram extraction within Coq proof assistant,” Ph.D.
dissertation, Université Paris-Sud, France, 2004,
http://www.pps.univ-paris-diderot.fr/∼ letouzey/download/these letouzey English.ps.gz.

[15] C. Sternagel, R. Thiemann, S. Winkler, and H. Zankl, “CeTA 2.4,”
http://cl-informatik.uibk.ac.at/software/ceta/, 2012.

[16] T. Nipkow, L. Paulson, and M. Wenzel, Isabelle/HOL:

A Proof Assistant for Higher-Order Logic, ser. Lecture
Notes in Computer Science. Springer, 2002, vol. 2283,
http://www.cl.cam.ac.uk/research/hvg/Isabelle/ .

[17] F. Haftmann, “Code generation from specifications in higher order
logic,” Ph.D. dissertation, Technische Universität München, Germany,
2009.

[18] A. Church, “A formulation of the simple theory of types,” Journal of

Symbolic Logic, vol. 5, pp. 56–68, 1940.

[19] T. Coquand and G. Huet, “The calculus of constructions,” Information
and Computation, vol. 76, no. 2-3, pp. 95–120, 1988.

[20] C. Paulin-Mohring, “Inductive definitions in the system Coq - rules and
properties,” in Proceedings of the 1st International Conference on Typed
Lambda Calculi and Applications, Lecture Notes in Computer Science
664, 1993.

[21] “Termination competition,” http://termination-portal.org/wiki/Termination Competition.

[22] D. Lankford, “On proving term rewriting systems are noetherian,”
Lousiana Technical University, USA, Tech. Rep., 1979.

[23] E. Contejean, C. Marché, A. P. Tomás, and X. Urbain, “Mechanically
proving termination using polynomial interpretations,” Journal of Auto-
mated Reasoning, vol. 34, no. 4, pp. 325–363, 2005.

[24] T. Arts and J. Giesl, “Termination of term rewriting using dependency
pairs,” Theoretical Computer Science, vol. 236, pp. 133–178, 2000.

[25] R. Thiemann and J. Giesl, “The size-change principle and dependency
pairs for termination of term rewriting,” Applicable Algebra in Engi-

neering Communication and Computing, vol. 16, no. 4, pp. 229–270,
2005.

[26] N. Hirokawa and A. Middeldorp, “Tyrolean Termination Tool: Tech-
niques and features,” Information and Computation, vol. 205, no. 4, pp.
474–511, 2007.

[27] J. Giesl, R. Thiemann, and P. Schneider-Kamp, “The dependency pair
framework: Combining techniques for automated termination proofs,”
in Proceedings of the 11th International Conference on Logic for

http://coq.inria.fr/
http://www.ldl.jaist.ac.jp/cafeobj/
http://elan.loria.fr/
http://tom.loria.fr/
http://maude.cs.uiuc.edu/
http://cl-informatik.uibk.ac.at/software/cpf/
http://caml.inria.fr/
http://www.pps.univ-paris-diderot.fr/~letouzey/download/these_letouzey_English.ps.gz
http://cl-informatik.uibk.ac.at/software/ceta/
http://www.cl.cam.ac.uk/research/hvg/Isabelle/
http://termination-portal.org/wiki/Termination_Competition


Programming, Artificial Intelligence and Reasoning, Lecture Notes in
Computer Science 3452, 2004.

[28] XML Schema Part 1: Structures, 2nd ed., W3C, 2004,
http://www.w3.org/TR/xmlschema-1/.

[29] J. Siméon and P. Wadler, “The essence of XML,” in Proceedings of the
30th ACM Symposium on Principles of Programming Languages, 2003.

[30] Extensible Markup Language (XML) 1.1, 2nd ed., W3C, 2006,
http://www.w3.org/TR/2006/REC-xml11-20060816/ .

[31] G. Barthe, P. Courtieu, G. Dufay, and S. de Sousa, “Tool-assisted
specification and verification of the JavaCard platform,” in Proceedings

of the 9th International Conference on Algebraic Methodology and

Software Technology, Lecture Notes in Computer Science 2422, 2002.
[32] X. Leroy, “Formal verification of a realistic compiler,” Communications

of the ACM, vol. 52, no. 7, pp. 107–115, 2009.
[33] G. Gonthier, “The four colour theorem: Engineering of a formal proof,”

in Proceedings of the 8th Asian Symposium on Computer Mathematics,
Lecture Notes in Computer Science 5081, 2007.

[34] T. C. Hales, J. Harrison, S. McLaughlin, T. Nipkow, S. Obua, and
R. Zumkeller, “A revision of the proof of the Kepler conjecture,” Discrete
and Computational Geometry, vol. 44, no. 1, pp. 1–34, 2005.

[35] J.-Y. Girard, Y. Lafont, and P. Taylor, Proofs and Types. Cambridge
University Press, 1988.

[36] P. Martin-Löf, Intuitionistic type theory. Napoli, Italy: Bibliopolis,
1984.

[37] C. Cornes, “Conception d’un langage de haut niveau de représentation
de preuves,” Ph.D. dissertation, Université Paris 7, France, 1997.

[38] D. Delahaye, “A tactic language for the system Coq,” in Proceedings of

the 7th International Conference on Logic for Programming, Artificial

Intelligence and Reasoning, Lecture Notes in Computer Science 1955,
2000.

[39] P. Wadler, “Comprehending monads,” Mathematical Structures in Com-

puter Science, vol. 2, no. 4, pp. 461–493, 1992.
[40] R. Harper, D. M. Queen, and R. Milner, “Standard ML,” University of

Edinburgh, UK, Tech. Rep. ECS-LFCS-86-2, 1986.
[41] S. Glondu, “Vers une certification de l’extraction de Coq,” Ph.D.

dissertation, University Paris 7, France, 2012.
[42] N. Cannasse and J. Garrigue, “XML-Light 2.2,”

http://tech.motion-twin.com/xmllight.html.
[43] F. Blanqui, T. Hardin, and P. Weis, “On the implementation of construc-

tion functions for non-free concrete data types,” in Proceedings of the
16th European Symposium on Programming, Lecture Notes in Computer
Science 4421, 2007.

[44] “CDuce 0.5.5,” http://cduce.org/, 2011.
[45] A. Frisch, G. Castagna, and V. Benzaken, “Semantic subtyping: dealing

set-theoretically with function, union, intersection, and negation types,”
Journal of the ACM, vol. 55, no. 4, pp. 1–64, 2008.

[46] E. Ohlebusch, “A simple proof of sufficient conditions for the termina-
tion of the disjoint union of term rewriting systems,” Bulletin of EATCS,
vol. 50, pp. 223–228, 1993.

http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/2006/REC-xml11-20060816/
http://tech.motion-twin.com/xmllight.html
http://cduce.org/

	Introduction
	Term rewrite systems and their termination
	Termination certificates
	Formalization and proof of a certificate verifier in Coq
	Parsing and Coq representation of certificates
	Definition and proof of a termination certificate verifier in Coq
	Conclusion
	References

