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Formal Expression of Sensitivity and Energy
Relationship in the Context of the Coupling Matrix

Monica Martinez-Mendoza 1, Student Member, IEEE, Fabien Seyfert 2,
Christoph Ernst 3, Member, IEEE, and Alejandro Alvarez-Melcon 1, Senior Member, IEEE

Abstract—Precise formulas to express the formal relationship
between the time average stored energy in the resonators of
a lowpass filter network and the sensitivity of the reflection
S parameter with respect to the coupling matrix terms are
demonstrated in this paper, considering the normalized frequency
axis. These relationships are found in the modern context of the
N + 2 coupling matrix, and for both diagonal and general non-
diagonal coupling elements of the matrix. The results are valid
for any type of coupling topology represented by the N + 2
coupling matrix. Different examples are included as validation.
Furthermore, important implications and applications derived
from the new relationships are highlighted.

I. INTRODUCTION

THE relationship between the stored energy in the el-
ements of an LC N-port network and the sensitivity

of the S-Parameters with respect to each L or C element
was first discussed in [1]. In that paper, the sensitivity was
defined as the variation of the S-Parameters with respect to
independent variations in the L or C elements of the network
under evaluation.

Later, coupling matrices representing lowpass filter net-
works became fashionable and started to be widely used.
The coupling matrix concept was first introduced by Atia
and Williams [2] in the early 70s, where it was applied to
symmetric waveguide filters. The representation of microwave
filters in matrix form is specially useful because it provides a
very precise model of the network and simultaneously allows
to operate on the coupling matrix in a very simple way. These
operations may be useful to simplify the synthesis process, to
simulate complex networks in a simpler way or to reconfigure
the filter topology into another configuration more suitable
for the specific practical implementation. Another advantage
of the coupling matrix is that it represents some of the real
physical properties of the circuit elements. Each coupling
matrix element is related to a specific circuit element in the
final prototype. The non-diagonal matrix elements represent
the couplings between the resonators of the network, and
their values provide information about the magnitude of these
couplings. On the other hand, the diagonal coupling elements
are related to the differences in the resonant frequencies of the
resonators with respect to the center frequency of the filter.

1Technical University of Cartagena, Campus Muralla del Mar
s/n, Cartagena, E-30202, Spain, e-mail: shanaz00@hotmail.com,
josea.lorente@gmail.com, alejandro.alvarez@upct.es

2INRIA, France, e-mail: fabien.seyfert@inria.fr
3TEC-ETM ESA/ESTEC Kepleerlan 1 - 2202 AZ Noordwijk ZH - The

Netherlands email: christoph.ernst@esa.int

Although the initial matrices were NxN matrices, where N
is the order of the filter, N+2 coupling matrix forms were in-
troduced some years later [3] . The N+2 coupling matrix form
includes information about the input and the output port and
is widely used in the microwave community, since it presents
several advantages with respect to the NxN matrix form.
Among these advantages are the possibility to implement fully
canonical filters with a nonzero direct coupling term, and the
possibility to include frequency invariant reactance elements
(FIR) in the network, allowing to synthesize symmetric or
asymmetric responses.

Although the N+2 coupling matrix can be a representation
of an LC network in certain cases (synchronously tuned
filters), it is important to highlight that there is no direct
equivalence between the variation of an element in an LC
network and the variation of an element in the N+2 coupling
matrix. There are two reasons for this observation. First, a
coupling is related to two resonators, thereby if a coupling
term Mpq is varied, two elements are being affected in the LC
network represented by the coupling matrix. Second, the LC
network presented in [1] does not consider the possibility to
include FIR elements. Thereby, a variation in a FIR element,
which is expressed as a variation in a diagonal coupling term
Mpp, cannot be translated into the variation of an element of
the LC network with no FIR elements.

In this context, although there is no direct equivalence be-
tween isolated variations in L or C elements and variations in
the coupling matrix terms Mpp and Mpq , a close relationship
between the stored energy in the elements of the network
and the sensitivity of the reflection S-Parameter with respect
to the diagonal elements of the N + 2 coupling matrix was
already noticed in [4], [5], [6]. Nevertheless, precise formulas
to express this relationship were not known and the obtained
results were just based on observations at that time.

This paper presents precise formulas to express the formal
relationship between the time average stored energy in the
resonators of a lowpass filter network, and the sensitivity of
the reflection S-Parameter with respect to the coupling matrix
terms considering the normalized frequency axis. Sensitivity
in the real passband domain can be obtained by using the stan-
dard lowpass to bandpass transformation. These relationships
are found in the modern context of the N+2 coupling matrix,
and for both diagonal and general non-diagonal coupling
elements of the N + 2 coupling matrix. It is important to
remark that the obtained results are based on the N + 2
coupling matrix, thus they are only valid for transfer functions
fulfilling the narrow band approximation. Different examples
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will be used to illustrate the implications and to highlight
applications derived from the novel relationships.

II. SENSITIVITY OF THE S-PARAMETERS

In this section, following the same ideas as [7], [8], we
derive formulas for the sensitivities of the S-parameters with
respect to the couplings.
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Fig. 1. General low pass circuit related to the (N +2)× (N +2) coupling
matrix framework (for simpler notations, the capacitors have been numbered
starting with C2, C3 . . . and ending with CN+1).

The lowpass circuit we consider is detailed in Figure 1:
all non-diagonal couplings are here frequency invariant admit-
tance inverters (FIR), the diagonal ones constant susceptances
modelling the frequency shift of each resonator (i.e. the
FIR elements mentioned previously), the input and output
loads as well as all capacitors are normalized to one. At a
given frequency ω, we define the sensitivity of the scattering
parameter Si,j with respect to Ml,k as:

∂Si,j(ω)

∂Ml,k
(1)

The nodal equations ruling the behaviour of circuit in Fig. 1
are expressed in terms of the voltage vector U as follows:

[G+ jωI + jM ][U ] = A[U ] = [i] (2)

where:

• [G]: Admittance matrix with all elements zero except for
G1,1 = 1 and GN+2,N+2 = 1. Size (N + 2) x (N + 2).

• [I]: Identity matrix up to I1,1 = 0 and IN+2,N+2 = 0.
Size (N + 2) x (N + 2).

• [M ]: Coupling matrix. Size (N + 2) x (N + 2).
• [U ] is the voltage vector, and [i] = [i1, 0, . . . , i2]

t is
the excitation vector.

• A = [G+ jωI + jM ] by definition.

From this we compute the S-parameters as:

S1,1 = 2[A−1]1,1 − 1, S2,2 = 2[A−1]n+2,n+2 − 1

S1,2 = 2[A−1]1,n+2. (3)

where a similar notation as in [7], [8] has been used, and
[A−1]i,j is the i-th element of the solution vector of the system
shown in (2), when the excitation is placed in the j-th element
of the excitation vector [i]. If we set Wi,j = [A−1]i,j , some

differential calculus yields for the sensitivities:

l = k,
∂S1,1

∂Ml,l
= −2W 2

1,l,
∂S2,2(ω)

∂Ml,l
= −2W 2

N+2,l (4)

l 6= k,
∂S1,1

∂Ml,k
= −4W1,lW1,k,

∂S2,2(ω)

∂Ml,k
= −4WN+2,lWN+2,k (5)

l = k,
∂S1,2

∂Ml,l
= −2W1,lWN+2,l (6)

l 6= k,
∂S1,2

∂Ml,k
= −2(W1,lWN+2,k +W1,kWN+2,l) (7)

Latter formulas are, up to sign changes, equivalent to those
found in [8] where a dual circuit based on impedance inverters,
and inductive series resonators was implicitly used.

III. RELATIONSHIP BETWEEN SENSITIVITIES AND
REACTIVE ENERGY

In this section we come to the main goal of this paper,
namely the derivation of relationships between sensitivities and
the reactive energy stored in the resonators. We suppose that
the network is excited by only one source at a time. When
source (i1) is active (i.e. i2 = 0) we define the generic
parameter Tk,1 = 1/2|Uk|2, while when source (i2) is active
(i.e. i1 = 0) we define in a similar manner Tk,2 = 1/2|Uk|2.
Depending on which voltage (k) is considered, these quanti-
ties have different physical interpretations:

• For 1 < k < n + 2, the expression 1/2|Uk|2 =
1/2|Uk|2/Ck represents the average reactive energy
stored in capacitor (k).

• For k = 1, N +2, the expression 1/2|Uk|2 represents the
average power dissipated in the unit admittance at the
access ports.

After some manipulations we find,

Tk,1 =
1

2
|Uk|2 (8)

=
1

2
|W1,k i1|2 (9)

=
1

2
|W1,k 2 a1|2 (10)

=

∣∣∣∣ ∂S1,1

∂Mk,k

∣∣∣∣ |a1|2 (11)

where a1 is the amplitude of the incident wave. Equation (9)
is obtained from the the definition of Wi,j and the circuital
equation (2), and (11) is a direct consequence of (4). We
obtain in the same manner the relation between Tk,2 and the
sensitivity of S2,2. For the rest of the paper we will suppose
that the input powers |a1|2, |a2|2 are normalized to 1 Watt,
which yields following normalized equations

Tk,1 = 2|W1,k|2 =

∣∣∣∣ ∂S1,1

∂Mk,k

∣∣∣∣ (12)

Tk,2 = 2|WN+2,k|2 =

∣∣∣∣ ∂S2,2

∂Mk,k

∣∣∣∣ (13)
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Combining equations (12),(13) with (5),(6),(7) completes
the correspondence between sensitivities (in fact their modu-
lus) and the reactive stored energies (or dissipated power at
the loads).

l 6= k,

∣∣∣∣ ∂S1,1

∂Ml,k

∣∣∣∣ = 2
√
Tl,1Tk,1,

∣∣∣∣ ∂S2,2

∂Ml,k

∣∣∣∣ = 2
√
Tl,2Tk,2

(14)

l = k,

∣∣∣∣∂S1,2

∂Ml,l

∣∣∣∣ =√Tl,1Tl,2 (15)

l 6= k,

∣∣∣∣ ∂S1,2

∂Ml,k

∣∣∣∣ =√Tl,1Tk,2 +
√
Tk,1Tl,2 (16)

IV. IMPLICATIONS AND APPLICATIONS

An important implication of the equations derived in previ-
ous section is to yield bounds on the sensitivities in terms
of physical quantities: the reactive stored energies Tk,l for
1 < k < n + 2 or dissipated powers for k = 1, N + 2. To
handle the sensitivity of the modulus of S1,1 = |S1,1|ej θS11

with respect to diagonal couplings (away from reflexion zeros)
remark that∣∣∣∣ ∂S1,1

∂Mk,k

∣∣∣∣2 =

∣∣∣∣∂|S1,1|
∂Mk,k

∣∣∣∣2 + |S1,1|2
∣∣∣∣∂Arg(S1,1)

∂Mk,k

∣∣∣∣2 (17)

which yields ∣∣∣∣∂|S1,1|
∂Mk,k

∣∣∣∣ ≤ Tk,1 (18)

This is an important result, since it shows that the time average
stored energy of a resonator Tk,1 is a maximum boundary of
the sensitivity of the |S11| parameter. Thus, the time average
stored energy in the resonators of a filter can be used to predict
a maximum deviation in the reflection parameter of the filter
for a specific manufacturing tolerance affecting the resonator
dimensions. This was already intuitively noticed in [4], [5],
but a mathematical proof was not available at that time.

Another interesting interpretation cast some light on the
global structure of the sensitivity parameters. The reactive
energy derives from an energy function verifying the edge
port conservation rule, provided the considered network is
loss-less: the total reactive energy of a loss-less network can
therefore be computed from its edge port parameters, here
the S-parameters. Precisely we have (see [1], [9], [10]),

T1 =

N+1∑
k=2

Tk,1 = −|S1,1|2
∂Arg(S1,1)

∂ω
− |S1,2|2

∂Arg(S1,2)

∂ω

(19)

T2 =

N+1∑
k=2

Tk,2 = −|S2,2|2
∂Arg(S2,2)

∂ω
− |S2,1|2

∂Arg(S2,1)

∂ω

(20)

and both expressions are equal to the group delay −∂Arg(S2,1)
∂ω

for auto-reciprocal characteristics (S1,1 = ±S2,2). In view
of (12) and (13) this shows that the global sensitivities, that
is
∑N+1

1

∣∣∣ ∂S1,1

∂Mk,k

∣∣∣ and
∑N+1

1

∣∣∣ ∂S2,2

∂Mk,k

∣∣∣, depend only on the
filter’s response. In particular, they do not depend on the

coupling matrix topology chosen to realize the filter. In other
words, the filtering characteristic sets the global sensitivity,
whereas the repartition of the latter in each single resonator
is driven by the coupling topology. Equations (12) to (16)
reveals that, coupling schemes with an equally distributed time
average stored energy among the resonators, will exhibit a
lower sensitivity boundary of the reflexion S-Parameters. In
this sense, works targeted to equally distribute the time average
stored energy in the resonators of a filter with the aim of
improving the power handling capability of the structure [11],
[12], can be employed to find structures with low sensitivity.

V. VALIDATION AND REMARKS

In this section, the results previously derived will be
illustrated through several simple examples. The examples
will deal with different transfer functions and different filter
topologies.

The first objective of the study is to show the coincidence
between the absolute value of the reflection S-Parameter
variation with respect to diagonal coupling matrix elements
and the time average stored energy in the resonators related
to that diagonal elements. In order to to this, a second order
Chebyshev transfer function with 25 dB return losses has been
synthesized. The transfer function is labelled as TF1 in Fig. 2.
If the filter network representing TF1 is synthesized into
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Fig. 2. Second order Chebyshev transfer function without finite transmission
zeros (TF1) and with one transmission zero above the passband (TF2)

an inline configuration (see Fig. 3(a)), the coupling matrix
results:

M1 =


0 1.4312 0 0

1.4312 0 2.1670 0
0 2.1670 0 1.4312
0 0 1.4312 0

 (21)

On the other hand, if the filter network representing TF1 is
synthesized into a transversal configuration (see Fig. 3(b)),
the coupling matrix results:

M2 =


0 −1.0120 1.0120 0

−1.0120 −2.1670 0 1.0120
1.0120 0 2.1670 1.0120

0 1.0120 1.0120 0

 (22)
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Fig. 3. Filter topologies: a) Inline, b) Transversal, c) Extended Box.

The time average stored energy in the resonators of the
inline and the transversal networks, as well as the absolute
value of the reflection S-Parameter variation with respect to
diagonal coupling matrix elements M11 and M22, are shown in
Fig. 4 (inline topology) and Fig. 5 (transversal topology). As
predicted by (12), Fig. 4 and Fig. 5 show that the sensitivity
of S11 with respect to each diagonal coupling matrix element
(Sensk,k) and the time average stored energy (TK,1) in its
associated resonator are exactly equal.
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Fig. 4. Absolute value of the S11 variation with respect to each diagonal
coupling matrix element Mkk (Senskk) and time average stored energy
(measured in Joules)

in its associated resonator (tasek). Transfer function TF1

(Fig. 2) in inline configuration ( Fig. 3(a)).

As stated by (19) the total stored energy taseTOT is
the same in both topologies (see Fig. 4 and Fig. 5). This
total energy is however better balanced between resonators
in the in-line topology as compared to the transversal one.
The maximal sensitivity (across all diagonal couplings) is
therefore, for most frequencies, lower in the in-line topology.

The second target is to show that the total sensitivity of S11

with respect to the diagonal coupling matrix terms is different
for different transfer functions, independently of their filter
topology. Note that the total sensitivity of S11 with respect
to the diagonal coupling matrix terms equals the sum of the
stored energy in the resonators of the networks, which is
known to be constant for a given transfer function [11], [12].
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(Fig. 2) in transversal configuration ( Fig. 3(b)).

A different transfer function to the one used in the previ-
ous examples (see TF1 in Fig. 2) have been synthesized in
transversal configuration. This new transfer function exhibits
a transmission zero at ω = j · 4 rad/s, and presents 25 dB of
return losses. It is labelled as TF2 in Fig. 2, and its coupling
matrix results:

M3 =


0 0.7299 −1.2926 0

0.7299 −2.0783 0 0.7299
−1.2926 0 1.9501 1.2926

0 0.7299 1.2926 0

 (23)

The total sensitivity of S11 with respect to the diagonal
coupling matrix terms (Sens11 + Sens22) for both transfer
functions TF1 and TF2 of Fig. 2, is shown in Fig. 6.
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Fig. 6. Total sensitivity of S11 with respect to the diagonal coupling matrix
terms for TF1 and TF2 shown in Fig. 2.

Note that the total sensitivity with respect to diagonal terms
equals the total time averaged stored energy in the network,
and thus it also equals the group delay of the transfer function
under study if the available power is a1 = 1 [11], [12]. It
is known that the time averaged stored energy in a network
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changes if the transfer function represented by the network
is changed. Thus, it is expected that the total sensitivity of
S11 with respect to the diagonal coupling matrix terms varies
for different transfer functions. As expected, we notice that
the sensitivity of TF2 is clearly higher than the sensitivity
of TF1 in the frequency range of the passband closer to the
transmission zero of TF2, but lower in the other region.

The next target is to show that the sum of the coupling
sensitivities is different for different topologies implementing
the same transfer function. In order to do that, the total
sensitivity of S11 with respect to the general coupling matrix
elements (non diagonal) SenTot for TF1 of Fig. 2 imple-
mented in inline and transversal configurations, is shown in
Fig. 7. It is observed that both traces are different, being larger
the total sensitivity SenTot with respect to the couplings in
the transversal network. This was intuitively expected, since
the number of couplings in both topologies is different (the
transversal topology implements four main couplings, whereas
the inline topology is formed with just three main couplings).
To sum up, when including couplings in the global sensitivity,
the sensitivity becomes dependant on the topology. Besides,
there is no longer equality with the group delay, although an
upper bound involving the group delay could still be computed
for each specific topology.
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Fig. 7. Sensitivity of S11 with respect to the general coupling matrix elements
for transfer function TF1 of Fig. 2 in inline and transversal configurations.

Note that the sensitivity of S11 with respect to the individual
general coupling matrix elements for transfer function TF1 of
Fig. 2 in inline and transversal configurations are also plotted
in Fig. 7. Similar plots have been obtained from the time
average stored energy and the dissipated power in the ports
by applying (14), (15), (16), although they are not included in
Fig. 7 because exactly the same results are obtained.

Finally, the last target is to compare the total sensitivity
with respect to the general coupling matrix elements (i.e. non-
diagonal) of two different implementations of the same transfer
function with the same topology. This will allow to choose
the coupling matrix with the lowest sensitivity. Note that the
total sensitivity with respect to the diagonal elements will be
the same in both cases, since as demonstrated in the previous
section, it equals to the group delay of the response.
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Fig. 8. Sixth order Chebyshev transfer function with two asymmetric finite
transmission zeros below the passband.

In order to compare two different implementations of the
same transfer function with the same topology, the sixth order
transfer function shown in Fig. 8 will be synthesized. The
selected topology is the extended box (see Fig. 3(c)). The
extended box filter configuration was introduced in [13], and it
is known to have several solutions for a given coupling matrix
synthesis problem [14]. This offers some flexibility in order
to select the solution with the best sensitivity behavior. Two
different coupling matrices M4 and M5 have been synthesized
using the software package Dedale-HF [15].

Figure. 9 shows, for both solutions, the stored energies pa-
rameters T3,1 . . . T6,1 with respect to the normalized frequency
ω (T2,1 and T7,1 are the same for both solutions, hence not
plotted). It is observed that the M5 solution is extremely
sensitive with respect to the resonance frequency of the second
resonator, and this on the lower border of the pass-band (see
T3,1 in Figure.9 ). This is confirmed by the value of its
frequency shift M5

3,3 = 1.0014, which indicates that resonator
2 is heavily de-tuned with respect to the central frequency.
It suggests that solution M4 achieves here a better balance
of the total stored energy. This in turn will result, as shown
in the paper, in a lower global maximal sensitivity, obtained
here in both solutions for the M3,3 element around ω = −1.
Due to formula (14) solution M4 will also outperform M5

when considering maximal sensitivities (for example over the
frequency range [−1.5, 1.5]) with respect to the couplings
M2,3 and M3,4. Of course, due to the invariance of T1, the
solution M5 performs ”better’ than M4 when looking at the
sensitivities related to the fourth and fifth resonators.

VI. CONCLUSIONS

Precise formulas to express the formal relationship between
the time average stored energy in the resonators of a lowpass
filter network and the sensitivity of the reflection S parameter
with respect to the coupling matrix terms have been presented
in this paper. The relationships have been described in the
modern context of the N+2 coupling matrix for both diagonal
and general coupling elements of the matrix. Furthermore,
important implications have been derived from the new rela-
tionships found in the paper, allowing to establish maximum
sensitivity boundaries. The latter were obtained from energy
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M4 =



0 1.0638 0 0 0 0 0 0
1.0638 −0.0441 0.1604 0 0.8873 0 0 0

0 0.1604 0.7700 0.4839 0 0 0 0
0 0 0.4839 −0.3035 −0.5668 0 0.7702 0
0 0.8873 0 −0.5668 −0.0832 0.4117 0 0
0 0 0 0 0.4117 0.6113 0.4688 0
0 0 0 0.7702 0 0.4688 −0.0441 1.0638
0 0 0 0 0 0 1.0638 0



M5 =



0 1.0638 0 0 0 0 0 0
1.0638 −0.0441 −0.2806 0 0.8569 0 0 0

0 −0.2806 1.0014 0.0867 0 0 0 0
0 0 0.0867 0.7066 0.3146 0 0.5630 0
0 0.8569 0 0.3146 −0.1696 0.4879 0 0
0 0 0 0 0.4879 −0.5437 −0.7042 0
0 0 0 0.5630 0 −0.7042 −0.0441 1.0638
0 0 0 0 0 0 1.0638 0



Fig. 9. Stored energies for second to forth resonator and for both solution
M4 and M5

considerations for the special case of the classical lowpass
(N + 2×N + 2) prototype yielding some insight about how
to perform practically with the computation of the reactive
energies. Another, but more abstract way to go is certainly
to extend, in all generality, Kishi’s energy theory to networks
with constant inverters, and FIR elements.
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