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Abstract

We consider the problem of learning the structure of undirected graphical models with
bounded treewidth, within the maximum likelihood framework. This is an NP-hard problem
and most approaches consider local search techniques. In this paper, we pose it as a combi-
natorial optimization problem, which is then relaxed to a convex optimization problem that
involves searching over the forest and hyperforest polytopes with special structures, indepen-
dently. A supergradient method is used to solve the dual problem, with a run-time complexity
of O(k3

n
k+2 log n) for each iteration, where n is the number of variables and k is a bound on

the treewidth. We compare our approach to state-of-the-art methods on synthetic datasets and
classical benchmarks, showing the gains of the novel convex approach.

1 Introduction

Graphical models provide a versatile set of tools for probabilistic modeling of large collections of
interdependent variables. They are defined by graphs that encode the conditional independences
among the random variables, together with potential functions or conditional probability distribu-
tions that encode the specific local interactions leading to globally well-defined probability distribu-
tions [4, 32, 16].

In many domains such as computer vision, natural language processing or bioinformatics, the struc-
ture of the graph follows naturally from the constraints of the problem at hand. In other situations,
it might be desirable to estimate this structure from a set of observations. It allows (a) a statisti-
cal fit of rich probability distributions that can be considered for further use, and (b) discovery of
structural relationship between different variables. In the former case, distributions with tractable
inference are often desirable, i.e., inference with run-time complexity does not scale exponentially
in the number of variables in the model. The simplest constraint to ensure tractability is to impose
tree-structured graphs [7]. However, these distributions are not rich enough, and following earlier
work [21, 1, 22, 6, 13, 29], we consider models with bounded treewidth, not simply by one (i.e., trees),
but by a small constant k.

Beyond the possibility of fitting tractable distributions (for which probabilistic inference has linear
complexity in the number of variables), learning bounded-treewidth graphical models is a key to
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design approximate inference algorithms for graphs with higher treewidth. Indeed, as shown by [24,
32, 17], approximating general distributions by tractable distributions is a common tool in variational
inference. However, in practice, the complexity of variational distributions is often limited to trees
(i.e., k = 1), since these are the only ones with exact polynomial-time structure learning algorithms.
The convex relaxation designed in this paper enables us to augment the applicability of variational
inference, by allowing a finer trade-off between run-time complexity and approximation quality.

Apart from trees, learning the structure of a directed or undirected graphical model, with or with-
out constraints on the treewidth, remains a hard problem. Two types of algorithms have emerged,
based on the two equivalent definitions of graphical models: (a) by testing conditional independence
relationships [27] or (b) by maximizing the log-likelihood of the data using the factorized form of
the distribution [11]. In the specific context of learning bounded-treewidth graphical models, the
latter approach has been shown to be NP-hard [28] and led to various approximate algorithms based
on local search techniques [21, 9, 15, 1, 26, 29] while the former approach led to algorithms based
on independence tests [22, 6, 13], which have recovery guarantees when the data-generating distri-
bution has low treewidth. Malvestuto [21] proposed a greedy heuristic of hyperedge selection with
least incremental entropy. Deshpande et al. [9] proposed a simple edge selection technique that
maintains decomposability of the graph while minimizing the KL-divergence to the original distri-
bution. Karger et al. [15] proposed the first convex optimization approach to learn the maximum
weighted k-windmill, a sub-class of the decomposable graph. Bach et al. [1] gave an approach which
iteratively refines the hyperedge selection based on KL-divergence using iterative scaling. Shahaf et
al. [26] proposed another convex optimization approach with Bethe approximation of the likelihood
using graph-cuts. Szántai et al. [29] proposed a hyperedge selection criteria based on high mutual
information within a hyperedge. Narasimhan et al. [22] performs independence tests by solving
submodular optimization problems and derives a decomposable graph using dynamic programming.
Chechetka et al. [6] used the weaker notion of conditional mutual information instead of conditional
independence to learn approximate junction trees. Gogate et al. [13] uses low mutual information
criteria to recursively split the state space to smaller subsets until no further splits are possible.

In this paper, we make the following contributions:

• We provide a novel convex relaxation for learning bounded-treewidth decomposable graphical
models from data in polynomial time. This is achieved by posing the problem as a combina-
torial optimization problem in Section 2, which is relaxed to a convex optimization problem
that involves the graphic and hypergraphic matroids, as shown in Section 3.

• We show in Section 4 how a supergradient ascent method may be used to solve the dual
optimization problem, using greedy algorithms as inner loops on the two matroids. Each
iteration has a run-time complexity of O(k3nk+2 logn), where n is the number of variables.
We also show how to round the obtained fractional solution.

• We compare our approach to state-of-the-art methods on synthetic datasets and classical
benchmarks in Section 5, showing the gains of the novel convex approach.

2 Maximum Likelihood Decomposable Graphical Models

In this section, we first review the relevant concepts of decomposable graphs and junction trees; for
more details, see [4, 32, 16]. We then cast the problem of learning the maximum likelihood bounded
treewidth graph as a combinatorial optimization problem.
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Figure 1: (a) A decomposable graph on the set of vertices V = {1, 2, 3, 4, 5, 6, 7, 8, 9}having treewidth
2.(b) A junction tree embedded on the decomposable graph representing the maximal cliques by blue
dots and the separator sets by blue lines. (c) The corresponding junction tree representation of the
decomposable graph with ovals representing the maximal cliques and the rectangles representing the
corresponding separator set.

2.1 Decomposable graphs and junction trees

We assume we are given an undirected graph G defined on the set of vertices V = {1, 2, . . . , n}.
Let C(G) denote the set of maximal cliques of G (which we will refer to as cliques). We consider
n random variables X1, . . . , Xn (referred to as X), associated with each vertex indexed by V . For
simplicity, they are assumed to be discrete, but this is not a restriction as maximum likelihood will
use only entropies that can be extended to differentiable entropies [8].

The distribution p(x) of X is said to factorize in the graph G, if and only if it factorizes as a product
of potentials that depend only on the variables within maximal cliques.

A graph is said to be decomposable if it has a junction tree, i.e., a spanning tree whose vertices are
maximal cliques of G (i.e., C(G) is the vertex set) such that:

• the junction tree connects only cliques that have a common element (clique tree property),

• for any vertex i ∈ V , the subgraph of cliques containing i is a tree (running intersection
property).

Let T (G) denote the edges of the junction tree over the set of cliques C(G). When the graph G is
decomposable, the distribution p(x) of X factorizes in G if and only if it may be written as

pG(x) =

∏

C∈C(G) pC(xC)
∏

(C,D)∈T (G) pC∩D(xC∩D)
, (1)

where x is an instance in the domain of X , which we denote by X . pC(xC) denotes the marginal
distribution of random variables belonging to C ∈ C(G) and pC∩D(xC∩D) denotes the marginal
distribution of random variables belonging to the separator set C ∩D, such that (C,D) ∈ T (G). See
Figure 1. The treewidth of G is the maximal size of the cliques in G, minus one.

An alternative representation of decomposable graphs may be obtained by considering hypergraphs.
Hypergraphs are defined by a base set V and a set of hyperedges, i.e., subsets of V . A hypergraph
is said to be acyclic if and only if the resulting graph obtained by connecting all elements within an
hyperedge is decomposable. Unfortunately, the nice properties of acyclic graphs do not transfer to
acyclic hypergraphs. Particulary, the matroid property, which allows exact greedy algorithms, does
not hold. In Section 3.2, we will use a lesser known more general notion of acyclicity that will lead
to exact greedy algorithms.
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2.2 Maximum likelihood estimation

Given N observations x1, . . . , xN of X , we denote the corresponding empirical distribution of X by
p̂(x) = 1

N

∑N
i=1 δ(x = xi). Given the structure of a decomposable graph G, the maximum likelihood

distribution that factorizes in G may be obtained by combining the marginal empirical distributions
on all maximum cliques and their separators.

Let p̂(x) denote the empirical distribution and p̂G(x) denotes the projected distribution on a decom-
posable graph G. Estimating the maximum likelihood decomposable graph which best approximates
p̂ is equivalent to finding the graph, G, which minimizes the KL-divergence between the target dis-
tribution and the projected distribution, p̂G, defined by D(p̂||p̂G).

D(p̂||p̂G) =
∑

x∈X
p̂(x) log

p̂(x)

p̂G(x)

∝
∑

x∈X
−p̂(x) log p̂G(x) as p̂(x) is independent of G

=
∑

x∈X
−p̂(x) log

∏

C∈C(G) p̂C(xC)
∏

(C,D)∈T (G) p̂C∩D(xC∩D)
from Eq. (1)

=
∑

x∈X

(

− p̂(x) log
∏

C∈C(G)

p̂C(xC)

)

−
∑

x∈X

(

− p̂(x) log
∏

(C,D)∈T (G)

p̂C∩D(xC∩D)

)

=
∑

C∈C(G)

∑

x∈X
−p̂(x) log p̂C(xC)−

∑

(C,D)∈T (G)

∑

x∈X
−p̂(x) log p̂C∩D(xC∩D)

=
∑

C∈C(G)

∑

xC∈XC

−p̂C(xC) log p̂C(xC)−
∑

(C,D)∈T (G)

∑

xC∩D∈XC∩D

−p̂C∩D(xC∩D) log p̂C∩D(xC∩D)

=
∑

C∈C(G)

H(C)−
∑

(C,D)∈T (G)

H(C ∩D) , (2)

where H(S) is the empirical entropy of the random variables indexed by the set S ⊆ V , defined by
H(S) =

∑

xS
{−p̂S(xS) log p̂S(xS)}, and where the sum is taken over all possible values of xS .

Note that in this paper, we will not be using a traditional model selection term [11] as we will only
consider models of low tree-width (with a bounded number of parameters).

2.3 Combinatorial optimization problem

We now consider the problem of learning a decomposable graph of treewidth less than k. We assume
that we are given all entropies H(S) for subsets S of V of cardinality less than k + 1.

Since we do not add any model selection term, without loss of generality [30], we restrict the search
space to the space of maximal junction trees, i.e., junction trees with n− k maximal cliques of size
k+1 and n−k−1 separator sets of size k between two cliques of size k+1. Our natural search spaces
are thus characterized by D, the set of all subsets of size k+1 of V , of cardinality

(

n
k+1

)

, and E , the
set of all potential edges in a junction tree, i.e., E = {(C,D) ∈ D × D, C ∩ D 6= ∅, |C ∩ D| = k}.
The cardinality of E is

(

n
k+2

)

.
(

k+2
2

)

(number of subsets of size k + 2 times the number of possibility
of excluding two elements to obtain a separator).

A decomposable graph will be represented by a clique selection function τ : D → {0, 1} and an
edge selection function ρ : E → {0, 1} so that τ(C) = 1 if C is a maximal clique of the graph and
ρ(C,D) = 1 if (C,D) is an edge in the junction tree. Both ρ and τ will be referred to as incidence
functions or incidence vectors, when seen as elements of {0, 1}D and {0, 1}E .
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Thus, minimizing the problem defined in Eq. (2) is equivalent to minimizing,

P(τ, ρ)=
∑

C∈D
H(C)τ(C) −

∑

(C,D)∈E
H(C ∩D)ρ(C,D), (3)

with the constraint that (τ, ρ) forms a decomposable graph.

At this time, we have merely reparameterized the problem with the clique and edge selection func-
tions. We now consider a set of necessary and sufficient conditions for the pair to form a decom-
posable graph. Some are convex in (τ, ρ), while some are not. The latter ones will be relaxed in
Section 3. From now on, we denote by 1i∈C the indicator function for i ∈ C (i.e., it is equal to 1 if
i ∈ C and zero otherwise).

• Covering V : Each vertex in V must be covered by atleast one of the selected cliques,

∀i ∈ V,
∑

C∈D
1i∈Cτ(C) ≥ 1. (4)

• Number of edges: Exactly n− k − 1 edges from E must be selected,
∑

(C,D)∈E
ρ(C,D) = n− k − 1. (5)

• Number of cliques: Exactly n− k cliques from D must be selected,
∑

C∈D
τ(C) = n− k. (6)

• Running intersection property: Every vertex, i ∈ V must induce a tree, i.e., the number
of selected edges containing the vertex, i, must be equal to the number of selected cliques
containing the vertex, i , minus one.

∀i ∈ V,
∑

(C,D)∈E
1i∈(C∩D)ρ(C,D)−

∑

C∈D
1i∈Cτ(C) + 1 = 0. (7)

• Edges between selected cliques: An edge in E is selected by ρ only if the cliques it is incident
on is selected by τ .

∀C ∈ D, τ(C) = max
D∈D, (C,D)∈E

ρ(C,D). (8)

• Acyclicity of ρ: ρ selects edges in E such that they do not have loops, e.g., the blue lines in
Figure 1-(b) cannot form loops,

ρ represents a subforest of the graph (D, E). (9)

• Acyclicity of τ : τ selects the hyperedges of V in D such that they are acyclic, i.e.,

τ represents an acyclic hypergraph of (V,D). (10)

The above constraints encode the classical definition of junction trees. Thus our combinatorial
problem is exactly equivalent to minimizing P (τ, ρ) defined in Eq. (3), subject to the constraints in
in Eq. (4), Eq. (5), Eq. (6), Eq. (7), Eq. (8), Eq. (9) and Eq. (10). Note that the constraint Eq. (10)
that τ represents an acyclic hypergraph is implied by the other constraints.

Figure 2 shows clique and edge selections in blue which satisfy all these constraints and hence
represent a decomposable graph. The clique and edge selections in red violates at least one of these
constraints.
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Figure 2: Space of cliques D denoted by ovals and the space of feasible edges E denoted by lines for
V = {1, 2, 3, 4, 5} and treewidth 2(in Black). Clique and edge selections in blue represent decom-
posable graphs while those in red denote graphs that are not decomposable (best seen in color).

3 Convex Relaxation

We now provide a convex relaxation of the combinatorial problem defined in Section 2.3. The
covering constraint in Eq. (4), the number of edges and the number of cliques constraints in Eq. (5)
and Eq. (6) respectively, and the running intersection property in Eq. (7) are already convex in (τ, ρ).

The constraint in Eq. (8) that ∀C ∈ D, τ(C) = maxD∈D, (C,D)∈E ρ(C,D) may be relaxed into:

• Edge constraint: selection of edges only if the both the incident cliques are selected, i.e.,

∀C ∈ D, ∀(C,D) ∈ E , ρ(C,D) ≤ τ(C). (11)

• Clique constraint: selection of a clique if at least an edge incident on it is selected, i.e.,

∀C ∈ D, τ(C) ≤
∑

(C,D)∈E
ρ(C,D). (12)

We now consider the two acyclicity constraints in Eq. (9) and Eq. (10).

3.1 Forest polytope

Given the graph (D, E), the forest polytope is the convex hull of all incidence vectors ρ of subforests
of (D, E). Thus, it is exactly the convex hull of all ρ : E → {0, 1} such that ρ satisfies the constraint
in Eq. (9). We may thus relax it into:

– Tree constraint:

ρ is in the forest polytope of (D, E). (13)
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While the new constraint in Eq. (13) forms a convex constraint, it is crucial that it may be dealt
with empirically in polynomial time. This is made possible by the fact that one may maximize
any linear function over that polytope. Indeed, for a weight function w : E × E → R, maximizing
∑

(C,D)∈E w(C,D)ρ(C,D) is exactly a maximum weight spanning forest problem, and its solution

may be obtained by Kruskal’s algorithm, i.e., (a) order all (potentially negative) weights w(C,D)
and (b) greedily select edges (C,D), i.e., set ρ(C,D) = 1, with higher weights first, as long as they
form a forest and as long as the weights are positive. When we add the restriction that the number
of edges is fixed (in our case n − k − 1), then the algorithm is stopped when exactly the desired
number of edges is selected (whether the corresponding weights are positive or not). See, e.g., [25].

The polytope defined above may also be defined as the independence polytope of the graphic matroid,
which is the traditional reason why the greedy algorithm is exact [25]. In the next section, we show
how this can be extended to hypergraphs.

3.2 Hypergraphic matroid

Given the set of potential cliques D over V , we consider functions τ : D → {0, 1} that are equal
to one when a clique is selected, and zero otherwise. Ideally, we would like to treat the acyclicity
of the associated hypergraph in a similar way than for regular graphs. However, the set of acyclic
subgraphs of the hypergraph defined from D does not form a matroid, and thus the polytope defined
as the convex hull of all incidence vectors/functions of acyclic hypergraphs may be defined, but the
greedy algorithm is not applicable. In order to define what is referred to as the hypergraphic matroid,
one needs to relax the notion of acyclicity.

We now follow [20, 10, 12] and define a different notion of acyclicity for hypergraphs. An hypergraph
(V,F) is an hyperforest if and only if for all A ⊂ V , the number of hyperedges in F contained in
A is less than |A| − 1. A non-trivially equivalent definition is that we can select two elements in
each hyperedege so that the graph with vertex set V and with edge set composed of these pairs is a
forest.

Given an hypergraph with hyperedge set D, the set of sub-hypergraphs which are hyperforests
forms a matroid. This implies that given a weight function on D, one may find the maximum weight
hyperforest with a greedy algorithm that ranks all hyperedges and select them as long as they don’t
violate acyclicity (with the notion of acyclicity just defined and for which we exhibit a test below).

Testing acyclicity. Checking acyclicity of an hypergraph (V,F) (which is needed for the greedy
algorithm above) may be done by minimizing with respect to A ⊂ V

|A| −
∑

G∈F
1G⊂A.

The hypergraph is an hyperforest if and only if the minimum is greater or equal to one. The
minimization of this function may be cast a min-cut/max-flow problem as follows [12]:

– single source, single sink, one node per hyperedge in F , one node per vertex in V ,

– the source points towards each hyperedge with unit capacity,

– each hyperedge points towards the vertices it contains, with infinite capacity,

– each vertex points towards the sink, with unit capacity.

Link with decomposability. The hypergraph obtained from the maximal cliques of a decom-
posable graph can easily be seen to be an hyperforest. But the converse is not true.
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Hyperforest polytope. We can now naturally define the hyperforest polytope as the convex hull
of all incidence vectors of hyperforests. Thus the constraint in Eq. (10) may be relaxed into:

– Hyperforest constraint:

τ is in the hyperforest polytope of (V,D). (14)

3.3 Relaxed optimization problem

We can now formulate our combinatorial problem from the constraints in Eq. (4), Eq. (5), Eq. (6),
Eq. (7), Eq. (11), Eq. (12), Eq. (13) and Eq. (14) as follows

minP(τ, ρ) subject to































































τ ∈ {0, 1}D,
ρ ∈ {0, 1}E,
∀i ∈ V,

∑

C∈D 1i∈Cτ(C) ≥ 1,
∑

(C,D)∈E ρ(C,D) = n− k − 1,
∑

C∈D τ(C) = n− k,
∀i ∈ V,

∑

(C,D)∈E 1i∈(C∩D)ρ(C,D)−∑

C∈D 1i∈Cτ(C) + 1 = 0,

∀C ∈ D, ∀(C,D) ∈ E , ρ(C,D) ≤ τ(C),
∀C ∈ D, τ(C) ≤ ∑

(C,D)∈E ρ(C,D),

ρ is in the forest polytope of (D, E),
τ is in the hyperforest polytope of (V,D).

(15)

All constraints except the integrality constraints are convex. Let τ-relaxed primal be the partially
relaxed primal optimization problem formed by relaxing only the integral constraint on τ in Eq. (15),
i.e., replacing τ ∈ {0, 1}D by τ ∈ [0, 1]D. Note that this is not a convex problem due to the remaining
integral constraint on ρ, but it remains equivalent to the original problem as the following proposition
shows.

Proposition 1 The combinatorial problem in Eq. (15) and the τ-relaxed primal problem are equiv-
alent.

Proof Let us assume (τ∗, ρ∗) be a feasible solution for the relaxed primal with 0 < τ∗(C) < 1 for
some C ∈ D. The edge constraint in Eq. (11) ensures that there are no incident edges on C selected
by ρ∗ (as ρ∗ is integral). This violates the clique constraint in Eq. (12). Therefore, the feasible
solutions of relaxed primal are integral. Hence the optimal solutions of the primal and the relaxed
primal are identical.

The convex relaxation for the primal optimization problem formed by relaxing the integral constraint
on both τ and ρ can now be defined as

minP(τ, ρ) subject to































































τ ∈ [0, 1]D,
ρ ∈ [0, 1]E ,
∀i ∈ V,

∑

C∈D 1i∈Cτ(C) ≥ 1,
∑

(C,D)∈E ρ(C,D) = n− k − 1,
∑

C∈D τ(C) = n− k,
∀i ∈ V,

∑

(C,D)∈E 1i∈(C∩D)ρ(C,D)−∑

C∈D 1i∈Cτ(C) + 1 = 0,

∀C ∈ D, ∀(C,D) ∈ E , ρ(C,D) ≤ τ(C),
∀C ∈ D, τ(C) ≤ ∑

(C,D)∈E ρ(C,D),

ρ is in the forest polytope of (D, E),
τ is in the hyperforest polytope of (V,D).

(16)
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4 Solving the dual problem

We now show how the convex problem may be minimized in polynomial time. Among the constraints
of our convex problem in Eq. (15), some are simple linear constraints, some are complex constraints
depending on the forest and hyperforest polytopes defined in Section 3. We will define a dual
optimization problem by introducing the least possible number of Lagrange multipliers (a.k.a. dual
variables) [3] so that the dual function (and a supergradient) may be computed and maximized
efficiently. We introduce the following dual variables:

– Set cover constraints in Eq. (4): γ ∈ R
V
+ .

– Running intersection property in Eq. (7): µ ∈ R
V .

– Edge constraints in Eq. (11): λ ∈ R
2E
+ .

– Clique constraints in Eq. (12): η ∈ R
D
+ .

Therefore, the dual variables are (γ, µ, λ, η). Let L(τ, ρ, γ, µ, λ, η) be the Lagrangian relating the
primal and dual variables. It is derived from the primal cost function defined in Eq. (3) along with
the covering constraint, running intersection property, the edge and the clique constraints defined
in Eq. (4), Eq. (7), Eq. (11) and Eq. (12) respectively. The Lagrangian can be computed from the
dual variables (γ, µ, λ, η) as follows:

L(τ, ρ, γ, µ, λ, η)

=
∑

C∈D
H(C)τ(C) −

∑

(C,D)∈E
H(C ∩D)ρ(C,D)

+
∑

i∈V

γi

(

1−
∑

C∈D
1i∈Cτ(C)

)

+
∑

i∈V

µi

(

∑

(C,D)∈E
1i∈(C∩D)ρ(C,D)−

∑

C∈D
1i∈Cτ(C) + 1

)

+
∑

C∈D

∑

(C,D)∈E
λCD

(

ρ(C,D)− τ(C)

)

+
∑

C∈D
ηC

(

τ(C) −
∑

(C,D)∈E
ρ(C,D)

)

=
∑

C∈D

(

H(C)−
∑

i∈C

(µi + γi)−
∑

(C,D)∈E
λCD + ηC

)

τ(C)

−
∑

(C,D)∈E

(

H(C ∩D)−
∑

i∈(C∩D)

µi − λCD − λDC + ηC + ηD

)

ρ(C,D) +
∑

i∈V

(µi + γi),

(17)

with the following dual constraints on the Lagrange multipliers

∀i ∈ V, γi ≥ 0,

∀C ∈ D, ∀(C,D) ∈ E , λCD ≥ 0,

∀C ∈ D, ηC ≥ 0. (18)

We can now derive a dual optimization problem with Q(γ, µ, λ, η) represent the dual cost function,
which can be derived from the Lagrangian in Eq. (17). We use the the number of edges constraint,
the number of cliques constraint, tree constraint and hyperforest constraint given by Eq. (5), Eq. (6),
Eq. (13) and Eq. (14) respectively in deriving the dual as follows:
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Q(γ, µ, λ, η)

= inf
τ(C)∈[0,1]D∑
C∈D

τ(C)=n−k

τ∈ hyperforest polytope of (V,D)

(

H(C)−
∑

i∈C

(µi + γi)−
∑

(C,D)∈E
λCD + ηC

)

τ(C)

− sup
ρ∈[0,1]E∑

(C,D)∈E
ρ(C,D)=n−k−1

ρ∈forest polytope of (D,E)

∑

(C,D)∈E

(

H(C ∩D)−
∑

i∈(C∩D)

µi − λCD − λDC + ηC + ηD

)

ρ(C,D)

+
∑

i∈V

(µi + γi). (19)

It is decomposed in three parts defined in Eq. (21), Eq. (22) and Eq. (23) respectively :

Q(γ, µ, λ, η) = q1(γ, µ, λ, η) + q2(γ, µ, λ, η) + q3(γ, µ, λ, η), (20)

where

q1(γ, µ, λ, η) = inf
τ(C)∈[0,1]D∑
C∈D

τ(C)=n−k

τ∈ hyperforest polytope of (V,D)

∑

C∈D

(

H(C)−
∑

i∈C

(µi + γi)−
∑

(C,D)∈E
λCD + ηC

)

τ(C).(21)

q2(γ, µ, λ, η) = − sup
ρ∈[0,1]E∑

(C,D)∈E
ρ(C,D)=n−k−1

ρ∈ forest polytope of (D,E)

∑

(C,D)∈E

(

H(C ∩D)−
∑

i∈(C∩D)

µi − λCD − λDC + ηC + ηD

)

ρ(C,D).

(22)

q3(γ, µ, λ, η) =
∑

i∈V

(µi + γi). (23)

Therefore, the dual optimization problem using the dual cost function defined in Eq. (19) and the
dual constraints defined in Eq. (18) is given by

maxQ(γ, µ, λ, η) subject to







∀i ∈ V, γi ≥ 0,
∀C ∈ D, ∀(C,D) ∈ E , λCD ≥ 0,
∀C ∈ D, ηC ≥ 0.

(24)

The dual functions q1(γ, µ, λ, η) and q2(γ, µ, λ, η) may be computed using the greedy algorithms
defined in Section 3.1 and Section 3.2; q1 can be evaluated in O(r log(r)), where r is the cardinality
of the space of cliques, D, i.e.,

(

n
k+1

)

and q2 can be evaluated in O(m log(m)), where m is the

cardinality of feasible edges, E , i.e.,
(

n
k+2

)

.
(

k+2
2

)

. This complexity is due to sorting the edges and

hyperedges based on their weights. This leads to an overall complexity of O(k3nk+2 logn) per
iteration of the projected supergradient method which we now present.

Projected supergradient ascent. The dual optimization problem defined by maximizingQ(γ, µ, λ, η)
can be solved using the projected supergradient method. In each iteration t of the algorithm, the dual
cost function, Q(γt, µt, λt, ηt), is evaluated through estimation of q1 and q2 by solving Eq. (21) and

10



Algorithm 1 Projected Supergradient

Input: clique and edge entropies H, step-size constant a and number of iterations T
Output: sequence of clique and edge selections over iterations (τ t, ρt)
Initialize γ0 = 0, µ0 = 0, λ0 = 0, η0 = 0
for t = 0 to T do

solve Eq. (21) and evaluate q1(γ
t, µt, λt, ηt) to obtain τ t

solve Eq. (22) and evaluate q2(γ
t, µt, λt, ηt) to obtain ρt

update dual variables, (γt+1, µt+1, λt+1, ηt+1) using supergradients and stepsize: αt =
a√
t

γt+1
i =

[

γt
i + αt

(

1−
∑

C∈D 1i∈Cτ
t(C)

)]+

µt+1
i = µt

i + αt

(

∑

(C,D)∈E 1i∈(C∩D)ρ
t(C,D)−∑

C∈D 1i∈Cτ
t(C) + 1

)

λt+1
CD =

[

λt
CD + αt

(

τ t(C) − ρt(C,D)
)]+

ηt+1
C =

[

ηtC + αt

(

∑

(C,D)∈E ρ
t(C,D)− τ t(C)

)]+

end for

Eq. (22) respectively. In the process of solving these equations, the corresponding primal variables
(τ t, ρt) are also estimated and allows the computations of the supergradients of Q (i.e., opposites
of subgradients of −Q) [3]. As shown in Algorithm 1, a step is made toward the direction of the
supergradient and projection onto the positive orthant is performed for dual variables that are con-
strained to be nonnegative. With step sizes αt proportional to 1/

√
t, this algorithm is known to

converge to a dual optimal solution [23] at rate 1/
√
t. Moreover, the average of all visited primal

variables, i.e., after t steps, (τ̂t, ρ̂t) =
1
t

∑t
u=0(τ

u, ρu) is known to be approximately primal-feasible
(i.e., it satisfies all the linear constraints that were dualized up to a small constant that is also going
to zero at rate 1/

√
t). The convergence to primal feasibility is illustrated in Figure 4(a), where, on

one of the synthetic examples from Section 5, the different constraint violations. Note that these
are not the number of each of these constraints violated but the maximum value by which they are
violated. It can be observed that the constraint violations reduce to zero over iterations.

Proposition 2 If k = 1, the convex relaxation in Eq. (16) is equivalent to Eq. (15).

Proof If k = 1, all the cliques in the clique space contain only 2 vertices, i.e., ∀C ∈ D, |C| = 2 and
the number of elements in the feasible edges is only 1, i.e., ∀(C,D) ∈ E , |C ∩D| = 1.

Solving the convex relaxation defined in Eq. (16) is equivalent to solving the dual defined in Eq. (24).
On solving the dual variables, the optimal dual solution is given by

∀i ∈ V, µi = H({i}),
∀i ∈ V, γi = 0,
∀C ∈ D, ∀(C,D) ∈ E , λCD = 0,
∀C ∈ D, ηC = 0,

(25)

where H({i}) = −p̂i(xi) log(p̂i(xi)).
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The optimal solution to the dual problem is given by

Q∗(γ, µ, λ, η) = inf
τ(C)∈[0,1]D∑
C∈D

τ(C)=n−k

τ∈ hyperforest polytope of (V,D)

∑

C∈D

(

H(C)−
∑

i∈C

H({i})
)

τ(C) +
∑

i∈V

H({i})

= inf
τ(C)∈[0,1]D∑
C∈D

τ(C)=n−k

τ∈ hyperforest polytope of (V,D)

−I(C).τ(C) +
∑

i∈V

H({i}), (26)

where ∀C ∈ D, I(C) =
∑

i∈C H({i})−H(C), which defines the mutual information of the elements in
the clique, i.e., an edge if k = 1. The constraints in Eq. (26) define a spanning tree polytope [25] and
the optimal solution is a maximal information spanning tree, which is given by Chow-Liu trees [7].
They also form the optimal solution to the non-convex primal optimization defined in Eq. (15).

Algorithm 2 Approximate Greedy Primal Solution

Input: primal infeasible sequence τ t for Algorithm 1, treewidth k, number of Vertices n, set of
cliques D and integer m such that 0 < m ≤ T
Output: approximate discrete primal feasible solution τm after m iterations of Algorithm 1
Initialize Adjacency Matrix Adj = zeros(n, n), τ̂m = 1

m

∑m
t=0 τ

t and τm = zeros(length(τ̂m))
order = Sorted indices in the descending order τ̂m
repeat

Initialize decomposable = false, treewidth = 0, numConnectedComponents = 0, i = 1
update TestAdj = AddClique(Adj, D(order(i)))
update [decomposable, treewidth] = checkGraphDecomposability(TestAdj)
if decomposable = true and treewidth ≤ k then

update Adj = TestAdj
update τm(Order(i)) = 1

end if

[numConnectedComponents] = getNumberConnectedComponents(TestAdj)
update i = i+ 1

until decomposable = true, treewidth = k, numConnectedComponents = 1, i = length(order)

Approximate Greedy Primal Solution. We describe an algorithm to project from the average
of a sequence of fractional primary infeasible solutions, estimated during the iterations of projec-
tive supergradient, to an integral primary feasible solution. “AddClique” adds all the edges of a
clique to the adjacency matrix. “checkGraphDecomposability” checks if the maximal cardinality
search is a perfect elimination ordering. For decomposable graphs the maximal cardinality search
yields a perfect elimination ordering [14]. We refer to this as decomposability test in this paper.
“getNumberConnectedComponents” gives the number of connected components in the graph using
breadth-first search. Note that the projection only uses the average clique selection function, τ̂m, to
obtain the primary feasible solutions, τm. The corresponding edge selection, ρm, can be estimated
from clique selection, τm, by selecting the edges between consecutive cliques of the perfect sequence
of selected cliques [19]. The time complexity of the projection algorithm is O(nk+2). This is due to
decomposability test with run time complexity O(nk+1), that is performed on adding O(n) cliques.
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5 Experiments and Results

In this section, we show the performance of the proposed algorithm on synthetic datasets and classical
benchmarks.

Decomposable covariance matrices. In order to easily generate controllable distributions with
entropies which are easy to compute, we use several decomposable graphs and we consider a Gaussian
vector with covariance matrix Σ, generated as follows:

• sample a matrix Z of dimensions n× d′ with entries uniform in [0, 1] and consider the matrix

Σ′ =
d

d′
ZZ⊤ + (1 − d

d′
)I, (27)

where Z is a random matrix of dimensions n× d′, I is the n-dimensional identity matrix and
d is a parameter to determine the correlations between the nodes of the graph, which takes
values in {0, d′}. In our experiments, we choose d′ to be 128. We have tight correlations
between the nodes with higher values of d.

• normalize Σ′ to unit diagonal, and

• The normalized random positive definite covariance matrix, Σ′, is projected onto a decompos-
able graph G as follows:

(Σ)−1 =
∑

C∈C(G)

[(Σ′
C)

−1]n −
∑

(C,D)∈T (G)

[(Σ′
C∩D)−1]n, (28)

where the operator [(Σ′
X)−1]n gives an n×n matrix whose columns and rows representing the

set X ⊆ V are filled by (Σ′
X)−1 and the rest of the elements of the matrix are filled with zeroes.

The matrix, Σ, thus generated represents the covariance matrix of a multivariate Gaussian on
a decomposable graph, G.

The projection ensures the following relationship between the random positive definite matrix, Σ′

and the projected covariance matrix Σ:

Σ(i, j) = Σ′(i, j) if A(i, j) = 1 or i = j,

Σ−1(i, j) = 0 if A(i, j) = 0. (29)

where A is the adjacency matrix of the decomposable graph G onto which Σ′ was projected.

The entropy of a multivariate Gaussian with a covariance matrix, Σ, is given by 1
2 log(2πe)

n|Σ|,
where |Σ| denotes the determinant of the covariance matrix. However, for Gaussian distribution
that is factored in G ∈ G:

|Σ| =
∏

C∈C(G) |ΣC |
∏

((C,D)∈T (G) |ΣC∩D| , (30)

where ΣX is the sub-matrix of the covariance matrix whose rows and columns belong to the set
X ⊆ V . Therefore, for any multivariate decomposable Gaussian graphical model, G:

H(G) =
1

2
log((2πe)n|Σ|)

=
1

2
(

∑

C∈C(G)

log((2πe)n|ΣC |)−
∑

(C,D)∈T (G)

log((2πe)n|ΣC∩D|))

=
∑

C∈C(G)

H(C)−
∑

(C,D)∈T (G)

H(C ∩D). (31)

13



Note that the entropy of any graph, G, is independent of the mean of the normal distribution, hence
we consider only the covariance matrix.

We use the graph structures representing a chain junction tree as in Figure 3-(a) and a star junction
tree as in Figure 3-(b) to analyze the performance of our algorithm for decomposable covariance
matrices generated with different correlations.

Table 1 and Table 2 show the performance of our algorithm on these two graphs. Decomposable
covariance matrices are generated as above with different values of the correlation parameter d (all
averaged over ten different random covariance matrices). We show the difference between the cost
function in Eq. (3) and the optimal entropy, i.e., the one of the actual structure represented by the
covariance matrices. The differences in the table are multiplied by 103 for brevity.

The first column ∆Dual represents the optimal value of our convex relaxation (obtained from the
dual function), while the second column ∆Dualr represents the optimal value by replacing the
hyperforest constraint by the simply τ ∈ [0, 1]D. We can see from the two tables, that the two values
are strictly negative (i.e., we indeed have a relaxation) and that the hyperforest constraint is key to
obtaining tighter relaxations. Note that the associated solutions are only fractional.

The third column ∆Primal represents the cost function obtained by projection of the optimal frac-
tional solution of the hyperforest constraint, using Approximate Greedy Primal Solution algorithm.
The fourth column ∆Primalr represents the cost function obtained by projecting the optimal frac-
tional solution of the hypercube constraint, i.e., the corresponding primal feasible solution related to
∆Dualr. They are compared to a simple greedy algorithm in the fifth column that sorts all mutual
information and keep adding the cliques with largest mutual information as long as decomposability
is maintained. Although the relaxation is not tight, our rounding scheme leads empirically to the
optimal solution when the correlations are strong enough (i.e., large values of d) and outperform the
simple greedy algorithm.
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(a) (b)

Figure 3: Graph representing (a) chain junction tree, (b) star junction tree, with an embedded
junction tree in green and its junction tree representation in blue.

Performance Comparison. We compare the quality of the graph structures learned by the
proposed algorithm with the ones produced by Ordering Based Search (OBS) [31], the combina-
torial optimization algorithm proposed by Karger and Srebro (Karger+Srebro) [15], the Chow-Liu
trees (Chow-Liu) [7] and different variations of PAC-learning based algorithms (PAC-JT, PAC-
JT+local) [6]. We use a real-world dataset, TRAFFIC [18] and an artificial dataset, ALARM [2] to
compare the performances of these algorithms.
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Figure 4: Left: (a) Upper bound of constraint violations for d=2 and a chain junction tree. Right:
Log likelihood of the structures learnt using various algorithms on (b) TRAFFIC and (c) ALARM
datasets with k = 3 except Chow-Liu (k = 1).

Table 1: Performance on chain junction trees. See text for details.

d ∆Dual ∆Dualr ∆Primal ∆Primalr ∆Greedy
1 -0.7±0.1 -32.7±16.4 0.2±0.1 0.4±0.1 0.2±0.1
2 -0.4±0.1 -23.4±9.6 0 0.3±0.2 0.5±0.2
4 -1.1±0.1 -31.2±9.7 0 0.3±0.1 1.9±0.3
8 -0.6±0.1 -23.9±9.8 0 0.2±0.1 7.9±0.3
16 -1.9±0.2 - 3.4±2.7 0 0 25.6±1.2
32 -3.9±0.5 - 3.2±0.3 0 0 57.3±1.5

Table 2: Performance on star junction trees. See text for details.

d ∆Dual ∆Dualr ∆Primal ∆Primalr ∆Greedy
1 -0.8±0.1 -31.4±13.4 0.2±0.1 0.5±0.1 0.9±0.1
2 -0.5±0.2 -26.6±13.3 0 0.4±0.1 0.4±0.3
4 -0.3±0.0 -16.6±4.1 0 0.2±0.1 1.7±0.2
8 -0.4±0.0 -16.0±9.6 0 0 6.9±0.3
16 -1.2±0.5 -3.1±0.3 0 0 26.3±1.5
32 -6.8±0.4 -8.5±1.2 0 0 58.3±1.9

This ALARM dataset was sampled from a known Bayesian network [2] of 37 nodes, which has a
treewidth equal to 4. We learn an approximate decomposable graph of treewidth 3. The TRAFFIC
dataset is the traffic flow information every 5 minutes for a month at 8000 locations in California [18].
The traffic flow information is collected at 32 locations in San Francisco Bay area and the values
are discretized into 4 bins. We learn an approximate decomposable graph of treewidth 3 using
our approach. Empirical entropies are computed from the generated samples of each data set and
we infer the underlying structure from them using our algorithm. Figure 4(b) and Figure 4(c)
show the log-likelihoods of structures learnt using various algorithms on Traffic and Alarm datasets
respectively. Note that the performance is better with higher values as we compare log-likelihoods.
These figures illustrate the gains of the convex approach over the earlier non-convex approaches.
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6 Conclusion and Future Work

In this paper, we have provided a convex relaxation to the problem of finding the maximum likelihood
decomposable graph with bounded treewidth, with a polynomial-time optimization algorithm, which
empirically outperforms previously proposed algorithms. We are currently exploring two avenues for
improvements: (a) design sufficient conditions for tightness of our relaxation, following the recent
literature on relaxation of variable selection problems [5], and (b) use heuristics to speed-up the
algorithms to allow application to larger graphs.
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