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Dynamic Mesh Optimization for Free Surfaces

in Fluid Simulation

David Lopez1 and Bruno Lévy1

Project ALICE, INRIA Nancy Grand-Est and LORIA
(Bruno.Levy | David.Lopez)@inria.fr

We propose a new free surface fluid front tracking algorithm. Based
on Centroidal Voronoi Diagram optimizations, our method creates a
serie of either isotropic or anisotropic meshes that confroms with an
evolving surface.

Fig. 1. Enright’s test at steps 0, 50, 75, 100, 150, 200, 225, 250 and 300 (top) and
details of the isotropic and anisotropic 150th step mesh (resp. bottom right and
left).

1 Introduction

We consider free-surface fluid simulations that operate on a per time-step
basis. Each step requires to compute the velocity field governing the fluid mo-
tion, to track its surface and to accurately represent it. We do not discuss how
to simulate the physics and we assume that we have an everywhere and any-
time known velocity field to move surface vertices according with an accurate
advection method, eg Runge Kutta.

In this paper, we focus on accurately sampling and optimizing the advected
surface regarding its geometry and combinatorics. Assuming curl-free velocity
fields, like incompressible fluid flows, we will also minimize volume variations
due to polygonal approximation. This, in a direct manner, without any other
representation like tetrahedral mesh or sub-grid.

After a short review of previous work (section 2), we explain our remeshing
operations (section 3) and discuss first results and perspectives (section 4).
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Fig. 2. from left to right : samples P on a surface S, VorP |S , duals and DelP |S .

2 previous work and foundations

Dynamic interfaces : Eulerian methods such as Level Set [5] or Volume of
Fluid [6] are populars because they implicitly handle topological changes like
merging or breaking of droplets. On the other hand, Lagrangian methods like
ours or “El Topo” [2] provide accurate explicit surfaces that could be directly
used (rendering...). We refer to the reviews in [2] and [10].

Evaluation : In order to evaluate the accuracy of our front tracker, we use
velocity fields that are defined in closed form by an explicit formula. They
give anywhere and anytime known velocity fields and do not suffer of physics
simulation errors. Enright’s [5] and Curl-noise [2] tests are commonly used
(see respectively figures 1 and 5).

Surface meshing : Our goal is to construct a mesh of good quality at each
time step. We propose to optimize the placement of the mesh vertices.

Our optimization is based on the Restricted Voronoi Diagram, see figure
2 and [11, 7] for details. Given a 2-manifold surface S ∈ IR3and a sample set
P ∈ S, the Voronoi Diagram of P restricted to S is defined as VorP |S = {Ωi|S}
with :

Ωi|S = {p ∈ S | d(p, pi) < d(p, pj) ∀i, j ∈ P}

where d(a, b) denotes the euclidean distance between a and b.

A [restricted] Voronoi tessellation is said to be centroidal ([R]CV T for
short) if each seed corresponds to it’s cell centroid. A simple way to compute

Fig. 3. on the left, the Voronoi Tessellation of a point set (dots) restricted to a
sphere, cells centroids are represented with squares. The three others images are
respectively the result of 2, 5 and 20 Lloyd iterations.
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such distribution from a random sampling is to iteratively replace samples by
their cell centroids as shown in figure 3 (Lloyd algorithm [9]).

CV T -computing can also be viewed as an optimization problem [3] of a C2

function [8] for which quasi-newton solvers could be used to converge faster.

3 Algorithm :

Each advected surface is remeshed with the following algorithm. Some details
are given below.

Algorithm 1: simulation step
Input: a 2-manifold surface St representing the fluid surface at time t
Data: min lg, max lg : edge length bounds computed from S0,

algo, nb iter, dim : RCVT parameters,
nb volum optim iter

Result: a 2-manifold surface St+1 representing the fluid surface at time t+ 1

// surface vertices advection

S ← advect(St, velocity field)
// surface adaptive sampling

P ← V ertices(S)
for edge(pi, pj) ∈ edges(S) do

if length(edge) < min length or length(edge) > max length then
add (pi + pj) ∗ 0.5 to P

if length(edge) < min length then remove pi and pj from P

end

end

// sampling optimization

P ← Compute RCV T (P, S, dim, algo, nb iter) // algo={Lloyd|q-newton}
// surface building

check and fix VorP |S cell conformations // detailed below

St+1 ← duals(VorP |S) ;
// surface optimization

minimize local volume differences between Sadv
t and St+1 // detailed below

check and fix VorP |S cell conformations : we need to build a valid
surface (St+1) from VorP |S . As explained in [4], some conditions are required
to ensure that there exists an homeomorphism between St+1 and the advected
surface.

In addition, for free-surface fluid simulation, we need to detect merging
and splitting events where the field is discontinuous and modify the surface
topology accordingly. The management of the topology is realized on spe-
cial VorP |S cell configurations, with combinatorial corrections and/or local
refinements (see [11]).
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a) b) c) d) e)

Fig. 4. Local volume difference minimization : (a) a sampled surface (dotted line)
and its remeshing (plain line), (b) surfaces with sample voronoi diagram super-
imposed, (c) highlighted volume loss and gains (resp. black and grey areas), (d)
minimized volume differences, (e) original, remeshed and optimized surfaces (resp.
dotted, grey and black plain lines)

Surface volumetric optimization : For curl-free velocity fields, the fluid
volume must remain constant throughout the simulation. We assume that
St+1 and Sadv

t are smooth and geometrically near to each other.
As in 2D example given in fig. 3, for each voronoi cell we define a poly-

gon (polyhedron in 3D) with VorP |St+1
and VorP |Sadv

t

cell facets and Voronoi
planes. Hence we can compute a local signed volume attached to each Voronoi
seed. By minimizing the sum of squared local volumes (shaded triangles in
figure 4), we improve the accuracy of the surface tracking.

4 Results and future work

Enright’s and Curlnoise test screenshots are shown in figures 1 and 5 re-
spectively. The mesh details in the first figure show isotropic and anisotropic
meshes.

Anisotropic meshes are more suitable because they allow to represent very
thin and sharp features with a small number of points. In addition, our local
volumetric optimization further reduces physical errors involved by remeshing.

Fig. 5. Curl-noise test screenshots.
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Volume is well preserved throughout the simulation. Less than 0.2% of volume
is lost during 3D Enright’s test (same running conditions than in [2]).

Merging and splitting should also be improved to complete intricate fluid
simulations. We plan to couple our front tracker with a free surface fluid
simulator [1].
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