
HAL Id: hal-00764434
https://hal.inria.fr/hal-00764434

Submitted on 13 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed High-Dimensional Index Creation using
Hadoop, HDFS and C++

Gylfi Þór Guðmundsson, Laurent Amsaleg, Björn Þór Jónsson

To cite this version:
Gylfi Þór Guðmundsson, Laurent Amsaleg, Björn Þór Jónsson. Distributed High-Dimensional Index
Creation using Hadoop, HDFS and C++. CBMI - 10th Workshop on Content-Based Multimedia
Indexing, Jun 2012, Annecy, France. �10.1109/CBMI.2012.6269848�. �hal-00764434�

https://hal.inria.fr/hal-00764434
https://hal.archives-ouvertes.fr


Distributed High-Dimensional Index Creation

using Hadoop, HDFS and C++

Gylfi Þór Gudmundsson

INRIA, Rennes, France

gylfi.gudmundsson@inria.fr

Laurent Amsaleg

IRISA–CNRS, Rennes, France

laurent.amsaleg@irisa.fr

Björn Þór Jónsson

Reykjavík University, Iceland

bjorn@ru.is

Abstract

This paper describes an initial study where the open-

source Hadoop parallel and distributed run-time environ-

ment is used to speed-up the construction phase of a large

high-dimensional index. This paper first discusses the typi-

cal practical problems developers may run into when port-

ing their code to Hadoop. It then presents early experimen-

tal results showing that the performance gains are substan-

tial when indexing large data sets.

1. Introduction

Over the last decade, the technology underlying Content-

Based Image Retrieval Systems (CBIRS) has made tremen-

dous progress. CBIRS can now manage collections having

sizes that could not even be envisioned years back. Most

systems can cope with several millions of images [9, 7] or

billions of descriptors [10, 8], and some researchers address

web scale problems [3, 1]. Modern CBIRS return query

results in a snap and have very good recognition capabili-

ties even though they run approximate k-nearest neighbors

queries for speed.

Reducing the response times of systems at ever larger

scales has been mainstream in the Computer Vision, Mul-

timedia or Database literature. Searching is now truly

fast: milliseconds when the data collections fit in main

memory [7] and seconds when data must be fetched from

disks [9]. It is unlikely we will observe dramatic response

time improvements in the near future as there is not much

slack remaining. In contrast, little performance progress has

been made for constructing high-dimensional indices. Tak-

ing the raw collection of high dimensional descriptors and

turning it into an index for subsequent ultra-fast searches is

still a long, complex, costly, and resource-consuming task.

Bulk-loading techniques help, but not that much. When

the data collection is on the order of terabytes of high-

dimensional descriptors, as is the case when indexing few

tens of millions of real world images with SIFT [11], then

indexing takes days or even weeks. Not only is the num-

ber of I/Os enormous, as reading terabytes and writing back

once indexed is inherently slow, but the CPU load is gigan-

tic as many distance calculations must be performed.

Turning to parallel and distributed computing is thus

mandatory. Modern frameworks facilitating the parallel

and distributed execution of massive tasks are becoming

increasingly popular since the introduction of the Map-

Reduce programming model, the Hadoop run-time environ-

ment as well as its HDFS distributed file system.

This paper is an initial study where Hadoop and HDFS

are used to speed-up the creation of a high-dimensional in-

dex. Our goal is to gain knowledge on what is at stake when

using Hadoop for index construction. This paper does not

propose the ultimate distributed index creation algorithm,

but rather uses a simple clustering-based indexing strategy

as a vehicle for understanding how to distribute data, how

to distribute tasks, how the network topology as well as the

hardware available affects performance, etc.

Since Hadoop is Java-based, applications exhibit best

performance when they are implemented in Java as they

benefit from all the features of the framework. In contrast,

centralized high-dimensional indexing algorithms are typi-

cally implemented in C++ for efficiency. We therefore faced

the following dilemma: either completely re-implement the

index creation in Java or try to connect the existing C++

code to the Hadoop framework. We decided to connect the

C++ code to Hadoop for the following reasons: (i) high-

dimensional index creation has access patterns to data that

differ significantly from tutorial examples and we wanted to

check the viability of going to Hadoop before investing in

the re-implementation; (ii) the goal of our study was to get

familiar with Hadoop, and to evaluate what distribution and

parallelism bring, rather than coming up with a definitive al-

gorithm right away; and (iii) Hadoop requires specific com-

mands to deploy on a cluster of machines and we wanted to

gain that knowledge as fast as possible, rather than spend-

ing time re-implementing the algorithm “in the dark”, not

knowing how to use the framework in practice.

We are well aware that connecting C++ and Hadoop

raises many problems and that the performance gains are



far from what we could get otherwise. We believe that we

are not the only ones to face such a dilemma and that ap-

proaching the problem from this perspective, which some-

how balances the performance gains and the programming

investment, is worth sharing with the multimedia commu-

nity. This is the first contribution of this paper; the actual de-

ployment and performance measurements being the other.

The paper is structured as follows. Section 2 presents

the Map-reduce framework, Hadoop and HDFS. Section 3

describes the centralized version of the index-creation part

of the extended-Cluster Pruning algorithm which gets dis-

tributed using Hadoop. The way the algorithm is distributed

is presented Section 4. Section 5 then explains what prac-

tical problems application developers run into when con-

necting their code to Hadoop. Section 6 gives experimental

results and Section 7 concludes the paper.

2. Background

2.1. Map-Reduce

Map-Reduce is a programming model for processing ex-

tremely large datasets. It applies to a distributed context

where independent nodes run tasks, typically in a cluster of

standard, inexpensive hardware. The run-time environment

for Map-Reduce transparently handles the partitioning of

the input data, schedules the execution of tasks across the

machines and manages the communications between pro-

cessing nodes when sending and/or receiving the records to

process. Furthermore, the run-time deals with node failures

as it is able to restart aborted tasks on nodes, possibly on

replicated data in case of unavailability. The run-time tries

to save as much network bandwidth as possible by increas-

ing the likelihood of running computations on the data that

is locally stored on nodes and by paying attention to the

topology of the network.

To program an application, the user must give the imple-

mentation of the Map and the Reduce functions, which the

run-time environment will call when appropriate. The ex-

ecution flow of typical Map-Reduce applications is as fol-

lows. First, the data to process is loaded into a specific file

systems where blocks of data are distributed onto multiple

nodes [4]. This is a transparent process.

When the application starts, the run-time creates M in-

stances of the Map function. Each Map function gets from

the file system a chunk of data to process, independently of

others. The input data is made of (key, value) records. Each

Map iteratively processes input (key, value) records from

its chunk and produces intermediate output (key, value)

records. Output data is typically stored in RAM, to local

disks if necessary. When the output data is big enough

or when a chunk is entirely processed, the run-time sorts

(key, value) records according to the ’key’ field, then par-

titions the sorted records into R sets which constitute the

input data of the R instances of the Reduce functions that

are then created by the system. The run-time thus sends

from Map-tasks to Reduce-tasks loads of data; it tries to

limit the network consumption as much as it can. Note that

Map and Reduce tasks might run simultaneously.

Each Reduce function thus receives sorted data from

multiple sources and merges data items before processing

them. This produces some final results that are handed out

to the distributed file system before eventually reaching the

user. Map-Reduce was originally developed by Google [2].

It is a very simple yet extremely effective programming

model adopted by many large scale applications designers.

2.2. Hadoop and HDFS

Hadoop [14] is a Java-based open-source version of the

Map-Reduce framework. It includes an implementation of

a distributed file system called HDFS. HDFS provides data

location awareness to the Hadoop run-time environment. In

turn, Map-Reduce applications built with Hadoop try to run

their tasks on the node where the data is. HDFS supports

data replication, both for performance and fault tolerance.

The HDFS file system is designed for large files (their size

is typically a multiple of 64MB) across multiple machines

and it is assumed that most access patterns to data are large

sequential reads and/or writes; that assumption offers the

opportunity for specific optimizations. Note that random

accesses are possible, but they may perform poorly. One

specific machine is responsible for managing the mapping

between file blocks and their location within the distributed

system. Fault tolerance is achieved by replication of file

blocks to multiple machines, defaulting to 3. Another ma-

chine is typically responsible for scheduling all the tasks

and monitoring the execution flow.

3. Extended Cluster Pruning

This section gives a brief overview on the centralized

version of the high-dimensional indexing scheme we use

in this paper. In the next section we describe how it is dis-

tributed and implemented within the Hadoop framework.

3.1. Centralized eCP

We decided to build on top of the extended Cluster Prun-

ing (eCP) algorithm [5] because it is quite representative of

the core principles underpinning many of the quantification-

based high-dimensional indexing algorithms that perform

very well [13, 6]. Overall, eCP is very related to the well-

known k-means approach. As k-means, eCP is an unstruc-

tured quantifier, thus coping quite well with the true dis-

tribution of data [12]. eCP is designed to be I/O friendly



as it is assumed that the database size is too large to fit in

memory and must reside on secondary storage.

Overview of Index Creation. eCP starts by randomly se-

lecting C points from the data collection. They are used as

representatives of the C clusters eCP will eventually build.

Then the remaining points from the data collections are

read, one after the other, and assigned to the closest cluster

representative. When the data collection is large, the repre-

sentatives are organized in a multi-level hierarchy. This ac-

celerates the assignment step as finding the representative

that is closest to a point then has logarithmic complexity

rather than linear complexity. Once all the raw collection

has been processed, then eCP has created C clusters as well

as a tree of representatives, all stored sequentially on disks.

The tree structure is very small compared to the data. The

tree is a hierarchy: the points used at each level of the tree

are representatives of the points stored at the level below.

Overview of the Search. When searching, the query point

is compared to the nodes in the tree structure to eventually

find the closest cluster representative. Then the correspond-

ing cluster is accessed from the disk, fetched into memory,

and the distances between the query point and all the points

in that cluster are computed to get the k-nearest neighbors.

The search is approximate as some of the true nearest neigh-

bors may be outside the cluster under scrutiny.

Details of Index Creation. This study focuses on the effi-

ciency of the index creation which is the most I/O intensive

phase, much more intensive than the search phase. Not only

does index creation need to read the entire data collection

from secondary storage, and then eventually write every-

thing back to disks, but it must also perform a huge number

of CPU intensive distance calculations to cluster vectors.

The index is created in a bulk manner: all vectors to index

are known before the process starts and the index tree struc-

ture, as well as the bottom leafs of the tree, are created in

one go.

The creation starts by building its in-memory index tree

by picking cluster representatives from the raw collection.

Then it allocates a buffer, called in-buff, for reading the raw

data collection in large pieces. It then iterates through the

raw collection via this buffer, filling it with many not-yet-

indexed vectors. The index is used to quickly identify the

cluster representative that is the closest to each vector in in-

buff, representing the cluster that vector must be assigned to.

Once all vectors in in-buff have been processed, then in-buff

is sorted on increasing values of the cluster representative

identifiers. It then creates a new temporary data file on disk,

and flushes in-buff into that file before closing it. It then

reads another large piece from the raw collection into in-

buff and loops.

After having processed all vectors from the raw collec-

tion, a phase merging that sorted data is initiated. It even-

tually creates a single large file where all the data points

assigned to one cluster are stored in a continuous manner,

sequentially. During this phase, all the temporary files are

opened simultaneously and iteratively read. The merge pro-

cess simply reads data from all files and appends to the final

file the data that belongs to the currently built cluster.

In terms of access patterns, the index construction per-

forms large sequential reads to fill in-buff and large sequen-

tial writes when creating each temporary file. When creat-

ing the final file, it performs many small random reads to get

data from all the sorted temporary files and large sequential

writes for the final file.

4. Distributing the Index Creation of eCP

The index creation process of eCP can be split into three

main phases:

Phase #1: Creation of the index tree. During this phase,

cluster representatives are picked from the collection

and organized in a in-memory tree.

Phase #2: Vectors are assigned to cluster in rounds of ex-

ecutions, each round creating a temporary file where

vectors are sorted per representative.

Phase #3: The sorted temporary files are merged into a

unique final file.

Obviously, phases #2 and #3 are good candidates for be-

ing Hadoop-ed. It is rather trivial to foresee that chopping

the entire data collection into independent parts assigned to

physically distinct computing nodes is going to speed up

the whole process. Phase #2 is particularly intensive as the

whole data collection must be read, and vector-to-cluster

assignment requires a lot of CPU for computing distances.

This is to contrast with Phase #3 which is almost solely I/O

intensive but involves very little CPU, since merging is a

matter of comparisons and hence is cheap. For these rea-

sons, Phase #2 is the prime candidate for parallelization and

distribution.

In contrast, making Phase #1 parallel is very complicated

because cluster representatives are randomly picked from

the data collection and all the nodes participating in the dis-

tributed creation of the index must use the same set of repre-

sentatives. Otherwise, no consistency would exist between

what each node assigns and the final merge phase would

make no sense. It is instead very easy to pick representa-

tives in a centralized manner, before starting the distributed

computation, and to send them to every node. When a node

receives this set of representatives, it starts by building the

index tree in memory and can then proceed with the assign-

ment to clusters of the points it must deal with.

In this paper, we are not considering at all the search

phase of eCP, which has not been distributed. Note also that



the quality of the approximate searches is not at all impacted

by the distributed index creation: the final index is exactly

identical, regardless of whether it has been generated in a

centralized or distributed manner. The result quality and

efficiency of the search is studied in detail in [5] .

5. C++/Hadoop and Reality

As was said in the introduction, we decided to connect

our existing index creation code implemented in C++ to

Hadoop instead of re-implementing the whole process in

Java. While this proved to work well, with great perfor-

mance gains (see Section 6), it has a number of problems,

which are discussed below.

Reading Binary Data. The high-dimensional vectors that

are extracted from images and must be indexed are typically

stored in a binary format. This is for efficiency: binary data

is compact, ready to be used in distance calculations and no

conversion is needed. This is problematic, however, when

using Hadoop. Hadoop is Java-based, but it provides pro-

grammers with interfaces for running C++ code. Unfortu-

nately, there is no interface for reading binary records from

C++, as only a text-based record reading interface is pro-

vided. It is clearly unacceptable to convert all vectors to text

to inject data into the Map-Reduce pipeline as this would

take so much space on disks for large scale settings. Instead

of passing to Hadoop the data to index, we therefore de-

cided to pass to Hadoop text data that is subsequently used

by our C++ code to know what to index.

It works as follows. First, we decide beforehand what

will be the size of the data chunk each Map-task will pro-

cess. Then we produce a series of records keeping track of

the resulting offsets each Map-task will have to use to read

its part from the raw data collection. Then the run-time of

Hadoop starts Map-tasks, each receiving an offset record.

Each Map-task then calls the C++ code that reads its own

portion of the data file before assigning vectors to clusters.

The main drawback of not passing the data through the

Map-Reduce pipeline is that this does limit Hadoop’s ability

to start Map-tasks where the data resides in HDFS, which

in turn puts much more load on the underlying network.

HDFS will, however, still try to minimize the cost of remote

reads by reading locally if possible, then from machines on

the same rack, then from more remote sources.

HDFS-block Sizes vs. Data Chunk Sizes for Hadoop. For

performance, HDFS distributes the blocks (typically 64MB)

of each file on different machines. This offers opportunities

for true parallelism because multiple machines can simul-

taneously deliver the data from a single file. While this is

totally transparent when running tasks within Hadoop, it is

more complicated otherwise. It is difficult to know precisely

what are the offsets of HDFS-block boundaries in order to

give these offsets to the C++ tasks. It is therefore possi-

ble that two C++ tasks reading data indeed access the same

HDFS-block, which potentially hurts performance.

No Data Filtering. Originally, the Map-Reduce model was

designed to process large volumes of textual data, such as

log files. In this case, Map-tasks typically serve as a severe

filter reducing the amount of data that gets passed along,

i.e. copied, to the Reduce-tasks (the word-counting exam-

ple often used to demonstrate Hadoop is like this). For this

reason, the framework controls the number of Map-tasks

to start, which explains why there are typically far more

Map-tasks than Reduce-tasks. The index creation work-

load breaks this model as the volume of data that travels

through the system is not decreasing at all; the number of

vectors does not change between the start and the end of the

indexing process. This puts a lot of pressure on the network

traffic as well as on the disks as all data must be eventually

pushed back to disks again.

No Implicit Sorting. As the data to index is not inside the

Map-Reduce pipeline, the run-time can not sort what is pro-

duced by Map-tasks. We sort vectors from C++.

No Reduce-Tasks. Hadoop can fire Reduce-tasks as

soon as enough data has been produced by Map-tasks, al-

lowing for possible simultaneous execution. Here, again, as

we are outside the Hadoop pipeline, Reduce-tasks can not

be easily defined. Even if they could, they would run into

the problem of reading binary data.

Merging Outside Hadoop. Merging the intermediate data

files produced by the Map-tasks is done outside the Hadoop

framework, as a separate process that is started once the last

Map-task completes. Merging consumes only little CPU as

it solely compares representative identifiers and copies data

to the final file. There is thus very little to gain from making

the merge phase parallel inside Hadoop. Note that the I/O

load is reduced if there are only a few files to merge since

this reduces the number of random reads.

Large vs. Small Tasks. A rule of thumb to get good perfor-

mance with Map-Reduce is to break jobs into as small tasks

as possible. This gives the framework maximum flexibil-

ity for placing tasks on nodes and to keep nodes constantly

busy. With indexing, each Map-task launches C++ code cre-

ating the index memory tree. This takes a fixed amount of

time. Then vector assignment starts. If we follow that rule

of thumb, then we have to pay that fixed cost very often,

which hurts performance. Therefore, it is better to run big

enough Map-tasks to marginalize the tree construction cost.



6. Experiments

6.1. Data Collection and Indexing Set-up

We created an image collection composed of 100,000

random pictures downloaded from Flickr that are very di-

verse in contents. All images have been resized to 512 pix-

els on their longer edge. We computed the SIFT local de-

scription of these images using the code by Lowe [11]. This

results in more than 110 million vectors of dimension 128,

for a total of almost 13.6GB of data.

The parameters driving the index creation have been set

according to the conclusions of [5]: the in-memory index

tree has 3 levels, each cluster contains 992 vectors on aver-

age, and there are 111,424 clusters.

6.2. Hardware

We run our experiments on the Grid5000 using the clus-

ters in Orsay, France. To quote: “Grid5000 is a scientific in-

strument for the study of large scale parallel and distributed

systems. It aims at providing a highly reconfigurable, and

monitorable experimental platform to its users.”1 The hard-

ware is actually two clusters, GDX with 310 machines and

netGDX with 30. The specifications are as follows: each

machine has two 2.0Ghz or 2.4Ghz AMD Opteron CPUs

with 1MB cache, 2GB RAM and 80GB SATA disks. GDX

is organized in 16 racks of 18 machines where each ma-

chine connects by a 1Gbps link to one of the 14 Cisco Cat-

alyst 3750 or one of the 2 HP Procurve switch. In addition

there is one rack of 22 machines that interconnect with only

100Mbps links to a HP Procurve switch, for a total of 310

machines and 17 switches. The switches are then intercon-

nected by a Cisco Catalyst 6509 by 2x or 3x aggregated

links. The 30 machines of the netGDX cluster connect di-

rectly by 1Gbps links to the Catalyst 6509 unit.

The clusters operate on a declarative basis as users re-

quests exclusive access to a certain amount of hardware for

a predefined amount of time but cannot specify what hard-

ware. The infrastructure then grants access to machines,

but does not particularly pay attention to minimizing net-

work distances between granted machines. It is thus not un-

common to end up with machines spread all over the local

network. This is a potential bottleneck, especially if other

applications running on the cluster heavily use the network.

6.3. Hadoop Settings

Three machines have a special role when deploying

Hadoop: the Primary and Secondary Name Nodes and the

Job Tracker. The remaining machines run tasks and serve

1See https://www.grid5000.fr/mediawiki/index.php/Grid5000:Home.

Table 1. Scaling index creation with Hadoop.

Machines CPUs Tasks Time Ratio

1 1 1 473m 46s 100%

23 40 236 19m 13s 4.1%

62 118 236 7m 31s 1.6%

62 118 236 21m 10s 4.5%

13 20 20 26m 56s 5.7%

HDFS data blocks. For an experiment involving N CPUs,

Hadoop must thus be deployed on (N + 6) machines.

The data to index is copied into the HDFS system be-

fore launching experiments. Each machine in the Grid5000

cluster has 2 CPUs. Hadoop is thus set to run at most two

tasks per node. Since each CPU has only 1GB of RAM, in

which the in-memory index tree as well as the system must

fit, we set in-buff to be only 60MB to avoid swapping and

thrashing. Overall, this gives 236 tasks to run to complete

index construction, each processing one 60MB chunk.

6.4. Baseline and Scalability

The goal of the first experiment was to determine the per-

formance gains when distributing the creation of the index.

We thus started by running the indexing process on a sin-

gle machine of the Grid5000 cluster to get the baseline, and

then ran the indexing process on multiple machines. The re-

sults are reported Table 1. For this experiment, the HDFS-

block size was set to 33MB and the replication factor to 1

(data is not replicated).

Table 1 shows that it takes almost 8 hours to create the

index on one CPU inside one machine. We then deployed

Hadoop on 40 CPUs to do the indexing jobs (and 3 ma-

chines thus 6 CPUs for managing the run-time). These 40

CPUs thus run the 236 tasks in about 20 minutes, which is

only 4.1% of the baseline. Observing the execution, we saw

that some machines ran 6 indexing tasks while others only

5; speed-up is thus not optimal as some machines remained

idle while others were busy. Note also that the in-memory

index tree had to be constructed 236 times.

We then changed the set-up to deploy on 62 machines,

thus using 118 CPUs for index creation, asking each CPU

to run only two tasks. One run was extremely fast: the com-

plete index was built in less then 8 minutes, which is 1.6%

of the baseline. Other runs had fluctuating performance, the

worst one needing about 21 minutes to complete. This can

be explained by networking and disks problems as some

rounds of experiments were competing for networking and

disks resources with the 278 other machines running dif-

ferent experiments. Still, going from 8 hours to 8 minutes

shows that great gains can be expected.



Table 2. Effects of replication factor.

Replication Factor Time Ratio

1 25m 20s 5.3%

2 14m 49s 3.1%

3 12m 09s 2.6%

4 12m 11s 2.6%

10 10m 06s 2.1%

20 12m 14s 2.6%

We also ran an experiment where we tried to make all

indexing tasks complete at the same time, leaving no ma-

chine idle while others were still running. We deployed on

13 machines, reserving 20 CPUs for running the index cre-

ation, and manually forced each CPU to read 12 chunks of

60MB, which covers the entire data collection. The results

are the ones given by the last line of Table 1. The index is

built after 27 minutes, or 5.7% of the baseline time, which

is close to the optimal which is 5.0% (1/20).

6.5. Effect of Replication

The first experiment had no data replication and there-

fore index creation tasks were likely to compete for reading

data coming from the same HDFS-blocks. Increasing the

replication factor of course consumes more disk space but

also allows the run-time to reduce disk competition as iden-

tical blocks can be sent to requesting machines from differ-

ent sources. Increasing the replication factor also increases

the likelihood for an indexing task to get the data it needs

from its local disk.

To study the effects of varying the replication factor, we

reused the setting where Hadoop is deployed on 62 ma-

chines or 118 CPUs. Table 2 reports the impact of the

replication factor on the response time for completing the

creation of the index. Note that the whole set of experi-

ments turned out to be performed while the Grid5000 clus-

ter was heavily loaded with other tasks. With a replication

factor of 1, then it takes about 25mn (21 in the first ex-

periment). Increasing the replication factor results in re-

duced response time; there is less disk competition. But

the improvement reaches a plateau as soon as the network

becomes the bottleneck. In our case, it is not useful to mas-

sively replicate HDFS blocks hoping to nicely distribute the

data-feeding load across machines as the network is quickly

saturated. Note Hadoop does not actively try to balance the

block placement. In practice, it might be possible that all

the copies of the same block end-up on a unique machine...

Yet, taking into account the network topology as well as

its usage, since it is shared, is key to performance. We ran

other experiments varying the HDFS-block size; a similar

trend was observed.

7. Conclusion and Lessons Learned

This paper presents an initial study where the creation of

a high-dimensional index is made parallel and distributed

by using the Hadoop framework. Early experimental re-

sults show substantial performance gains, despite the fact

that the Hadoop framework is loosely coupled to the C++

based index creation. Two main lessons can be drawn from

this work: (i) it is key to invest time, energy and manpower

to re-implement the code in Java in order to benefit from all

the features of Hadoop—although our results are already

impressive, even better performance gains will be observed

if the index creation is re-implemented in Java; and (ii) spe-

cial care must be taken to account for the networking topol-

ogy to prevent message exchanges from becoming the new

bottleneck, when parallelism fixes the CPU bottleneck and

HDFS the I/O bottleneck.

References

[1] M. Batko, F. Falchi, C. Lucchese, D. Novak, R. Perego,

F. Rabitti, J. Sedmidubský, and P. Zezula. Building a web-

scale image similarity search system. MTAP, 2010.

[2] J. Dean and S. Ghemawat. Mapreduce: simplified data pro-

cessing on large clusters. CACM, 2008.

[3] M. Douze, H. Jégou, H. Singh, L. Amsaleg, and C. Schmid.

Evaluation of gist descriptors for web-scale image search. In

CIVR, 2009.

[4] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file

system. In SOSP, 2003.

[5] G. Gudmundsson, B. Jónsson, and L. Amsaleg. A large-

scale performance study of cluster-based high-dimensional

indexing. In VLS-MCMR Workshop with ACM MM, 2010.

[6] H. Jégou, M. Douze, and C. Schmid. Product quantization

for nearest neighbor search. TPAMI, 2011.

[7] H. Jégou, F. Perronnin, M. Douze, J. Sánchez, P. Pérez, and

C. Schmid. Aggregating local image descriptors into com-

pact codes. TPAMI, 2011.

[8] H. Jégou, R. Tavenard, M. Douze, and L. Amsaleg. Search-

ing in one billion vectors: Re-rank with source coding. In

ICASSP, 2011.

[9] H. Lejsek, F. Amundsson, B. Jónsson, and L. Amsaleg. NV-

Tree: An efficient disk-based index for approximate search

in very large high-dimensional collections. TPAMI, 2009.

[10] H. Lejsek, B. Jónsson, and L. Amsaleg. NV-Tree: nearest

neighbors at the billion scale. In ICMR, 2011.

[11] D. Lowe. Distinctive image features from scale invariant

keypoints. IJCV, 2004.

[12] L. Paulevé, H. Jégou, and L. Amsaleg. Locality sensitive

hashing: A comparison of hash function types and querying

mechanisms. Pattern Recognition Letters, 2010.

[13] J. Sivic and A. Zisserman. Video google: A text retrieval

approach to object matching in videos. In ICCV, 2003.

[14] T. White. Hadoop: The Definitive Guide. O’Reilly, 2010.


