
HAL Id: hal-00766625
https://hal.inria.fr/hal-00766625

Submitted on 18 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Applications Resilience on Clouds
Toan Nguyen, Jean-Antoine Desideri, Laurentiu Trifan

To cite this version:
Toan Nguyen, Jean-Antoine Desideri, Laurentiu Trifan. Applications Resilience on Clouds. HPCS -
International Conference High Performance Computing and Simulation - 2012, Waleed W. Smari, Jul
2012, Madrid, Spain. pp.60-66, �10.1109/HPCSim.2012.6266891�. �hal-00766625�

https://hal.inria.fr/hal-00766625
https://hal.archives-ouvertes.fr

Applications Resilience on Clouds

Toàn Nguyên, Jean-Antoine Désidéri, Laurentiu Trifan

Project OPALE

INRIA

38334 Saint-Ismier, France

Toan.Nguyen@inria.fr

Abstract— Cloud computing infrastructures support system

and network fault-tolerance. They transparently repair and

prevent communication and software errors. They also allow

duplication and migration of jobs and data to prevent

hardware failures. However, only limited work has been done

so far on application resilience, i.e., the ability to resume

normal execution after errors and abnormal executions in

distributed environments and clouds. This paper addresses

open issues and solutions for application errors detection and

management. It also overviews a testbed used to to design,

deploy, execute, monitor, restart and resume distributed

applications on cloud infrastructures in cases of failures.

Keywords- Resilience; Cloud Computing; Scientific Applications;

High-Performance Computing; Workflows.

I. INTRODUCTION

This paper overviews open issues and the corresponding

solutions for application errors detection and management
when running on cloud infrastructures. A testbed is also
presented relying on a workflow system interfaced with a
grid infrastructure to model cloud environments. Section II
addresses error detection. Section III details the
corresponding solutions for error management. Section IV
describes the testbed using a workflow management system
to support these solutions on clouds. Section V is a
conclusion.

Because many terms are used in the fault-tolerance area,
a definition of various terms used in the domain is necessary.
An interesting definition of errors, faults and failures is given
in a system such as Apache’s ODE [11], where system
failures and application faults address different types of
errors.

A. Errors

The generic term error is used to characterize abnormal
behavior, originating from hardware, operating systems and
applications that do not follow prescribed protocols and
algorithms. Errors can be fatal, transient and warnings,
depending on their criticity level. Because sophisticated
hardware and software stacks are operating on all production
systems, there is a need to classify the corresponding
concepts (Figure 1).

B. Failures

A failure to resolve a DNS address is different from a
process fault, e.g., a bad expression. Indeed, a system failure
does not impact the correct logics of the application process
at work, and should not be handled by it, but by the system
error-handling software instead: “failures are non-terminal
error conditions that do not affect the normal flow of the
process” [11].

C. Faults

However, an activity can be programmed to throw a fault
following a system failure, and the user can choose in such a
case to implement a specific application behavior, e.g., a
number of activity retries or its termination.

Application and system software usually raise exceptions
when faults and failures occur. The exception handling
software then handles the faults and failures. This is the case
for the YAWL workflow management system [19][20],
where specific exlets can be defined by the users [21]. They
are components dedicated to the management of abnormal
application or system behavior (Figure 2). The extensive use
of these exlets allows the users to modify the behavior of the
applications in real-time, without stopping the running
processes. Further, the new behavior is stored as a
component workflow which incrementally modifies the
application specifications. The latter can therefore be
modified dynamically to handle changes in the user
requirements.

D. Fault Tolerance

Fault-tolerance is a generic term that has long been used
to name the ability of systems and applications to handle
errors. Transactional systems for example need to be fault-
tolerant [9]. Critical business and scientific applications need
to be fault-tolerant, i.e., to resume consistently in case of
internal or external errors.

E. Checkpoints

Therefore checkpoints need to be designed at specific
intervals to backtrack the applications to consistent points in
the application execution, and restart be enabled from there.
They form the basis for recovery procedures.

In the following, we call checkpoint for a particular task
the set including task definition, parameter specifications and

data associated to the task, either input data or output data
and the parameter values.

This checkpoint definition does not include the tasks
execution states or contexts, e.g., internal loop counters,
current array indices, etc. Therefore, we assume that
checkpointed tasks are stored stateless. This means that
interrupted tasks, whatever the reasons and errors, cannot be
restarted from their exact execution state immediately prior
to the errors.

F. Recovery

We assume therefore that the recovery procedure must
restart the failed tasks from previously stored elements in the
set of existing tasks checkpoints. A consequence is that
failed tasks cannot be restarted on the fly, following for
example a transient non fatal error. They must be restarted
from previously stored checkpoints.

Application robustness is the property of software that
are able to survive consistently from data and code errors.
This area is a major concern for complex numeric software
that deal with data uncertainties. This is particularly the case
for simulation applications [7].

Figure 1. Error management.

G. Resilience

This is also a primary concern for the applications faced
to system and hardware errors. In the following, we include
both (application external) fault-tolerance and (internal)
robustness in the generic term resilience [1].

Therefore we do not follow here the definition given in
[17]: “By definition a failure is the impact of an error itself
caused by a fault.”

But we fully adhere to the following observation: “the
response to a failure or an error depends on the context and
the specific sensitivity to faults of the usage scenarios,
applications and algorithms” [17].

II. ERROR DETECTION

A. Error Characterization

We address in this paper application errors, e.g., out of
bounds data values, undefined parameters, execution time-
outs, result discrepancies and unexpected values. We do not
address communication, hardware and operating systems

errors. We suppose that they are handled by the appropriate
fault-tolerance sub-systems, which might automatically
correct some of them or take appropriate corrective action,
e.g., re-routing lost messages. We also suppose that these
errors can be signaled to the application-level software by
the appropriate raising of exceptions and posting of signals.
Thus, the applications can take whatever actions are needed,
e.g., re-executing tasks on other resources in case of network
partition. This can be defined by the application designers
and even by the application users at runtime.

The early characterization of errors is difficult because of
the complex software stack involved in the execution of
multi-discipline and multi-scale applications on clouds. The
consequence is that errors might be detected long after the
root cause that initiated them occurred. Also, the error
observed might be a complex consequence of the root cause,
possibly in a different software layer (Figure 2).

Similarly, the exact tracing and provenance data may be
very hard to sort out, because the occurrence of the original
fault may be hidden deep inside the software stack.

Without explicit data dependency information and real-
time tracing of the components execution, the impacted
components and associated results may be unknown. Hence
there is a need for explicit dependency information [10].

B. Error Ranking

The ranking of errors is dependent on the application
logic and semantics (e.g., default values usage). It is also
dependent on the logics of each software layer composing
the software stack. Some errors might be recoverable
(unresolved address, resource unavailable…), some others
not (network partition…). In each case, the actions to recover
and resume differ: ignore, retry, reassign, suspend, abort...

In all cases, resilience requires the application to include
four components:

• a monitoring component for early error detection,

• an effective decision system, for provenance and
impact assessment,

• a low overhead checkpointing mechanism,

• an effective recovery mechanism.
Further, some errors might be undetected and transient.

Without explicit data dependency information and real-time
tracing of the components execution, the impacted
components and associated results may be unknown. Hence
there is a need for explicit dependency information between
the component executing instances and between the
corresponding result data [12].

III. ERROR MANAGEMENT

Many open issues are still the subject of active research
concerning application resilience. The paradigm ranges from
code and data duplication and migration, to the monitoring of
application behavior, and this includes also quick correctness
checks on partial data values, the design of error-aware
algorithms, as well as hybrid checkpointing-message logging
features (Figure 1). We focus here only on application errors.
We do not address hardware, systems and communication
errors. We suppose that these errors are fully treated by the

appropriate system components [15][22]. We further suppose
that they can be signaled to the applications by some
exception events. This allows handling the consequences of
the errors, e.g., communication failures, by the appropriate
application resilience sub-system.

Figure 2. Error detection and assessment.

The baseline is:

• the early detection of errors

• root cause characterization

• characterization of transient vs. persistent errors

• the tracing and provenance of faulty data

• the identification of the impacted components and
their associated corrupted results

• the ranking of the errors (warnings, fatal, medium)
and associated actions (ignore, restart, backtrack)

• the identification of pending components

• the identification and purge of transient messages

• the secured termination of non-faulty components

• the secure storage of partial and consistent results

• the quick recovery of faulty and impacted
components

• the re-synchronization of the components and their
associated data

• the properly sequenced restart of the components
Each of these items needs appropriate implementation

and algorithms in order to orchestrate the various actions
required by the recovery of the faulty application
components.

A. Detection

1) Anomaly Detection: Hardware and system fault-
tolerance mechanisms can intercept errors [12]. Applications
errors however must be explicitly taken into account in the
code (Figure 3). This impacts severely the programming
efforts and needs important design and re-programming
efforts for existing codes [13].

2) Error Characterization: Similarly, error
characterization is heavily dependent on the application
logics [14]. It allows for error ranking, ranging from
warnings to fatal. This is necessary to fine tune the fault-
tolerance and resilience capabiities to the application and
user requirements.

3) Root Cause Detection: root cause characterization
and provenance information is the most difficult part in

complex applications and systems. Most of the time, even
sophisticated tracing mechanisms will fail to provide an
accurate characterization of the multiple root causes that
provoke errors and abnormal application behavior [17].

4) Impact Assessment: The next important step is the
assessment of the error impact. This includes the impact on
the subsequent tasks, on the data, and the evaluation of error
propagations. Further, a domino effect is that the errors can
impact the messages exchanged and in transit between tasks
as well as the advent of the pending tasks. This is detailed in
the following sections (B.1, B.2, C.1 and C.2)

B. Impacted Tasks and Data

1) Impacted Tasks: The application definition provides a
detailed dependency relationship between tasks and data. It
should therefore be straitghtforward to characterize the
impacted tasks and data (Figure 4). However, the latency
between error occurrence and their actual detection makes it
difficult to precisely point out the exact time and location
when an error occurred, particularly in distributed systems.
Therefore, impacted tasks and data can bearly be defined
without an undefined uncertainty. This paves the way for
drastic backtracking policies and restarts. However,
optimized checkpointing schemes, e.g., asymmetric [1],
multi-level [18] and encoded checkpoints [22], alleviate
somehow crude backtracking and checkpointing approaches
by reducing their overhead, in both CPU and storage terms.

2) Corrupted Data: Similarly, corrupted data can
originate from:

a) Application errors: Computation errors on correct

data will produce erroneous results, e.g., speciification,

algorithmic, programming erros. They can be spotted and

corrected with unpredictable delays. Performance and

overhead issues are Performance and overhead issues are

not necessarily fundamental here because CPU and data

demanding tasks might have to be backtracked and re-

executed, incurring potentially very long delays.

b) Error propagation: Correct computations

performed on previously polluted data may generate random

errors on data processed subsequently. Errors cannot in this

case be pointed out immediately, if at all. Restarting the

application componenents from ancestor tasks might be a

necessary option here. The exact and most accurate restart

location may in some cases be difficult to characterize.

Policy requirements and implementations are in this case the

last resort.

C. Impact

1) Transient Messages: Transient messages are

potentially emitted before a component failure. Identifying

such data might be very difficult in distributed computing

and collaborative codes. Indeed, failed tasks might have sent

unknown numbers of messages and data to a potentially

unknown number of descendant tasks, depending on the

point of failure. Time-outs might here be necessary to

consider transient messages to reach their destinations.

Purging all these messages is necessary to backtrack to a

previous consistent checkpoint.

Figure 3. Error impact.

2) Pending Tasks: Pending tasks are in contrast easily

characterized since they are waiting for incoming data or

events raised by ancestor tasks. Pause and resuming of such

tasks is an option, without systematically calling for their

cold restart from a previous checkpoint. Opportunistic

checkpoints might here be interesting to store already

produced data and application state. This is related to

asymmetric checkpoints [1], where the users define points of

interest in the application runs where checkpoints and

snapshots must be stored in order to prevent potential

catastrophic failures later. So, CPU, storage and

communication demanding tasks will in such cases be saved

without the need to restart them later in case of application

errors.

Figure 4. Error recovery.

D. Recovery

1) Termination of Non-faulty Tasks: As mentionned
above, recovery of non-faulty tasks is straightforward if they
are not directly linked to faulty tasks, or if they are explicitly
waiting for incoming data or events. If they are directly
linked to failed tasks, i.e., processing data produced by failed
tasks, restarting them with the failed tasks may be necessary.

Indeed, without a sophisticated control of the data exchanged
between tasks, it my be impossible to characterize the
subsets of data already processed correctly by subsequent
tasks. This is also the case when using data pipelining
between tasks. In this case, restarting the tasks from the
beginning is necessary. Further, resuming the subsequent
tasks also requires the ancestor failed tasks to restart at their
adequate execution locations when failed. This is most of the
time impossible in current systems. It requires repetitive
incremental and partial checkpoints of state dta and produced
results, which can have an important overhead (Figure 5).

2) Secured Storage of Non-faulty Data: The secured
storage of non-faulty data is essential for the optimization of
the recovery process. Although, if it does not succeed,
backtracking to a preceding checkpoint in the execution run
is an option.

3) Restart Selection: There might be several options
available for a single coordinated restart or local partial
restarts (Figure 6). Depending on the situation, ranging from
warnings to erros and fatal ones, the distributed
configuration of the applications might render a global
coordinated restart unrealistic. Several partial local restarts
might be preferable, and in all cases, less expensive in terms
of CPU and resource consumptions (Section D.5, below).

4) Checkpoint Selection: An adequate checkpoint
selection mechanism must be devised, which supports local
restart in parallel and/or partial restarts from distributed and
coordinated checkpoints. Here again, the versatility of the
checkpointing mechanism, i.e., the support for multi-level
checkpoints, is of first importance for reducing the restart
overhead (Figure 7). But the cost is of course, the
checkpointing overhead, both in terms of CPU and storage
capacity, incurred. Encoding mechanisms, “shadowed” and
“cloned” virtual disk images have been proposed to answer
these concerns [23].

5) Coordinated Restart: Coordinated local restarts is a

middle term option, between global cold restarts and

multiple local restarts. As mentioned previously (Section

D.3), a global coordinated cold restart is unrealistic in

distributed systems because it requires stopping all tasks and

restarting the whole application, which might require large

computing resources and days of CPU time. Coordination is

fundamental here and related to distributed computations. It

follows that coordinated restarts must be implemented by a

specific mechanism that selects timestamped data and

checkpoints.

IV. IMPLEMENTATION

A. Overview

Several proposals have emerged recently dedicated to

resilience and fault management in HPC systems
[14][15][16].

The main components of such sub-systems are dedicated
to the management of error, ranging from early error
detections to error assessment, impact characterization,
healing procedures concerning infected codes and data,

choice of appropriate steps backwards and effective low
overhead restart procedures.

General approaches which encompass all these aspects
are proposed for Linux systems, e.g., CIFTS [5]. More
dedicated proposals focus on multi-level checkpointing and
restart procedures to cope with memory hierarchy (RAM,
SSD, HDD), hybrid CPU-GPU hardware, multi-core
hardware topology and data encoding to optimize the
overhead of checkpointing strategies, e.g., FTI [22]. The goal
is to design and implement low overhead, high frequency
and compact checkpointing schemes.

Figure 5. Restart.

Also, new approaches take benefit of virtualization
technologies to optimize checkpointing mechanisms using
virtual disks images on cloud computing infrastructures [23].

Two complementary aspects are considered:

• The detection and management of faults inherent to the

hardware and software systems used

• The detection and management of faults emanating

from the application code itself

Both aspects are different and imply different system
components to react. However, unforeseen or incorrectly
handled application errors may have undesirable effects on
the execution of system components. The system and
hardware fault management components might then have
drastic procedure to confine the errors, which can lead to the
application aborting. This is the case for out of bound
parameter and data values, incorrect service invocations, if
not correctly taken care of in the application codes.

This raises an important issue in algorithms design.
Parallelization of numeric codes on HPC platforms is today
taken into account in an expanding move towards petascale
and future exascale computers. But so far, only limited
algorithmic approaches take into account fault-tolerance
from the start.

B. Resilience Sub-system

Generic system components have been designed and

tested for fault-tolerance. They include fault-tolerance
backpanes [5] and fault-tolerance interfaces [22]. Both target

general procedures to cope with systematic monitoring of
hardware, system and applications behaviors. Performance
consideration limit the design options of such systems where
incremental and multi-level checkpoints become the norm, in
order to alleviate the overhead incurred by checkpoints
storage and CPU usage. These can indeed exceed 25% of the
total wall time requirements for scientific applications [22].
Other proposals take advantage of virtual machines
technologies to optimize checkpoints storage using
incremental (“shadowed” and “cloned”) virtual disks images
on virtual machines snapshots [23].

C. Distributed Platform

The distributed platform is built by the connection of two

main components: 1) a workflow management system for
application definition, deployment, execution and monitoring
[2][9]; 2) a middleware allowing for distributed resource
reservation, and execution of the applications on a wide-area
network.

1) Workflow. The applications are defined using a

workflow management system, i.e., YAWL [20]. This

allows for dataflow and control flow specifications. It

allows parameter definition and passing between application

tasks. The tasks are defined incrementally and

hierarchically. They can bear constraints that trigger

appropriate code to cope with exceptions, i.e., exlets, and

user-defined real-time runtime branchings. This allows for

situational awareness at runtime and supports user

interventions, when required. This is a powerful tool to deal

with fault-tolerance and application resilience at runtime

[1].

2) Middleware. The distribution of the platform is

designed using an open-source middleware, i.e., Grid5000

[9]. This alows for reservation, deployment and execution of

customized systems and application configurations. The

Grid5000 nationwide infrastructure currently includes 12

sites in France and abroad, 19 research labs, 15 clusters,

1500 nodes, 8600 cores, connected by a 10Gb/s network.

The resource reservations, deployment and running of the

applications are made through standardized calls to specific

system libraries. Because the infrastructure is shared

between many research labs, resource reservation and job

executions, i.e., applications, are queued with specific

priority considerations.

3) Applications. Applications are defined, run and

monitored using the standard workflow interface [6][19].

They invoke automatically or manually the tasks, as defined

in the specification interface. Tasks in turn invoke the

various executable components tranparently through the

middleware, using Web services [21]. They are standard in

YAWL and used to invoke executable codes specific to each

task. The codes are written in any programming language,

ranging from Python to Java and C++. Script invocations

with parameters are also possible. Parameter passing and

data exchange between the executable codes are

standardized in the workflow interface. Data structures are

extendible user-defined templates to cope with all potential

applications. As mentioned in the previous sections (Section

“Workflow”, above), constraints are defined and rules

trigger component tasks based on data values, conditional

checking. The testcases are distributed on a network of HPC

clusters using the Grid5000 infrastructure. The hardware

characteristics of the clusters are different. The application

performance when running on various clusters are therefore

different.
We use this infrastructure to deploy the application tasks

on the various clusters and take advantage of the different
cluster performance characteristics to benefit from load-
balancing techniques combined with error management.

The automotive testcase presented here includes 17
different rear-mirror models tested for aerodynamics
refinement. They are attached to a vehicle mesh of 22
million cells. A reference simulation was performed in 2
days on a 48 CPU non-distributed cluster with a total of 144
GB RAM. The result was a 2% drag reduction for the
complete vehicle. The mesh will be eventually refined to
include 35 million cells. A DES (Detached Eddy Simulation)
flow simulation model is used.

The tasks include, from left to right in Figure 6:

• An initialization task for configuring the application

(data files, optimization codes among which to

choose…)

• A mesh generator producing the input data to the

optimizer from a CAD file

• An optimizer producing the optimized data files (e.g.,

variable vectors)

• A partitioner that decomposes the input mesh into

several sub-meshes for parallelization

• Each partition is input to a solver, several instances of

which work on particular partitions

• A cost function evaluator, i.e., a drag evaluation

• A result gathering task for output and data visualization

• Error handlers in order to process the errors potentially

raised by the solvers

The optimizer and solvers are all implemented using
MPI. This allows highly parallel software executions.
Combined with the parallelization made possible by the
various mesh partitions, and the different geometry
configurations of the testcase, it follows that there are three
complementary parallelization levels in this testcase, which
allow to fully benefit from the HPC clusters infrastructure.

Should an error occur during the solver processes, an
exception is raised by the faulty tasks and they transfer the
control to the corresponding error handler. This one will
process the errors and trigger the appropriate actions,
including:

Figure 6. Distributed resilience testcase.

• Transfer automatically the solver task and data to

another cluster, in case of CPU time limit or memory

overflow: this is a load-balancing approach

• Retry the optimizer task with new input parameters

requested from the user (number of iterations, switch

optimizer code…)

• Ignore the error, if applicable, and resume the solver

task

This approach merges two different and complementary

techniques:

• Application-level error handling

• A load-balancing approach to take full benefit of the

various cluster characteristics, for best application

performance

Finally, the testbed implements the combination of a
user-friendly workflow system with a grid computing
infrastructure. It includes automatic load-balancing and
resilience techniques. It therefore provides a powerful cloud
infrastructure, compliant with the “Infrastructure as a
Service” approach (IaaS).

V. CONCLUSION

High-performance computing and cloud infrastructures

are today commonly used for running large-scale e-Science
applications.

 This has raised concerns about system fault-tolerance
and application resilience. Because exascale computers are
emerging, the need for supporting resilience becomes even
more stringent.

Sophisticated and optimized functionalities are therefore
required in the hardware, systems and application codes to
support effectively error detection and recovery.

This paper defines concepts, details current issues and
sketches solutions to support application resilience. Our

approach is currently implemented and tested on simulation
testcases using a distributed platform that operates a
workflow management system interfaced with a grid
infrastructure, altogether providng a seamless cloud
computing environment.

The platform provides functionalities for application
specification, deployment, execution and monitoring. It
features resilience capabilities to handle runtime errors. It
implements the cloud computing “Infrastructure as a
Service” paradigm using a user-friendly application
workflow interface.

ACKNOWLEDGMENT

The authors wish to thank Alain Viari, Directeur de

Recherche with INRIA, for many fruitful discussions
concerning the testcase design and deployment.

This work is supported by the European Commission
FP7 Cooperation Program “Transport (incl. aeronautics)”,
for the GRAIN Coordination and Support Action (“Greener
Aeronautics International Networking”), grant ACS0-GA-
2010-266184.

It is also supported by the French National Research
Agency ANR (Agence Nationale de la Recherche) for the
OMD2 project (Optimisation Multi-Discipline Distribuée),
grant ANR-08-COSI-007, program COSINUS (Conception
et Simulation).

REFERENCES

[1] T. Nguyên, L. Trifan and J-A Désidéri . “A Distributed Workflow

Platform for Simulation”. Proc. 4th Intl. Conf on Advanced
Engineering Computing and Applications in Sciences
(ADVCOMP2010). pp. 375-382. Florence (I). October 2010.

[2] E. Deelman et Y. Gil., “Managing Large-Scale Scientific Workflows
in Distributed Environments: Experiences and Challenges”, Proc. of
the 2nd IEEE Intl. Conf. on e-Science and the Grid. pp. 165-172.
Amsterdam (NL). December 2006.

[3] H. Simon. “Future directions in High-Performance Computing 2009-
2018”. Lecture given at the ParCFD 2009 Conference. Moffett Field
(Ca). May 2009.

[4] Dongarra, P. Beckman et al. “The International Exascale Software
Roadmap”. Volume 25, Number 1, 2011, International Journal of
High Performance Computer Applications, pp. 77-83. Available at:
http://www.exascale.org/ Last accessed: 02/02/2012.

[5] R. Gupta, P. Beckman et al. “CIFTS: a Coordinated Infrastructure for
Fault-Tolerant Systems”, Proc. 38th Intl. Conf. Parallel Processing
Systems. pp. 145-156. Vienna (Au). September 2009.

[6] D. Abramson, B. Bethwaite et al. “Embedding Optimization in
Computational Science Workflows”, Journal of Computational
Science 1 (2010). Pp 41-47. Elsevier.

[7] A.Bachmann, M. Kunde, D. Seider and A. Schreiber, “Advances in
Generalization and Decoupling of Software Parts in a Scientific
Simulation Workflow System”, Proc. 4th Intl. Conf. Advanced
Engineering Computing and Applications in Sciences
(ADVCOMP2010). Pp 247-258. Florence (I). October 2010.

[8] E.C. Joseph, et al. “A Strategic Agenda for European Leadership in
Supercomputing: HPC 2020”, IDC Final Report of the HPC Study for

the DG Information Society of the EC. July 2010. Available at:
http://www.hpcuserforum.com/EU/ Last accessed: 02/02/2012.

[9] T. Nguyên, L. Trifan, J.A. Désidéri. “A Workflow Platform for
Simulation on Grids”, Proc. 7th Intl. Conf. on Networking and
Services (ICNS2011). pp. 295-302. Venice (I). May 2011.

[10] E. Sindrilaru, A. Costan and V. Cristea. “Fault-Tolerance and
Recovery in Grid Workflow Mangement Systems”, Proc. 4th Intl.
Conf. on Complex, Intelligent and Software Intensive Systems. pp.
162-173. Krakow (PL). February 2010.

[11] The Apache Foundation. http://ode.apache.org/bpel-extensions.html
#BPELExtensions-ActivityFailureandRecovery Last accessed:
02/02/2012.

[12] P. Beckman. “Facts and Speculations on Exascale: Revolution or
Evolution?”, Keynote Lecture. Proc. 17th European Conf. Parallel
and Distributed Computing (Euro-Par 2011). pp. 135-142. Bordeaux
(F). August 2011.

[13] P. Kovatch, M. Ezell, R. Braby. “The Malthusian Catastrophe is
Upon Us! Are the Largest HPC Machines Ever Up?”, Proc.
Resilience Workshop at 17th European Conf. Parallel and Distributed
Computing (Euro-Par 2011). pp. 255-262. Bordeaux (F). August
2011.

[14] R. Riesen, K. Ferreira, M. Ruiz Varela, M. Taufer, A. Rodrigues.
“Simulating Application Resilience at Exascale”, Proc. Resilience
Workshop at 17th European Conf. Parallel and Distributed
Computing (Euro-Par 2011). pp. 417-425. Bordeaux (F). August
2011.

[15] P. Bridges, et al. “Cooperative Application/OS DRAM Fault
Recovery”, Proc. Resilience Workshop at 17th European Conf.
Parallel and Distributed Computing (Euro-Par 2011). pp. 213-222.
Bordeaux (F). August 2011.

[16] Proc. 5th Workshop INRIA-Illinois Joint Laboratory on Petascale
Computing. Grenoble (F). June 2011.
http://jointlab.ncsa.illinois.edu/events/workshop5/ Last accessed
02/02/2012.

[17] F. Capello, et al. “Toward Exascale Resilience”, Technical Report
TR-JLPC-09-01. INRIA-Illinois Joint Laboratory on PetaScale
Computing. Chicago (Il.). 2009. http://jointlab.ncsa.illinois.edu/

[18] Moody A., G.Bronevetsky, K. Mohror, B. de Supinski. Design,
“Modeling and evaluation of a Scalable Multi-level checkpointing
System”, Proc. ACM/IEEE Intl. Conf. for High Performance
Computing, Networking, Storage and Analysis (SC10). pp. 73-86.
New Orleans (La.). Nov. 2010. http://library-ext.llnl.gov Also Tech.
Report LLNL-TR-440491. July 2010. Last accessed: 02/02/2012.

[19] Adams M., ter Hofstede A., La Rosa M. “Open source software for
workflow management: the case of YAWL”, IEEE Software. 28(3):
16-19. pp. 211-219. May/June 2011.

[20] Russell N., ter Hofstede A. “Surmounting BPM challenges: the
YAWL story.”, Special Issue Paper on Research and Development on
Flexible Process Aware Information Systems. Computer Science.
23(2): 67-79. pp. 123-132. March 2009. Springer 2009.

[21] Lachlan A., van der Aalst W., Dumas M., ter Hofstede A.
“Dimensions of coupling in middleware”, Concurrency and
Computation: Practice and Experience. 21(18):233-2269. pp. 75-82.
J. Wiley & Sons 2009.

[22] Bautista-Gomez L., et al., “FTI: high-performance Fault Tolerance
Interface for hybrid systems”, Proc. ACM/IEEE Intl. Conf. for High
Performance Computing, Networking, Storage and Analysis (SC11),
pp. 239-248, Seattle (Wa.)., November 2011.

[23] Nicolae B. and Cappello F., “BlobCR: Efficient Checkpoint-Retart
for HPC Applications on IaaS Clouds using Virtual Disk Image
Snapshots”, Proc. ACM/IEEE Intl. Conf. High Performance
Computing, Networking, Storage and Analysis (SC11), pp. 145-156,
Seattle (Wa.)., November 2011.

