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Abstract— Cloud computing infrastructures support system 

and network fault-tolerance. They transparently repair and 

prevent communication and software errors. They also allow 

duplication and migration of jobs and data to prevent 

hardware failures. However, only limited work has been done 

so far on application resilience, i.e., the ability to resume 

normal execution after errors and abnormal executions in 

distributed environments and clouds. This paper addresses 

open issues and solutions for application errors detection and 

management. It also overviews a testbed used to to design, 

deploy, execute, monitor, restart and resume distributed 

applications on cloud infrastructures in cases of failures. 
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I. INTRODUCTION 

 
This paper overviews open issues and the corresponding 

solutions for application errors detection and management 
when running on cloud infrastructures. A testbed is also 
presented relying on a workflow system interfaced with a 
grid infrastructure to model cloud environments. Section II 
addresses error detection. Section III details the 
corresponding solutions for error management. Section IV 
describes the testbed using a workflow management system 
to support these solutions on clouds. Section V is a 
conclusion. 

Because many terms are used in the fault-tolerance area, 
a definition of various terms used in the domain is necessary. 
An interesting definition of errors, faults and failures is given 
in a system such as Apache’s ODE [11], where system 
failures and application faults address different types of 
errors. 

A. Errors 

The generic term error is used to characterize abnormal 
behavior, originating from hardware, operating systems and 
applications that do not follow prescribed protocols and 
algorithms. Errors can be fatal, transient and warnings, 
depending on their criticity level. Because sophisticated 
hardware and software stacks are operating on all production 
systems, there is a need to classify the corresponding 
concepts (Figure 1).  

B. Failures 

A failure to resolve a DNS address is different from a 
process fault, e.g., a bad expression. Indeed, a system failure 
does not impact the correct logics of the application process 
at work, and should not be handled by it, but by the system 
error-handling software instead: “failures are non-terminal 
error conditions that do not affect the normal flow of the 
process” [11]. 

C. Faults 

However, an activity can be programmed to throw a fault 
following a system failure, and the user can choose in such a 
case to implement a specific application behavior, e.g., a 
number of activity retries or its termination. 

Application and system software usually raise exceptions 
when faults and failures occur. The exception handling 
software then handles the faults and failures. This is the case 
for the YAWL workflow management system [19][20], 
where specific exlets can be defined by the users [21]. They 
are components dedicated to the management of abnormal 
application or system behavior (Figure 2). The extensive use 
of these exlets allows the users to modify the behavior of the 
applications in real-time, without stopping the running 
processes. Further, the new behavior is stored as a 
component workflow which incrementally modifies the 
application specifications. The latter can therefore be 
modified dynamically to handle changes in the user 
requirements.  

D. Fault Tolerance 

Fault-tolerance is a generic term that has long been used 
to name the ability of systems and applications to handle 
errors. Transactional systems for example need to be fault-
tolerant [9]. Critical business and scientific applications need 
to be fault-tolerant, i.e., to resume consistently in case of 
internal or external errors. 

E. Checkpoints 

Therefore checkpoints need to be designed at specific 
intervals to backtrack the applications to consistent points in 
the application execution, and restart be enabled from there. 
They form the basis for recovery procedures. 

In the following, we call checkpoint for a particular task 
the set including task definition, parameter specifications and 



 

data associated to the task, either input data or output data 
and the parameter values.  

This checkpoint definition does not include the tasks 
execution states or contexts, e.g., internal loop counters, 
current array indices, etc. Therefore, we assume that 
checkpointed tasks are stored stateless. This means that 
interrupted tasks, whatever the reasons and errors, cannot be 
restarted from their exact execution state immediately prior 
to the errors.  

F. Recovery 

We assume therefore that the recovery procedure must 
restart the failed tasks from previously stored elements in the 
set of existing tasks checkpoints. A consequence is that 
failed tasks cannot be restarted on the fly, following for 
example a transient non fatal error. They must be restarted 
from previously stored checkpoints. 

Application robustness is the property of software that 
are able to survive consistently from data and code errors. 
This area is a major concern for complex numeric software 
that deal with data uncertainties. This is particularly the case 
for simulation applications [7]. 

 

Figure 1. Error management. 

G. Resilience 

This is also a primary concern for the applications faced 
to system and hardware errors. In the following, we include 
both (application external) fault-tolerance and (internal) 
robustness in the generic term resilience [1]. 

Therefore we do not follow here the definition given in 
[17]: “By definition a failure is the impact of an error itself 
caused by a fault.”  

But we fully adhere to the following observation: “the 
response to a failure or an error depends on the context and 
the specific sensitivity to faults of the usage scenarios, 
applications and algorithms” [17]. 
 

II. ERROR DETECTION 

A. Error Characterization 

We address in this paper application errors, e.g., out of 
bounds data values, undefined parameters, execution time-
outs, result discrepancies and unexpected values. We do not 
address communication, hardware and operating systems 

errors. We suppose that they are handled by the appropriate 
fault-tolerance sub-systems, which might automatically 
correct some of them or take appropriate corrective action, 
e.g., re-routing lost messages. We also suppose that these 
errors can be signaled to the application-level software by 
the appropriate raising of exceptions and posting of signals. 
Thus, the applications can take whatever actions are needed, 
e.g., re-executing tasks on other resources in case of network 
partition. This can be defined by the application designers 
and even by the application users at runtime. 

The early characterization of errors is difficult because of 
the complex software stack involved in the execution of 
multi-discipline and multi-scale applications on clouds. The 
consequence is that errors might be detected long after the 
root cause that initiated them occurred. Also, the error 
observed might be a complex consequence of the root cause, 
possibly in a different software layer (Figure 2). 

Similarly, the exact tracing and provenance data may be 
very hard to sort out, because the occurrence of the original 
fault may be hidden deep inside the software stack. 

Without explicit data dependency information and real-
time tracing of the components execution, the impacted 
components and associated results may be unknown. Hence 
there is a need for explicit dependency information [10]. 

B. Error Ranking 

The ranking of errors is dependent on the application 
logic and semantics (e.g., default values usage). It is also 
dependent on the logics of each software layer composing 
the software stack. Some errors might be recoverable 
(unresolved address, resource unavailable…), some others 
not (network partition…). In each case, the actions to recover 
and resume differ: ignore, retry, reassign, suspend, abort... 

In all cases, resilience requires the application to include 
four components: 

• a monitoring component for early error detection, 

• an effective decision system, for provenance and 
impact assessment, 

• a low overhead checkpointing mechanism, 

• an effective recovery mechanism. 
Further, some errors might be undetected and transient. 

Without explicit data dependency information and real-time 
tracing of the components execution, the impacted 
components and associated results may be unknown. Hence 
there is a need for explicit dependency information between 
the component executing instances and between the 
corresponding result data [12]. 

 

III. ERROR MANAGEMENT 

Many open issues are still the subject of active research 
concerning application resilience. The paradigm ranges from 
code and data duplication and migration, to the monitoring of 
application behavior, and this includes also quick correctness 
checks on partial data values, the design of error-aware 
algorithms, as well as hybrid checkpointing-message logging 
features (Figure 1). We focus here only on application errors. 
We do not address hardware, systems and communication 
errors. We suppose that these errors are fully treated by the 



 

appropriate system components [15][22]. We further suppose 
that they can be signaled to the applications by some 
exception events. This allows handling the consequences of 
the errors, e.g., communication failures, by the appropriate 
application resilience sub-system. 

 
Figure 2. Error detection and assessment. 

The baseline is: 

• the early detection of errors 

• root cause characterization 

• characterization of transient vs. persistent errors 

• the tracing and provenance of faulty data 

• the identification of the impacted components and 
their associated corrupted results 

• the ranking of the errors (warnings, fatal, medium) 
and associated actions (ignore, restart, backtrack) 

• the identification of pending components 

• the identification and purge of transient messages 

• the secured termination of non-faulty components 

• the secure storage of partial and consistent results 

• the quick recovery of faulty and impacted 
components 

• the re-synchronization of the components and their 
associated data 

• the properly sequenced restart of the components 
Each of these items needs appropriate implementation 

and algorithms in order to orchestrate the various actions 
required by the recovery of the faulty application 
components. 

A. Detection 

1) Anomaly Detection: Hardware and system fault-
tolerance mechanisms can intercept errors [12]. Applications 
errors however must be explicitly taken into account in the 
code (Figure 3). This impacts severely the programming 
efforts and needs important design and re-programming 
efforts for existing codes [13]. 

2) Error Characterization: Similarly, error 
characterization is heavily dependent on the application 
logics [14]. It allows for error ranking, ranging from 
warnings to fatal. This is necessary to fine tune the fault-
tolerance and resilience capabiities to the application and 
user requirements. 

3) Root Cause Detection: root cause characterization 
and provenance information is the most difficult part in 

complex applications and systems. Most of the time, even 
sophisticated tracing mechanisms will fail to provide an 
accurate characterization of the multiple root causes that 
provoke errors and abnormal application behavior [17]. 

4) Impact Assessment: The next important step is the 
assessment of the error impact. This includes the impact on 
the subsequent tasks, on the data, and the evaluation of error 
propagations. Further, a domino effect is that the errors can 
impact the messages exchanged and in transit between tasks 
as well as the advent of the pending tasks. This is detailed in 
the following sections (B.1, B.2, C.1 and C.2) 
 

B. Impacted Tasks and Data 

1) Impacted Tasks: The application definition provides a 
detailed dependency relationship between tasks and data. It 
should therefore be straitghtforward to characterize the 
impacted tasks and data (Figure 4). However, the latency 
between error occurrence and their actual detection makes it 
difficult to precisely point out the exact time and location 
when an error occurred, particularly in distributed systems. 
Therefore, impacted tasks and data can bearly be defined 
without an undefined uncertainty. This paves the way for 
drastic backtracking policies and restarts. However, 
optimized checkpointing schemes, e.g., asymmetric [1], 
multi-level [18] and encoded checkpoints [22], alleviate 
somehow crude backtracking and checkpointing approaches 
by reducing their overhead, in both CPU and storage terms. 

2) Corrupted Data: Similarly, corrupted data can 
originate from: 

a) Application errors: Computation errors on correct 

data will produce erroneous results, e.g., speciification, 

algorithmic, programming erros. They can be spotted and 

corrected with unpredictable delays. Performance and 

overhead issues are  Performance and overhead issues are 

not necessarily fundamental here because CPU and data 

demanding tasks might have to be backtracked and re-

executed, incurring potentially very long delays. 

b) Error propagation: Correct computations 

performed on previously polluted data may generate random 

errors on data processed subsequently. Errors cannot in this 

case be pointed out immediately, if at all. Restarting the 

application componenents from ancestor tasks might be a 

necessary option here. The exact and most accurate restart 

location may in some cases be difficult to characterize. 

Policy requirements and implementations are in this case the 

last resort. 

C. Impact 

1) Transient Messages: Transient messages are 

potentially emitted before a component failure. Identifying 

such data might be very difficult in distributed computing 

and collaborative codes. Indeed, failed tasks might have sent 

unknown numbers of messages and data to a potentially 

unknown number of descendant tasks, depending on the 

point of failure. Time-outs might here be necessary to 

consider transient messages to reach their destinations. 



 

Purging all these messages is necessary to backtrack to a 

previous consistent checkpoint. 

 

 

Figure 3. Error impact. 

2) Pending Tasks: Pending tasks are in contrast easily 

characterized since they are waiting for incoming data or 

events raised by ancestor tasks. Pause and resuming of such 

tasks is an option, without systematically calling for their 

cold restart from a previous checkpoint. Opportunistic 

checkpoints might here be interesting to store already 

produced data and application state. This is related to 

asymmetric checkpoints [1], where the users define points of 

interest in the application runs where checkpoints and 

snapshots must be stored in order to prevent potential 

catastrophic failures later. So, CPU, storage and 

communication demanding tasks will in such cases be saved 

without the need to restart them later in case of application 

errors. 

 
Figure 4. Error recovery. 

D. Recovery 

1) Termination of Non-faulty Tasks: As mentionned 
above, recovery of non-faulty tasks is straightforward if they 
are not directly linked to faulty tasks, or if they are explicitly 
waiting for incoming data or events. If they are directly 
linked to failed tasks, i.e., processing data produced by failed 
tasks, restarting them with the failed tasks may be necessary. 

Indeed, without a sophisticated control of the data exchanged 
between tasks, it my be impossible to characterize the 
subsets of data already processed correctly by subsequent 
tasks. This is also the case when using data pipelining 
between tasks. In this case, restarting the tasks from the 
beginning is necessary. Further, resuming the subsequent 
tasks also requires the ancestor failed tasks to restart at their 
adequate execution locations when failed. This is most of the 
time impossible in current systems. It requires repetitive 
incremental and partial checkpoints of state dta and produced 
results, which can have an important overhead (Figure 5). 

2) Secured Storage of Non-faulty Data: The secured 
storage of non-faulty data is essential for the optimization of 
the recovery process. Although, if it does not succeed, 
backtracking to a preceding checkpoint in the execution run 
is an option. 

3) Restart Selection: There might be several options 
available for a single coordinated restart or local partial 
restarts (Figure 6). Depending on the situation, ranging from 
warnings to erros and fatal ones, the distributed 
configuration of the applications might render a global 
coordinated restart unrealistic. Several partial local restarts 
might be preferable, and in all cases, less expensive in terms 
of CPU and resource consumptions (Section D.5, below). 

4) Checkpoint Selection: An adequate checkpoint 
selection mechanism must be devised, which supports local 
restart in parallel and/or partial restarts from distributed and 
coordinated checkpoints. Here again, the versatility of the 
checkpointing mechanism, i.e., the support for multi-level 
checkpoints, is of first importance for reducing the restart 
overhead (Figure 7). But the cost is of course, the 
checkpointing overhead, both in terms of CPU and storage 
capacity, incurred. Encoding mechanisms, “shadowed” and 
“cloned” virtual disk images have been proposed to answer 
these concerns [23]. 

5) Coordinated Restart: Coordinated local restarts is a 

middle term option, between global cold restarts and 

multiple local restarts. As mentioned previously (Section 

D.3), a global coordinated cold restart is unrealistic in 

distributed systems because it requires stopping all tasks and 

restarting the whole application, which might require large 

computing resources and days of CPU time. Coordination is 

fundamental here and related to distributed computations. It 

follows that coordinated restarts must be implemented by a 

specific mechanism that selects timestamped data and 

checkpoints. 

IV. IMPLEMENTATION 

A. Overview 

 
Several proposals have emerged recently dedicated to 

resilience and fault management in HPC systems 
[14][15][16]. 

The main components of such sub-systems are dedicated 
to the management of error, ranging from early error 
detections to error assessment, impact characterization, 
healing procedures concerning infected codes and data, 



 

choice of appropriate steps backwards and effective low 
overhead restart procedures. 

General approaches which encompass all these aspects 
are proposed for Linux systems, e.g., CIFTS [5]. More 
dedicated proposals focus on multi-level checkpointing and 
restart procedures to cope with memory hierarchy (RAM, 
SSD, HDD), hybrid CPU-GPU hardware, multi-core 
hardware topology and data encoding to optimize the 
overhead of checkpointing strategies, e.g., FTI [22]. The goal 
is to design and implement low overhead, high frequency 
and compact checkpointing schemes.  

 

 
Figure 5. Restart. 

Also, new approaches take benefit of virtualization 
technologies to optimize checkpointing mechanisms using 
virtual disks images on cloud computing infrastructures [23]. 

Two complementary aspects are considered: 

• The detection and management of faults inherent to the 

hardware and software systems used 

• The detection and management of faults emanating 

from the application code itself 

Both aspects are different and imply different system 
components to react. However, unforeseen or incorrectly 
handled application errors may have undesirable effects on 
the execution of system components. The system and 
hardware fault management components might then have 
drastic procedure to confine the errors, which can lead to the 
application aborting. This is the case for out of bound 
parameter and data values, incorrect service invocations, if 
not correctly taken care of in the application codes. 

This raises an important issue in algorithms design. 
Parallelization of numeric codes on HPC platforms is today 
taken into account in an expanding move towards petascale  
and future exascale computers. But so far, only limited 
algorithmic approaches take into account fault-tolerance 
from the start. 
 

B. Resilience Sub-system 

 
Generic system components have been designed and 

tested for fault-tolerance. They include fault-tolerance 
backpanes [5] and fault-tolerance interfaces [22]. Both target 

general procedures to cope with systematic monitoring of 
hardware, system and applications behaviors. Performance 
consideration limit the design options of such systems where 
incremental and multi-level checkpoints become the norm, in 
order to alleviate the overhead incurred by checkpoints 
storage and CPU usage. These can indeed exceed 25% of the 
total wall time requirements for scientific applications [22]. 
Other proposals take advantage of virtual machines 
technologies to optimize checkpoints storage using 
incremental (“shadowed” and “cloned”) virtual disks images 
on virtual machines snapshots [23]. 

C. Distributed Platform 

 
The distributed platform is built by the connection of two 

main components: 1) a workflow management system for 
application definition, deployment, execution and monitoring 
[2][9]; 2) a middleware allowing for distributed resource 
reservation, and execution of the applications on a wide-area 
network. 

 

1) Workflow. The applications are defined using a 

workflow management system, i.e., YAWL [20]. This 

allows for dataflow and control flow specifications. It 

allows parameter definition and passing between application 

tasks. The tasks are defined incrementally and 

hierarchically. They can bear constraints that trigger 

appropriate code to cope with exceptions, i.e., exlets, and 

user-defined real-time runtime branchings. This allows for 

situational awareness at runtime and supports user 

interventions, when required. This is a powerful tool to deal 

with fault-tolerance and application resilience at runtime 

[1]. 
 

2) Middleware. The distribution of the platform is 

designed using an open-source middleware, i.e., Grid5000 

[9]. This alows for reservation, deployment and execution of 

customized systems and application configurations. The 

Grid5000 nationwide infrastructure currently includes 12 

sites in France and abroad, 19 research labs, 15 clusters, 

1500 nodes, 8600 cores, connected by a 10Gb/s network. 

The resource reservations, deployment and running of the 

applications are made through standardized calls to specific 

system libraries. Because the infrastructure is shared 

between many research labs, resource reservation and job 

executions, i.e., applications, are queued with specific 

priority considerations. 

 

3) Applications. Applications are defined, run and 

monitored using the standard workflow interface [6][19]. 

They invoke automatically or manually the tasks, as defined 

in the specification interface. Tasks in turn invoke the 

various executable components tranparently through the 

middleware, using Web services [21]. They are standard in 

YAWL and used to invoke executable codes specific to each 



 

task. The codes are written in any programming language, 

ranging from Python to Java and C++. Script invocations 

with parameters are also possible. Parameter passing and 

data exchange between the executable codes are 

standardized in the workflow interface. Data structures are 

extendible user-defined templates to cope with all potential 

applications. As mentioned in the previous sections (Section 

“Workflow”, above), constraints are defined and rules 

trigger component tasks based on data values, conditional 

checking. The testcases are distributed on a network of HPC 

clusters using the Grid5000 infrastructure. The hardware 

characteristics of the clusters are different. The application 

performance when running on various clusters are therefore 

different.  
We use this infrastructure to deploy the application tasks 

on the various clusters and take advantage of the different 
cluster performance characteristics to benefit from load-
balancing techniques combined with error management.  

The automotive testcase presented here includes 17 
different rear-mirror models tested for aerodynamics 
refinement. They are attached to a vehicle mesh of 22 
million cells. A reference simulation was performed in 2 
days on a 48 CPU non-distributed cluster with a total of 144 
GB RAM. The result was a 2% drag reduction for the 
complete vehicle. The mesh will be eventually refined to 
include 35 million cells. A DES (Detached Eddy Simulation) 
flow simulation model is used. 

The tasks include, from left to right in Figure 6: 

• An initialization task for configuring the application 

(data files, optimization codes among which to 

choose…) 

• A mesh generator producing the input data to the 

optimizer from a CAD file 

• An optimizer producing the optimized data files (e.g., 

variable vectors) 

• A partitioner that decomposes the input mesh into 

several sub-meshes for parallelization 

• Each partition is input to a solver, several instances of 

which work on particular partitions 

• A cost function evaluator, i.e., a drag evaluation 

• A result gathering task for output and data visualization 

• Error handlers in order to process the errors potentially 

raised by the solvers 

The optimizer and solvers are all implemented using 
MPI. This allows highly parallel software executions. 
Combined with the parallelization made possible by the 
various mesh partitions, and the different geometry 
configurations of the testcase, it follows that there are three 
complementary parallelization levels in this testcase, which 
allow to fully benefit from the HPC clusters infrastructure. 

Should an error occur during the solver processes, an 
exception is raised by the faulty tasks and they transfer the 
control to the corresponding error handler. This one will 
process the errors and trigger the appropriate actions, 
including: 

 

 

Figure 6. Distributed resilience testcase. 

• Transfer automatically the solver task and data to 

another cluster, in case of CPU time limit or memory 

overflow: this is a load-balancing approach 

• Retry the optimizer task with new input parameters 

requested from the user (number of iterations, switch 

optimizer code…) 

• Ignore the error, if applicable, and resume the solver 

task 

 

This approach merges two different and complementary 

techniques: 

• Application-level error handling 

• A load-balancing approach to take full benefit of the 

various cluster characteristics, for best application 

performance 

Finally, the testbed implements the combination of a 
user-friendly workflow system with a grid computing 
infrastructure. It includes automatic load-balancing and 
resilience techniques. It therefore provides a powerful cloud  
infrastructure, compliant with the “Infrastructure as a 
Service” approach (IaaS). 

 

V. CONCLUSION 

 
High-performance computing and cloud infrastructures 

are today commonly used for running large-scale e-Science 
applications. 

 This has raised concerns about system fault-tolerance 
and application resilience. Because exascale computers are 
emerging, the need for supporting resilience becomes even 
more stringent.  

Sophisticated and optimized functionalities are therefore 
required in the hardware, systems and application codes to 
support effectively error detection and recovery. 

This paper defines concepts, details current issues and 
sketches solutions to support application resilience. Our 



 

approach is currently implemented and tested on simulation 
testcases using a distributed platform that operates a 
workflow management system interfaced with a grid 
infrastructure, altogether providng a seamless cloud 
computing environment.  

The platform provides functionalities for application 
specification, deployment, execution and monitoring. It 
features resilience capabilities to handle runtime errors. It 
implements the cloud computing “Infrastructure as a 
Service” paradigm using a user-friendly application 
workflow interface. 
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