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Abstract: In this study, some preliminary results about the possibility to extend the classical
polynomial Chaos (PC) theory to stochastic problems with non-classical probability distributions
of the variables, i.e. outside the framework of the classical Wiener-Askey scheme [1]], are presented.
The proposed strategy allows to obtain an analytical representation of the solution in order to build
a metamodel or to compure conditional statistics. Various numerical results obtained on some
analytical problems are then provided to demonstrate the correctness of the presented approach.
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Développement non-polynomial pour des
problémes stochastiques avec des pdf
non-classiques

Résumé : Dans cette étude, on présente des résultats préliminaires sur la
possibilité d’utiliser la théorie classique du Chaos Polynomial pour des prob-
lémes stochastiques avec des fonctions densité de probabilité non-classiques. La
stratégie proposée permet de calculer une représentation analytique de la so-
lution pour construire un metamodéle ou calculer les statistiques. Plusieurs
résultats numériques sont présentés pour illustrer la validité de l’approche pro-
posée.

Mots-clés :  Chaos Polynomial, Collocation, Quantification des incertitudes,
ANOVA
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1 Introduction

In recent years the growing interest in Uncertainty Quantification (UQ) in the
numerical field has lead to many different numerical methods or strategies to
quantify the statistics in presence of stochastic inputs. One of the most pop-
ular method is the Polynomial Chaos (PC) both in its version intrusive or
non-intrusive [2]. This class of methods has bee shown to be very efficient,
compared to Monte Carlo or collocation strategies, if the model to represent is
smooth enough. More recently with the aim to extend the classical PC theory
to real application cases the so called multi-element PC (me-PC) has been in-
troduced by Karniadakis et al. (see for instance [3]) allowing the representation
of probability distributions that fall outside the so-called Wiener-Askey scheme.
This open the way to the representation of inputs characterized by probability
distributions that can be extracted from experiments. However the implemen-
tation of a me-PC code could be not so straightforward even if a PC code is
already at disposal and, until this moment, the effectiveness of this approach
to obtain statistical moments higher than the variance has not been done yet.
In particular a simple extension of the simple link between the ANOVA rep-
resentation and the PC expansion (see for instance [4]) is still missing. In the
present work we would like to reinterpret the problem to extend the PC to non
classical pdf in a more direct way recovering all the common features of the
classical PC, as for instance the link between the expansion and the ANOVA
decomposition to compute conditional statistics. We propose a strategy based
on a mapping of the original problem on an equivalent uniform stochastic space
on which applying the PC analysis. This strategy leads to a non orthogonal
and non polynomial (in the general case) representation that reflects in a lose of
efficiency if compared to the PC in the case of classical pdfs. However as will be
clear later the lose of orthogonality does not affect the computation of the coef-
ficient of the representation but only the statistical moments computation. We
expect anyway to improve these preliminary results with some simple further
steps, as a coupling with a Sparse Grid algorithm and a parallel implementa-
tion, in a short term. The remaining part of the work is organized as follows. In
the section §2 the mathematical setting is presented and the higher statistical
moments are defined. An analytical definition of the ANOVA expansion and
how its reflect in the computation of conditional statistics is also provided. An
introduction on the classical PC is furnished with the aim to make the work as
possible self-contained in secetion §3l The hearth of the work is the section §]in
which our strategy (nPC) is proposed. Some results on the link between the PC
and nPC are then presented and the link between the nPC expansion and the
ANOVA decomposition is described for the first order terms of the conditional
variances. Finally some numerical results are presented for analytical problems
in dimension up to three for different kind of custom defined pdfs in section §ol
Concluding remarks and future perspective works are reported as closure in §6l

2 Mathematical and problem setting

Consider the following problem for an output of interest u(x, ¢, £(w)):

L(x,t,&(w); u(e,t,€(w))) = S(x,1,§(w)), (1)

RR n° 8191
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where the operator £ can be either an algebraic or a differential operator (in this
case we need appropriate initial and boundary conditions). The operator £ and
the source term S are defined on the domain D x T x =, where @ € D C R"4,
with ng € {1,2,3}, and t € T are the spatial and temporal dimensions. Ran-
domness is introduced in ([l and its initial and boundary conditions in term of d
second order random parameters £€(w) = {&(w1), ..., & (wq)} € E with param-
eter space = C R%. The symbol w = {wy,...,wq} € Q C R denotes realizations
in a complete probability space (2, F, P). Here  is the set of outcomes, F C 2
is the o-algebra of events and P : F — [0,1] is a probability measure. Random
parameters £(w) can have any arbitrary probability density function p(&(w)),
in this way p(&(w)) > 0 for all £(w) € E and p(&(w)) = 0 for all &(w) ¢ =; we
can now drop the argument w for brevity. The probability density function p(£)
is defined as a joint probability density function from the independent proba-
bility function of each variable: p(&) = Hle pi(&;). This assumption allows to
an independent polynomial representation for every direction in the probabilis-
tic space with the possibility to recover the multidimensional representation by
tensorization. In the present work the test cases are algebraic, steady equations
with no physical space dependence (we can drop the spatial argument ), so we
can write

L& f(£) =0 (2)

then the aim is to find the statistical moments of the solution f(£).
The (centered) statistical moments of degree nth are defined as

un(f) = / (F(€) — B(f))"p(€)de, 3)

where E(f) represents the expected value of the solution f(§)

E(f) = / FEp(E)e. (4)

In this work moments up to the degree four are considered and in the fol-
lowing we refer to the variance Var, skewness s and kurtosis k£ to indicate,
respectively, the second, third and fourth order statistical moments.

Higher order statistics (from order two) can be computed knowing only ex-
pectancies of the model function f and its values raised to the desired order

Var = E(f?) - E(f)

s =E(f°) - 3E(f)Var — E(f)? (5)

ko =E(f') —4E(f*)E(f) + 6E(f?)E(f)* - 3E(f)".
This representation of the higher moments will be employed to compare the
strategy with a collocation approach. The key idea, leading to this last approach,
is to compute the expectancy for the functions f, f2, f3 and f4, obtained
directly from the values of the model f and then combine these expectancy to
obtain high order statistics. A direct, brutal-force, collocation approach could
be to compute directly all the integrals contained in the equations (@) evaluating
each term by the precedent statistical moment. The problem reduce to compute

only four integral. This can be done efficiently if the number of quadrature
points is high enough. Anyway this approach cannot provide a metamodel of

RR n° 8191
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the function and an expansion of the solution on which conditional statistics
can be computed (see for instance [5]). The theoretical framework on which the
conditional statistics can be obtained based on an ANOVA representation is the
subject, of the following section.

2.1 ANOVA decomposition and sensitivity indexes

Let us consider to have a given equation, or a systems of equations, to solve
and to have an output of interest f = f(£). The output of the system is
dependent by d uncertainties parameters &; assumed so that € = {&;,...,&} €
= ¢ RY In this work we assume independent distributed random variables
& € E; and, consequently, the space = can be obtained by tensorization of their
monodimensional spaces, i.e. Z, CR, =2 =21 X --+ X Z4.

From the independence of the random variables follows directly p(&) =
[T, p(&). Assuming f(€) € L?(€,p(€)) then a Sobol unique functional decom-
position exists:

f(&) = Z fu@u) (6)

where w is a set of integers with cardmahty v=|ul and &, = {&uys-- -5 Euy I
Each function f,, is computed by the relation [4]:

ful€w) = [ F@P(Ea)A€a = D fulbw) (7)

where =4 is the space = without the dimensions contained in w and &, is the
vector £ without the variables in u.

By definition
fo= / FE)p(E)de (8)

is the mean of the function f(£). This functional decomposition is called
ANOVA if each of the 2¢ elements of the decomposition, except fo, verifies
for every &;:

[ fuleamieras =0, vicu o)

Directly from eq. [@ follows the orthogonality:
[ e ulnp€ae =0, urw (10)

2.1.1 Sobol sensitivity indices

Employing the ANOVA decomposition it is possible to decompose the variance
of f = f(&):
Var(f) = Z Du(fu) (11)

where

Du(fu) = fﬁ(ﬁu)P(ﬁu)dEu (12)

RR n° 8191
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and =, =2y, X o X By,

The Sobol sensitivity indices (SI), are defined as:

Dey

S = —
Var

(13)
measuring the sensitivity of the variance due to the v-order (v = |ul) interaction
between the variables in &,. It is evident that the summation of the 2¢—1 Sobol
indices is equal to one.

3 Classical Polynomial Chaos approach

In this section we refer briefly to the main results relative to the high order
statics computation by the classical PC approach with further extensions for
higher statistical moments provided by the same authors; for exhaustive details
refer to [3].

The solution is expanded as

P
F&) = BrUi(8), (14)
k=0

where Wy is the polynomial basis orthogonal to the probability density distri-
bution p(§).

Each of the P+ 1 = (ng + d)!/(no!d!) coefficients of the expansion (of total
degree ng) can be computed as projection of the model function f(£) with the
polynomial basis exploiting the orthogonality conditions, i.e. the polynomial
basis is chosen in accord to the Wiener-Askey scheme to be orthogonal to the
probability distribution p(€)

_ [ 1©(E)p(€)dé
J= U (€§)W(€)p(€)de
The problem is to compute the integral at numerator while for the denominator

the value could be known analytically.
Assuming to know the coefficients 5y of the expansion the four statistical

Br

(15)

RR n° 8191
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moments are [3]

E(f) = fo
Var =3 | B {W1(€))

P P P
=D BUTRE) +33 87D 5i(VI(6), ()

k=1 =1
J#i

+GZ Z Z BiBiBr(Vi(€), V;(&)Vi(§))

=1 j=i+1 k=5+1 (16)

P P P
k=Y BHEN +4> B> B(wF v, +3252Zﬂ2 (02,02
=1 =1 =1

i T

+12ZﬂQZﬂ] Z B (W7, ;W)

= k=j+1
N

P P P P
+24Z Z Z Z Bi B BrBn (Wi V5, Ui W)

i=1 j=i+1 k=j+1 h=k+1

The expression reported in (I6]) are obtained thanks to the orthogonality of
the polynomial basis, i.e.

/ V(€)W (€)p(€)dE = 515 (V2). (17)

3.1 Sensitivity computation from PC expansion

The computation of the Sobol indices is possible using every sample stochastic
method (Monte Carlo, quasi-Monte Carlo) but can be done in a very efficient
way when a polynomial expansion of the solution is adopted. The idea is to com-
pute the expansion of the solution (truncated) and compute the Sobol indices
from the expansion instead of computing them on the real function. Remember
the polynomial expansion:

P
1(6) = (&) + Or = 3 BuWi(€) + O, (18)
k=0
with a number of terms related to the maximum degree of the polynomial recon-

struction n, and the dimension of the system d: P+ 1 = %. Each element

Ju of the functional decomposition of f(§) is approximated ISy the relative term
Ju: )
fu(&u) ~ fu(&u) = Z Bk‘pk(gu)a (19)

k€K,

where the set of indices K, is given by

|l

Ky=Qke{l,...,P}¥(&) = H¢ (bur)yf >0 (20)
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and gbaf (&u;) are the monodimensional polynomials for every direction §; of
degree k chosen with respect to the so-called Wiener-Askey scheme [IJ.

Thanks to the orthogonality it is possible to obtain directly the variance
Var(f) = Var(f) ~ Var(f) and the conditional variance Dy (fu) = Du(fu) =
D, (fu) from the following relations:

P

Var(f) = > BTy, ) (21)
k=1

Du(fu) = D BT, W),
keKa,

Sobol sensitivity indices follows directly from eq. 21t

ﬁg(fu) _ D keK, 51%<‘I’k’\11k>_
Var(f) S, BTk, Ty

If custom defined probability distribution function are employed the or-
thonality properties of the basis cannot be exploited anymore to compute the
coeflicients of the polynomial expansion. In the following section we describe a
strategy to recover a solution expansion with respect a non polynomial basis, in
the general case, in which the ortoghonality of a support basis is employed to
compute the coefficients of the expansion.

Sy~ Sy = (22)

4 Handling whatever form of pdf for the compu-
tation of higher order statistics

The state-of-the-art to compute statistics moments for non classical pdf is the
so-called multi-element method me-PC [3]. This family of techniques allows to
efficiently compute, thanks to a partition of the stochastic space, the (piece-
wise) polynomial approximations of the model function f(£). Despite to the
possibility to compute expectancy and variance efficiently to compute high or-
der statistics this method encounter the same problems of the classical PC
approach: high number of integrals to compute as in the direct approach (see
equations (I6])) or sampling convergence issues as a metamodel approach. At
the same time a very strong computational effort must be devoted to adapt an
existing PC code to a multi-element, capable one. Anyway the effective possibil-
ity to link the me-PC method to the ANOVA decomposition has not been yet
provided to compute conditional statistics.

To tackle this problem we proposed a mapping procedure that allows to ob-
tain a polynomial representation of a function depending on a custom defined
distributed random vector. This procedure allows a straightforward implemen-
tation starting from an existing PC code.

The procedure is the same of the classical PC approach, i.e. a polynomial
approximation of the model is computed and then all the statistical moments
are computed directly from this polynomial expansion. Obviously conditional
statistics can be computed too.

First of all the P + 1 coefficients must be computed. If the probability
distribution fall outside the so-called Wiener-Askey scheme a proper orthogonal
basis cannot be employed as in the generalized-PC method.

RR n° 8191
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Let us assume to recast the probability density function p(€) as

_ p(&p
p(€) = 5 (23)

where p is an equivalent uniform distribution on the space =
1
Jzd¢

All the integral of the kind J F(&)p(€)d€ can be re-interpreted as statistics
of a function f(&) defined by

p= (24)

f(8) F (25)
with an uniform distribution p on Z of the parameter vector.

At this stage a polynomial representation of the function f(&) can be ob-
tained employing a Legendre basis orthogonal on a stochastic space embedded
with an uniform distribution.

The P + 1 coefficients of the series can be computed as

J= f( £)pde
J= ‘I/k (5 )pde’

where the orthogonality of the polynomial basis allows to avoid to compute the
mixed terms, i.e. terms of the kind f_ W, W;pd€.

The P + 1 terms of the polynomial approximation of the function f(&),
obtained on the Legendre basis, could be employed easily to obtain a polynomial
expansion of f(£€) on a set of P+1 (non orthogonal) term on the stochastic space
with distribution p. The procedure is the following

P
75 Z Br¥r(€ Zﬂk‘l’k Zﬂk‘Pk,
i—0

(27)
this is made possible if, as is the case, no holes in the domain are present,
p(€) > 0. We remark that the basis {‘I’i}io is not polynomial if the probability
distribution p(§) is not polynomial and, in the general case [_ U, p(€)dE #
dij fE \Il?p(ﬁ)dé.

However this expansion allows to compute statistics (eventually conditional)
and also the metamodel for the function f(£). Even in the case of time de-
pendent pdf the points on which evaluate the model are always the zeros of
the Legendre polynomial associated to the space. Despite to the possibility to
compute the expansion even for a known distribution as for instance a Beta
distribution, this technique is expected to perform worst in this case in which a
proper optimal basis, in term of convergence, can be chosen. A discussion on the
relation of the classical gPC method with this non polynomial chaos expansion
is reported in the next section.

Br =

(26)
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4.1 On the relation between polynomial and non polyno-
mial chaos approach

In the previous section a novel technique has been presented to compute the

expansion of the solution for a whatever form of pdf.

Let assume to have a polynomial function f(&) € P" with a distribution of the
vector parameter & ~ Beta(c, 3). We recall here that a Beta(a, 8) distribution

is described as
E+1ta—-¢gF!

p(&) = B(Oz,ﬁ)2a+ﬂ_1 ) (28)
where the function B(a, ) is
_ D(@)I'(8)
B(a, ) = (a1 8) (29)

and the gamma function is I'(n) = (n — 1)!

In the generalized-PC case the Jacobi base can be employed and the number
of points n needed to compute the integral of order 2r (product of the function
and the Jacobi polynomial of degree rth) is 2r = 2n — 1, then n = r + 1 (for
each dimension). If the non polynomial chaos is employed the integrand should
be of the order 2r + a + 8. Of course the regularity of the integrand becomes
the same of the PC case in case of uniform distribution (« = § = 0). In the
general case an higher number of points is needed to solve correctly the integrals
with respect the general case. However in a general case the model function is
not polynomial and then the advantage of a Gaussian quadrature based on the
polynomial orthogonal basis is less evident. Of course this techniques make
sense in the case of non standard (eventually time dependent) pdfs in which
case the PC techniques cannot be applied without a multi-element technique.
We remark here that in the case of discontinuous pdf this procedure could still
be applied even if the convergence could be slower or even prevented in the
worst cases.

The other difference with respect a standard PC technique is in the com-
putation of the statistical moments. The basis {\Ifi}io is not orthogonal on
the space = with respect the distribution p(£) and then the mixed terms of the
expansion must be considered. When the expansion for f(£€) is obtained (see

RR n° 8191
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equation (27)) the statistics can be computed as (see [5] for the orthogonal case)

Var = B3 (05 — 1)) + > BRE) +2) Y BiB(¥,9))
k=1

i=0 j=i+1

s= > BHTE) +3D B2 Bi(2(E), T;(E))
=0 j=0

e
P P P j B B
+62 Z Z BiBi B (Vi (§), ¥;(§)Vr(£))
i=0 j=i+1 k=j+1 (30)
p . P P - P P o
k= Bu(UR(©) +4) 57D A3 0y) +3% 67 ) 607, 05)
k=0 i=0  j=0 =0 j=0
G J#

P P P
+12) Y > BiBiB{Ti(€), Ui(€) k(&)
i=0 j=0 k=j+1
G ki

P P P P
+243 3 N N BB BB (Ti(€), W) Uk(€)Tn(8)).
i=0 j=it1k=j+1 h=k+1

Obviously the number of integral to compute depends directly form the
number of coefficients that is directly related to the dimension d of the problem
and the total degree of approximation ng. The number of terms for the non
polynomial approach can be evaluated as

— P
TVarP+1+<2>

TSP+1+P(P+1)+<P3+1> (31)

Tk:P+1—|—P(P+1)+P(P+1)+(P+1)<I2D) +(Pil),

where the symbols Tya,, Ts and T} indicate respectively the number of integral
to compute for variance, skewness and kurtosis for the non polynomial approach.

The number of the mixed term to compute, which is equal to the differ-
ence between the number of integral to compute in the classical PC case (see
equations (I6])), can be shown to by equal to

P
AVar<2)+1
P+1 P
A, =2P+1 -
(75 -(6)

sc-rssressan(() o (1) () o) 0).
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where P depends from both the stochastic dimension d and the total degree of
the approximation (of the function f(£)).

The evolution of the number of the extra terms to compute is reported for
the case with ng = 2 and dimension between 2 and 10 in figure [Il

T T T T
\

10*

T T T

T
[y
o
w
LN |

10°

IR |

10*

T

Figure 1: Evolution of the extra terms to compute in the non polynomial ap-
proach with respect the standard gPC method. The case reported is obtained
with ng = 2 and a dimension d between 2 and 10.

4.2 Computation of the conditional statistics by the nPC

The approach presented in this work allows to reproduce the structure of the
solution f(€) in term of components even if these components are not orthogonal
each other. For this reason the functional ANOVA decomposition cannot be
derived in a straightforward way as showed in section §3.1]identifying directly
the subset of indexes K, as showed in the equation ([20). However the orthogonal
basis of Legendre underlined above the series expansion of the solution allows to
obtain in a relative simple way each first order term of the ANOVA expansion,
i.e. terms associated to the subset w with cardinality equal to one. Recalling
the definition of these d terms of the ANOVA expansion, the equation () here
reported only for convenience

ful€a) = [ F(©P(Ea)dba = D fulbw),

in the case of the first order terms, i.e. terms with card(u) = 1, can be reduced
in

ful€u) = [ [(§)p(€a)d€a — fo. (33)

RR n° 8191
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Inflating the expansion (27) into (B3) one obtains

Zﬂk / Te(€)p(Ea)dE, — fo

(34)

—Zﬁk/: Wi (€ p}ffg))Pdﬁu—fO-

The ratio between the two probability density p(€;) and p(€) can be computed

as pa) _ _ pw) 1 (35)

p(€)  pEpa)  péL)’
where p(&,,) is the probability density relative to the subset u. The equivalent
uniform distribution p, in the same way, can be decomposed in the product
between the equivalent uniform distribution relative to the set w and the other
variables as

These last two equation allow to recast the first order ANOVA term as

P _
p _
=Yk [ wi€)pade, - fo (37)
s p(€a) Za

The value of the integral in the last equation depends on the set associated
to the index k. We can write

/: U4 (€)pa déy = (38)

u

U,(€)  if keK?
0 if k¢ KO

where the set K is obtained as union of the set K, and the null multi-index
element (k = 0).
For the first order terms, i.e. if card(u) = 1, we can write

=y ﬂk (&) — fo, (39)

ke K,

obviously still holds fy = (-

To compute the conditional variance relative to each function f, the first
step is to raise to the second power the equation ([B3) and then integrate over
the space =, C E with the weight function p(&,,).

The equation ([B3)) raised to the second power is

falbu) = Zﬂmu TRE) +2 Y 2515]2“ Ui(€)P,(8)

keKY, i€KO ]>z+1
JEKy, (40)

“280 S Bl w(e) + B2
O,g(:% p(€u) ’

The last equation need to be integrated and then, in the following, we analyze
term by term the integration of the right hand side of the ([@0). The first term
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of the right hand side integrated can be written as

ke K, Bu kEKY

The second term can be treated in an analogue way

230 Y iy [ @ @6, -

iRy 5 P* (&)
JEKD, p (42)
2 BiBj — ‘I’z(ﬁ)‘l’ (5) dsu
ZEXK:O ];1 ’ / (&) !
JEKD
The third term can be dramatically simplified as

2% 3 b / £)p(€,)d€,, =
. hek (43)

263 / P €I+ 20 Y B / ) p(€L)dE, = 26

kEKy

The final form of the conditional variance, for the first order terms, is then
obtained directly by summing up these simplified terms

3 €)dé,+
pe= St [ i
—o (44)
2 B8 ”—“%(&)\P-(s)dsu — 3.
leZKO]?Z;l ]/ p(€y) ! 0
J u

5 Numerical results

In this section some numerical results are reported for model problems with
custom defined pdfs. All the results are provided with a comparison between
the nPC and the collocation approach. We remark here that we expect a better
behavior in term of convergence from the collocation approach, but the impor-
tance of the present nPC approach is to provide a metamodel of the solution
and a framework to compute high order moments conditional statistics. Exam-
ples with dimensions up to three are here reported and the effectiveness of the
strategy is verified with respect to the analytical solution.

Three different kind of custom pdfs are employed in this work (for a stochas-
tic parameter defined in [—1, 1]):

e a linear pdf py(§) =1/2+1/3¢
e a quadratic pdf p2(&) =2+ 1/26+1/6

e a non polynomial pdf p3(¢) = 1/2 4+ 1/3sin (x€).
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In the case of multidimensional problems the pdf is obtained by tensorization
of equal pdfs for each direction of the stochastic space.

The first model problem is a monodimensional function f(¢) = sin (7&)+e¢
defined on Z = [—1, 1] with a probability distribution equal to p1(§).

The results obtained for the first model problem in term of percentage error
with respect the analytical results are reported in figure 2l The collocation
approach and the non polynomial approach show the same rate of convergence.
As evident a lower error is reached by the collocation approach even if, in this
case, a fully converged solution can be obtained for the problem in both cases.

ol — err_mean (PC)

107 =0 —— em_var (PC)

— —+— — err_var (Collocation)

\ —— err_skew (PC)

10° — —-— — err_skew (Collocation)
—— err_kurt (PC)
err_kurt (Collocation)

e
<
S
T

statistics percentage errors
=
T

10°

TR SR I T IR NI I R |
10 20 30 40 50
N

Figure 2: Comparison between the collocation approach and the non polynomial
approach for the monodimensional problem.

In the following some multidimensional cases are reported with dimensions
up to three. Two kind of function are employed

e a polynomial function f0(§) = Hf:1(§¢/2 +1)

e a non polynomial function f,,(&) = H'ii:l sin(nw§;).

In particular the results for the polynomial function fp, in dimension two
with distributions (for each dimension) p;(£), p2(€) and p3(€) are reported,
respectively, in figures Bl @ and B

The results for the polynomial function fp, in dimension three with dis-
tributions (for each dimension) p;(€) and po(€) are reported, respectively, in
figures [6] and [7

For the non polynomial function only the case with stochastic dimension
equal to two is analyzed. In this case the three probability functions are em-
ployed and the percentage errors are reported respectively in the figures [§]
and [I0}

The results obtained are in accord to our predictions: the solution converges
slowly for higher moments with respect to the mean and variance and the con-
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Figure 3: Comparison between the collocation approach and the non polynomial
for the polynomial function fp, with probability distribution p; (d = 2).
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Figure 4: Comparison between the collocation approach and the non polynomial
for the polynomial function fp, with probability distribution ps (d = 2).

vergence is more stiff for problems with higher stochastic dimension and with
non polynomial function or pdf.

Actually the home made code we employed is a sequential one and is very
time demanding to obtain a fully converged solution for more stiff problems,
but we aspect to improve the present results with a parallel implementation.
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10°

Figure 5: Comparison between the collocation approach and the non polynomial
for the polynomial function fp, with probability distribution p3 (d = 2).

err_mean (PC)
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err_var (Collocation)
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err_skew (Collocation)
err_kurt (PC)

err_kurt (Collocation)

statistics percentage errors
=
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Figure 6: Comparison between the collocation approach and the non polynomial
for the polynomial function fp, with probability distribution p; (d = 3).

However as a general rule we can notify, that as we expected, a simple collocation
is more efficient in term of simulations in practically all the cases. However the
present approach retain its interest in the possibility to obtain a metamodel of
the solution and an estimation of the conditional statistics.
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Figure 7: Comparison between the collocation approach and the non polynomial
for the polynomial function fp, with probability distribution ps (d = 3).
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Figure 8: Comparison between the collocation approach and the non polynomial
for the polynomial function f,, with probability distribution p; (d = 2).

6 Conclusions and perspective
In the present work a novel approach has been presented to extend the polyno-

mial chaos expansion to the case of non classical defined pdfs, i.e. pdfs that fall
outside the so-called Wiener-Askey scheme. The strategy is based on the clas-
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Figure 9: Comparison between the collocation approach and the non polynomial
for the polynomial function f,, with probability distribution ps (d = 2).
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Figure 10: Comparison between the collocation approach and the non polyno-
mial for the polynomial function f,, with probability distribution p3 (d = 2).

sical PC approach but uniform equivalent distributions are employed to re-map
the original problem in an uniform one irrespectiveless of the true probability
distribution. This approach eventually degrades the convergence of the classical
approach, in term of number of simulations required to estimate the statistics,
if a classical pdf is employed. This is due to a quadrature rule optimal only in
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the case of polynomial functions with uniform distribution. However this draw-
back is not much influent in real applications cases because the model function
is, often, not polynomial. Another drawbacks could emerge if one compare the
present strategy to a brutal force collocation strategy in which every statistical
moments is decomposed in expectancies of the function and all the functions
itself raised to a power equal to the degree of the maximum statistical moment
required. This last approach allows to reduce dramatically the number of inte-
grals to be computed. Anyway the present strategy is motivated because the
advantage despite to the higher computational cost is to provide, at the same
time, a complete metamodel of the model function and a known structure of the
function on which is possible to compute conditional statistics. This possibly is
not completely explored in this work and only the first order conditional vari-
ances are explicitly shown. At the present time only an home made sequential
code is at our disposal and this limits the possibility to compute high order
statistics for more complex problems in higher dimension than two. To allow
more real application cases, in which the single cost of each computation can
be much more expensive, we expect to really increase the efficiency coupling
the present strategy with a Smolyak algorithm to compute the set of quadra-
ture points on which the simulations must be performed. In the case of smooth
model functions and probability distribution, for high dimension problems, the
coupling between our novel nPC approach and the sparse grid is straightforward.
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