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Abstra
t: In this study, some preliminary results about the possibility to extend the 
lassi
alpolynomial Chaos (PC) theory to sto
hasti
 problems with non-
lassi
al probability distributionsof the variables, i.e. outside the framework of the 
lassi
al Wiener-Askey s
heme [1℄, are presented.The proposed strategy allows to obtain an analyti
al representation of the solution in order to builda metamodel or to 
ompure 
onditional statisti
s. Various numeri
al results obtained on someanalyti
al problems are then provided to demonstrate the 
orre
tness of the presented approa
h.Key-words: Polynomial Chaos, Collo
ation, Un
ertainty Quanti�
ation, ANOVA, Conditionalstatisti
s



Développement non-polynomial pour desproblèmes sto
hastiques ave
 des pdfnon-
lassiquesRésumé : Dans 
ette étude, on présente des résultats préliminaires sur lapossibilité d'utiliser la théorie 
lassique du Chaos Polynomial pour des prob-lèmes sto
hastiques ave
 des fon
tions densité de probabilité non-
lassiques. Lastratégie proposée permet de 
al
uler une représentation analytique de la so-lution pour 
onstruire un metamodèle ou 
al
uler les statistiques. Plusieursrésultats numériques sont présentés pour illustrer la validité de l'appro
he pro-posée.Mots-
lés : Chaos Polynomial, Collo
ation, Quanti�
ation des in
ertitudes,ANOVA
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Non-polynomial expansion for sto
hasti
 problems with non-
lassi
al pdfs 51 Introdu
tionIn re
ent years the growing interest in Un
ertainty Quanti�
ation (UQ) in thenumeri
al �eld has lead to many di�erent numeri
al methods or strategies toquantify the statisti
s in presen
e of sto
hasti
 inputs. One of the most pop-ular method is the Polynomial Chaos (PC) both in its version intrusive ornon-intrusive [2℄. This 
lass of methods has bee shown to be very e�
ient,
ompared to Monte Carlo or 
ollo
ation strategies, if the model to represent issmooth enough. More re
ently with the aim to extend the 
lassi
al PC theoryto real appli
ation 
ases the so 
alled multi-element PC (me-PC) has been in-trodu
ed by Karniadakis et al. (see for instan
e [3℄) allowing the representationof probability distributions that fall outside the so-
alled Wiener-Askey s
heme.This open the way to the representation of inputs 
hara
terized by probabilitydistributions that 
an be extra
ted from experiments. However the implemen-tation of a me-PC 
ode 
ould be not so straightforward even if a PC 
ode isalready at disposal and, until this moment, the e�e
tiveness of this approa
hto obtain statisti
al moments higher than the varian
e has not been done yet.In parti
ular a simple extension of the simple link between the ANOVA rep-resentation and the PC expansion (see for instan
e [4℄) is still missing. In thepresent work we would like to reinterpret the problem to extend the PC to non
lassi
al pdf in a more dire
t way re
overing all the 
ommon features of the
lassi
al PC, as for instan
e the link between the expansion and the ANOVAde
omposition to 
ompute 
onditional statisti
s. We propose a strategy basedon a mapping of the original problem on an equivalent uniform sto
hasti
 spa
eon whi
h applying the PC analysis. This strategy leads to a non orthogonaland non polynomial (in the general 
ase) representation that re�e
ts in a lose ofe�
ien
y if 
ompared to the PC in the 
ase of 
lassi
al pdfs. However as will be
lear later the lose of orthogonality does not a�e
t the 
omputation of the 
oef-�
ient of the representation but only the statisti
al moments 
omputation. Weexpe
t anyway to improve these preliminary results with some simple furthersteps, as a 
oupling with a Sparse Grid algorithm and a parallel implementa-tion, in a short term. The remaining part of the work is organized as follows. Inthe se
tion �2 the mathemati
al setting is presented and the higher statisti
almoments are de�ned. An analyti
al de�nition of the ANOVA expansion andhow its re�e
t in the 
omputation of 
onditional statisti
s is also provided. Anintrodu
tion on the 
lassi
al PC is furnished with the aim to make the work aspossible self-
ontained in se
etion �3. The hearth of the work is the se
tion �4 inwhi
h our strategy (nPC) is proposed. Some results on the link between the PCand nPC are then presented and the link between the nPC expansion and theANOVA de
omposition is des
ribed for the �rst order terms of the 
onditionalvarian
es. Finally some numeri
al results are presented for analyti
al problemsin dimension up to three for di�erent kind of 
ustom de�ned pdfs in se
tion �5.Con
luding remarks and future perspe
tive works are reported as 
losure in �6.2 Mathemati
al and problem settingConsider the following problem for an output of interest u(x, t, ξ(ω)):
L(x, t, ξ(ω);u(x, t, ξ(ω))) = S(x, t, ξ(ω)), (1)RR n° 8191



Non-polynomial expansion for sto
hasti
 problems with non-
lassi
al pdfs 6where the operator L 
an be either an algebrai
 or a di�erential operator (in this
ase we need appropriate initial and boundary 
onditions). The operator L andthe sour
e term S are de�ned on the domain D × T × Ξ, where x ∈ D ⊂ R
nd ,with nd ∈ {1, 2, 3}, and t ∈ T are the spatial and temporal dimensions. Ran-domness is introdu
ed in (1) and its initial and boundary 
onditions in term of dse
ond order random parameters ξ(ω) = {ξ1(ω1), . . . , ξd(ωd)} ∈ Ξ with param-eter spa
e Ξ ⊂ R

d. The symbol ω = {ω1, . . . , ωd} ∈ Ω ⊂ R denotes realizationsin a 
omplete probability spa
e (Ω,F , P ). Here Ω is the set of out
omes, F ⊂ 2Ωis the σ-algebra of events and P : F → [0, 1] is a probability measure. Randomparameters ξ(ω) 
an have any arbitrary probability density fun
tion p(ξ(ω)),in this way p(ξ(ω)) > 0 for all ξ(ω) ∈ Ξ and p(ξ(ω)) = 0 for all ξ(ω) /∈ Ξ; we
an now drop the argument ω for brevity. The probability density fun
tion p(ξ)is de�ned as a joint probability density fun
tion from the independent proba-bility fun
tion of ea
h variable: p(ξ) = ∏d

i=1 pi(ξi). This assumption allows toan independent polynomial representation for every dire
tion in the probabilis-ti
 spa
e with the possibility to re
over the multidimensional representation bytensorization. In the present work the test 
ases are algebrai
, steady equationswith no physi
al spa
e dependen
e (we 
an drop the spatial argument x), so we
an write
L(ξ; f(ξ)) = 0 (2)then the aim is to �nd the statisti
al moments of the solution f(ξ).The (
entered) statisti
al moments of degree nth are de�ned as

µn(f) =

∫

Ξ

(f(ξ)− E(f))np(ξ)dξ, (3)where E(f) represents the expe
ted value of the solution f(ξ)

E(f) =

∫

Ξ

f(ξ)p(ξ)dξ. (4)In this work moments up to the degree four are 
onsidered and in the fol-lowing we refer to the varian
e Var, skewness s and kurtosis k to indi
ate,respe
tively, the se
ond, third and fourth order statisti
al moments.Higher order statisti
s (from order two) 
an be 
omputed knowing only ex-pe
tan
ies of the model fun
tion f and its values raised to the desired order
Var = E(f2)− E(f)2

s = E(f3)− 3E(f)Var− E(f)3

k = E(f4)− 4E(f3)E(f) + 6E(f2)E(f)2 − 3E(f)4.

(5)This representation of the higher moments will be employed to 
ompare thestrategy with a 
ollo
ation approa
h. The key idea, leading to this last approa
h,is to 
ompute the expe
tan
y for the fun
tions f , f2, f3 and f4, obtaineddire
tly from the values of the model f and then 
ombine these expe
tan
y toobtain high order statisti
s. A dire
t, brutal-for
e, 
ollo
ation approa
h 
ouldbe to 
ompute dire
tly all the integrals 
ontained in the equations (5) evaluatingea
h term by the pre
edent statisti
al moment. The problem redu
e to 
omputeonly four integral. This 
an be done e�
iently if the number of quadraturepoints is high enough. Anyway this approa
h 
annot provide a metamodel ofRR n° 8191



Non-polynomial expansion for sto
hasti
 problems with non-
lassi
al pdfs 7the fun
tion and an expansion of the solution on whi
h 
onditional statisti
s
an be 
omputed (see for instan
e [5℄). The theoreti
al framework on whi
h the
onditional statisti
s 
an be obtained based on an ANOVA representation is thesubje
t of the following se
tion.2.1 ANOVA de
omposition and sensitivity indexesLet us 
onsider to have a given equation, or a systems of equations, to solveand to have an output of interest f = f(ξ). The output of the system isdependent by d un
ertainties parameters ξi assumed so that ξ = {ξ1, . . . , ξd} ∈
Ξ ⊂ R

d. In this work we assume independent distributed random variables
ξi ∈ Ξi and, 
onsequently, the spa
e Ξ 
an be obtained by tensorization of theirmonodimensional spa
es, i.e. Ξi ⊂ R, Ξ = Ξ1 × · · · × Ξd.From the independen
e of the random variables follows dire
tly p(ξ) =
∏

i p(ξi). Assuming f(ξ) ∈ L2(ξ, p(ξ)) then a Sobol unique fun
tional de
om-position exists:
f(ξ) =

∑

u⊆{1,...,d}

fu(ξu) (6)where u is a set of integers with 
ardinality v = |u| and ξu = {ξu1
, . . . , ξuv

}.Ea
h fun
tion fu is 
omputed by the relation [4℄:
fu(ξu) =

∫

Ξū

f(ξ)p(ξ
ū
)dξ

ū
−

∑

w⊂u

fw(ξw) (7)where Ξū is the spa
e Ξ without the dimensions 
ontained in u and ξ
ū
is theve
tor ξ without the variables in u.By de�nition

f0 =

∫

Ξ

f(ξ)p(ξ)dξ (8)is the mean of the fun
tion f(ξ). This fun
tional de
omposition is 
alledANOVA if ea
h of the 2d elements of the de
omposition, ex
ept f0, veri�esfor every ξi:
∫

Ξi

fu(ξu)p(ξi)dξi = 0, ∀i ∈ u (9)Dire
tly from eq. 9 follows the orthogonality:
∫

Ξ

fu(ξu)fw(ξw)p(ξ)dξ = 0, u 6= w (10)2.1.1 Sobol sensitivity indi
esEmploying the ANOVA de
omposition it is possible to de
ompose the varian
eof f = f(ξ):
Var(f) =

∑

u⊆{1,...,d}
u6=0

Du(fu) (11)where
Du(fu) =

∫

Ξu

f2
u
(ξu)p(ξu)dξu (12)RR n° 8191



Non-polynomial expansion for sto
hasti
 problems with non-
lassi
al pdfs 8and Ξu = Ξu1
× · · · × Ξuv

.The Sobol sensitivity indi
es (SI), are de�ned as:
Su =

Du

Var
(13)measuring the sensitivity of the varian
e due to the v-order (v = |u|) intera
tionbetween the variables in ξu. It is evident that the summation of the 2d−1 Sobolindi
es is equal to one.3 Classi
al Polynomial Chaos approa
hIn this se
tion we refer brie�y to the main results relative to the high orderstati
s 
omputation by the 
lassi
al PC approa
h with further extensions forhigher statisti
al moments provided by the same authors; for exhaustive detailsrefer to [5℄.The solution is expanded as

f(ξ) =

P
∑

k=0

βkΨk(ξ), (14)where Ψk is the polynomial basis orthogonal to the probability density distri-bution p(ξ).Ea
h of the P + 1 = (n0 + d)!/(n0!d!) 
oe�
ients of the expansion (of totaldegree n0) 
an be 
omputed as proje
tion of the model fun
tion f(ξ) with thepolynomial basis exploiting the orthogonality 
onditions, i.e. the polynomialbasis is 
hosen in a

ord to the Wiener-Askey s
heme to be orthogonal to theprobability distribution p(ξ)

βk =

∫

Ξ
f(ξ)Ψk(ξ)p(ξ)dξ

∫

Ξ
Ψk(ξ)Ψ(ξ)p(ξ)dξ

. (15)The problem is to 
ompute the integral at numerator while for the denominatorthe value 
ould be known analyti
ally.Assuming to know the 
oe�
ients βk of the expansion the four statisti
al

RR n° 8191



Non-polynomial expansion for sto
hasti
 problems with non-
lassi
al pdfs 9moments are [5℄
E(f) = β0

Var =

P
∑

i=1

β2
i 〈Ψ

2
i (ξ)〉

s =

P
∑

k=1

β3
k〈Ψ

3
k(ξ)〉 + 3

P
∑

i=1

β2
i

P
∑

j=1
j 6=i

βj〈Ψ
2
i (ξ),Ψj(ξ)〉

+ 6

P
∑

i=1

P
∑

j=i+1

P
∑

k=j+1

βiβjβk〈Ψi(ξ),Ψj(ξ)Ψk(ξ)〉

k =
P
∑

i=1

β4
i 〈Ψ

4
i 〉+ 4

P
∑

i=1

β3
i

P
∑

j=1
j 6=i

βj〈Ψ
3
i ,Ψj〉+ 3

P
∑

i=1

β2
i

P
∑

j=1
j 6=i

β2
j 〈Ψ

2
i ,Ψ

2
j〉

+ 12

P
∑

i=1

β2
i

P
∑

j=1
j 6=i

βj

P
∑

k=j+1
k 6=i

βk〈Ψ
2
i ,ΨjΨk〉

+ 24

P
∑

i=1

P
∑

j=i+1

P
∑

k=j+1

P
∑

h=k+1

βiβjβkβh〈ΨiΨj,ΨkΨh〉

(16)
The expression reported in (16) are obtained thanks to the orthogonality ofthe polynomial basis, i.e.

∫

Ξ

Ψi(ξ)Ψj(ξ)p(ξ)dξ = δij〈Ψ
2
i 〉. (17)3.1 Sensitivity 
omputation from PC expansionThe 
omputation of the Sobol indi
es is possible using every sample sto
hasti
method (Monte Carlo, quasi-Monte Carlo) but 
an be done in a very e�
ientway when a polynomial expansion of the solution is adopted. The idea is to 
om-pute the expansion of the solution (trun
ated) and 
ompute the Sobol indi
esfrom the expansion instead of 
omputing them on the real fun
tion. Rememberthe polynomial expansion:

f(ξ) = f̃(ξ) +OT =

P
∑

k=0

βkΨk(ξ) +OT , (18)with a number of terms related to the maximum degree of the polynomial re
on-stru
tion no and the dimension of the system d: P +1 = (no+d)!
no!d!

. Ea
h element
fu of the fun
tional de
omposition of f(ξ) is approximated by the relative term
f̃u:

fu(ξu) ≈ f̃u(ξu) =
∑

k∈Ku

βkΨk(ξu), (19)where the set of indi
es Ku is given by
Ku =







k ∈ {1, . . . , P}|Ψk(ξu) =

|u|
∏

i=1

φαk

i

(ξui
), αk

i > 0







(20)RR n° 8191



Non-polynomial expansion for sto
hasti
 problems with non-
lassi
al pdfs 10and φαk

i

(ξui
) are the monodimensional polynomials for every dire
tion ξi ofdegree k 
hosen with respe
t to the so-
alled Wiener-Askey s
heme [1℄.Thanks to the orthogonality it is possible to obtain dire
tly the varian
e

Ṽar(f) = Var(f̃) ≈ Var(f) and the 
onditional varian
e D̃u(fu) = Du(f̃u) ≈
Du(fu) from the following relations:

Ṽar(f) =

P
∑

k=1

β2
k〈Ψk,Ψk〉 (21)

D̃u(fu) =
∑

k∈Ku

β2
k〈Ψk,Ψk〉.Sobol sensitivity indi
es follows dire
tly from eq. 21:

Su ≈ S̃u =
D̃u(fu)

Ṽar(f)
=

∑

k∈Ku

β2
k〈Ψk,Ψk〉

∑P

k=1 β
2
k〈Ψk,Ψk〉

. (22)If 
ustom de�ned probability distribution fun
tion are employed the or-thonality properties of the basis 
annot be exploited anymore to 
ompute the
oe�
ients of the polynomial expansion. In the following se
tion we des
ribe astrategy to re
over a solution expansion with respe
t a non polynomial basis, inthe general 
ase, in whi
h the ortoghonality of a support basis is employed to
ompute the 
oe�
ients of the expansion.4 Handling whatever form of pdf for the 
ompu-tation of higher order statisti
sThe state-of-the-art to 
ompute statisti
s moments for non 
lassi
al pdf is theso-
alled multi-element method me-PC [3℄. This family of te
hniques allows toe�
iently 
ompute, thanks to a partition of the sto
hasti
 spa
e, the (pie
e-wise) polynomial approximations of the model fun
tion f(ξ). Despite to thepossibility to 
ompute expe
tan
y and varian
e e�
iently to 
ompute high or-der statisti
s this method en
ounter the same problems of the 
lassi
al PCapproa
h: high number of integrals to 
ompute as in the dire
t approa
h (seeequations (16)) or sampling 
onvergen
e issues as a metamodel approa
h. Atthe same time a very strong 
omputational e�ort must be devoted to adapt anexisting PC 
ode to a multi-element 
apable one. Anyway the e�e
tive possibil-ity to link the me-PC method to the ANOVA de
omposition has not been yetprovided to 
ompute 
onditional statisti
s.To ta
kle this problem we proposed a mapping pro
edure that allows to ob-tain a polynomial representation of a fun
tion depending on a 
ustom de�neddistributed random ve
tor. This pro
edure allows a straightforward implemen-tation starting from an existing PC 
ode.The pro
edure is the same of the 
lassi
al PC approa
h, i.e. a polynomialapproximation of the model is 
omputed and then all the statisti
al momentsare 
omputed dire
tly from this polynomial expansion. Obviously 
onditionalstatisti
s 
an be 
omputed too.First of all the P + 1 
oe�
ients must be 
omputed. If the probabilitydistribution fall outside the so-
alled Wiener-Askey s
heme a proper orthogonalbasis 
annot be employed as in the generalized-PC method.RR n° 8191



Non-polynomial expansion for sto
hasti
 problems with non-
lassi
al pdfs 11Let us assume to re
ast the probability density fun
tion p(ξ) as
p(ξ) =

p(ξ)p̄

p̄
, (23)where p̄ is an equivalent uniform distribution on the spa
e Ξ

p̄ =
1

∫

Ξ dξ
. (24)All the integral of the kind ∫

f(ξ)p(ξ)dξ 
an be re-interpreted as statisti
sof a fun
tion f̄(ξ) de�ned by
f̄(ξ) =

f(ξ)p(ξ)

p̄
, (25)with an uniform distribution p̄ on Ξ of the parameter ve
tor.At this stage a polynomial representation of the fun
tion f̄(ξ) 
an be ob-tained employing a Legendre basis orthogonal on a sto
hasti
 spa
e embeddedwith an uniform distribution.The P + 1 
oe�
ients of the series 
an be 
omputed as

βk =

∫

Ξ
f̄(ξ)Ψk(ξ)p̄dξ

∫

Ξ Ψk(ξ)Ψ(ξ)p̄dξ
, (26)where the orthogonality of the polynomial basis allows to avoid to 
ompute themixed terms, i.e. terms of the kind ∫

Ξ
ΨiΨj p̄dξ.The P + 1 terms of the polynomial approximation of the fun
tion f̄(ξ),obtained on the Legendre basis, 
ould be employed easily to obtain a polynomialexpansion of f(ξ) on a set of P+1 (non orthogonal) term on the sto
hasti
 spa
ewith distribution p. The pro
edure is the following

f̄(ξ) = f(ξ)
p(ξ)

p̄
=

P
∑

i=0

βkΨk(ξ) → f(ξ) =

P
∑

i=0

βkΨk

p̄

p(ξ)
=

P
∑

i=0

βkΨ̄k,(27)this is made possible if, as is the 
ase, no holes in the domain are present,
p(ξ) > 0. We remark that the basis {Ψ̄i

}P

i=0
is not polynomial if the probabilitydistribution p(ξ) is not polynomial and, in the general 
ase ∫

Ξ
Ψ̄iΨ̄jp(ξ)dξ 6=

δij
∫

Ξ
Ψ̄2

i p(ξ)dξ.However this expansion allows to 
ompute statisti
s (eventually 
onditional)and also the metamodel for the fun
tion f(ξ). Even in the 
ase of time de-pendent pdf the points on whi
h evaluate the model are always the zeros ofthe Legendre polynomial asso
iated to the spa
e. Despite to the possibility to
ompute the expansion even for a known distribution as for instan
e a Betadistribution, this te
hnique is expe
ted to perform worst in this 
ase in whi
h aproper optimal basis, in term of 
onvergen
e, 
an be 
hosen. A dis
ussion on therelation of the 
lassi
al gPC method with this non polynomial 
haos expansionis reported in the next se
tion.
RR n° 8191



Non-polynomial expansion for sto
hasti
 problems with non-
lassi
al pdfs 124.1 On the relation between polynomial and non polyno-mial 
haos approa
hIn the previous se
tion a novel te
hnique has been presented to 
ompute theexpansion of the solution for a whatever form of pdf.Let assume to have a polynomial fun
tion f(ξ) ∈ P
r with a distribution of theve
tor parameter ξ ∼ Beta(α, β). We re
all here that a Beta(α, β) distributionis des
ribed as

p(ξ) =
(ξ + 1)α−1(1 − ξ)β−1

B(α, β)2α+β−1
, (28)where the fun
tion B(α, β) is

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
(29)and the gamma fun
tion is Γ(n) = (n− 1)!In the generalized-PC 
ase the Ja
obi base 
an be employed and the numberof points n needed to 
ompute the integral of order 2r (produ
t of the fun
tionand the Ja
obi polynomial of degree rth) is 2r = 2n − 1, then n = r + 1 (forea
h dimension). If the non polynomial 
haos is employed the integrand shouldbe of the order 2r + α + β. Of 
ourse the regularity of the integrand be
omesthe same of the PC 
ase in 
ase of uniform distribution (α = β = 0). In thegeneral 
ase an higher number of points is needed to solve 
orre
tly the integralswith respe
t the general 
ase. However in a general 
ase the model fun
tion isnot polynomial and then the advantage of a Gaussian quadrature based on thepolynomial orthogonal basis is less evident. Of 
ourse this te
hniques makesense in the 
ase of non standard (eventually time dependent) pdfs in whi
h
ase the PC te
hniques 
annot be applied without a multi-element te
hnique.We remark here that in the 
ase of dis
ontinuous pdf this pro
edure 
ould stillbe applied even if the 
onvergen
e 
ould be slower or even prevented in theworst 
ases.The other di�eren
e with respe
t a standard PC te
hnique is in the 
om-putation of the statisti
al moments. The basis {

Ψ̄i

}P

i=0
is not orthogonal onthe spa
e Ξ with respe
t the distribution p(ξ) and then the mixed terms of theexpansion must be 
onsidered. When the expansion for f(ξ) is obtained (see

RR n° 8191



Non-polynomial expansion for sto
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lassi
al pdfs 13equation (27)) the statisti
s 
an be 
omputed as (see [5℄ for the orthogonal 
ase)
E(f) = β0

Var = β2
0(〈Ψ̄

2
0 − 1〉) +

P
∑

k=1

β2
k〈Ψ̄

2
k〉+ 2

P
∑

i=0

P
∑

j=i+1

βiβj〈Ψ̄i, Ψ̄j〉

s =

P
∑

k=0

β3
k〈Ψ̄

3
k(ξ)〉 + 3

P
∑

i=0

β2
i

P
∑

j=0
j 6=i

βj〈Ψ̄
2
i (ξ), Ψ̄j(ξ)〉

+ 6

P
∑

i=0

P
∑

j=i+1

P
∑

k=j+1

βiβjβk〈Ψ̄i(ξ), Ψ̄j(ξ)Ψ̄k(ξ)〉

k =

P
∑

k=0

β4
k〈Ψ̄

4
k(ξ)〉 + 4

P
∑

i=0

β3
i

P
∑

j=0
j 6=i

βj〈Ψ̄
3
i , Ψ̄j〉+ 3

P
∑

i=0

β2
i

P
∑

j=0
j 6=i

β2
j 〈Ψ̄

2
i , Ψ̄

2
j〉

+ 12

P
∑

i=0

P
∑

j=0
j 6=i

P
∑

k=j+1
k 6=i

β2
i βjβk〈Ψ̄i(ξ)

2, Ψ̄j(ξ)Ψ̄k(ξ)〉

+ 24

P
∑

i=0

P
∑

j=i+1

P
∑

k=j+1

P
∑

h=k+1

βiβjβkβh〈Ψ̄i(ξ), Ψ̄j(ξ)Ψ̄k(ξ)Ψ̄h(ξ)〉.

(30)
Obviously the number of integral to 
ompute depends dire
tly form thenumber of 
oe�
ients that is dire
tly related to the dimension d of the problemand the total degree of approximation n0. The number of terms for the nonpolynomial approa
h 
an be evaluated as
T̄Var = P + 1 +

(

P

2

)

T̄s = P + 1 + P (P + 1) +

(

P + 1

3

)

T̄k = P + 1 + P (P + 1) + P (P + 1) + (P + 1)

(

P

2

)

+

(

P + 1

4

)

,

(31)where the symbols T̄Var, T̄s and T̄k indi
ate respe
tively the number of integralto 
ompute for varian
e, skewness and kurtosis for the non polynomial approa
h.The number of the mixed term to 
ompute, whi
h is equal to the di�er-en
e between the number of integral to 
ompute in the 
lassi
al PC 
ase (seeequations (16)), 
an be shown to by equal to
∆Var =

(

P

2

)

+ 1

∆s = 2P + 1 +

(

P + 1

3

)

−

(

P

3

)

∆k = P 2 + 3P + 1 + (P + 1)

(

P

2

)

+

(

P + 1

4

)

−

(

P

2

)

− P

(

P − 1

2

)

−

(

P

4

)

,(32)RR n° 8191



Non-polynomial expansion for sto
hasti
 problems with non-
lassi
al pdfs 14where P depends from both the sto
hasti
 dimension d and the total degree ofthe approximation (of the fun
tion f̄(ξ)).The evolution of the number of the extra terms to 
ompute is reported forthe 
ase with n0 = 2 and dimension between 2 and 10 in �gure 1.

d

∆T

2 4 6 8 10

101

102

103

104

∆TVar

∆Ts

∆Tk

Figure 1: Evolution of the extra terms to 
ompute in the non polynomial ap-proa
h with respe
t the standard gPC method. The 
ase reported is obtainedwith n0 = 2 and a dimension d between 2 and 10.4.2 Computation of the 
onditional statisti
s by the nPCThe approa
h presented in this work allows to reprodu
e the stru
ture of thesolution f(ξ) in term of 
omponents even if these 
omponents are not orthogonalea
h other. For this reason the fun
tional ANOVA de
omposition 
annot bederived in a straightforward way as showed in se
tion �3.1 identifying dire
tlythe subset of indexesKu as showed in the equation (20). However the orthogonalbasis of Legendre underlined above the series expansion of the solution allows toobtain in a relative simple way ea
h �rst order term of the ANOVA expansion,i.e. terms asso
iated to the subset u with 
ardinality equal to one. Re
allingthe de�nition of these d terms of the ANOVA expansion, the equation (7) herereported only for 
onvenien
e
fu(ξu) =

∫

Ξū

f(ξ)p(ξ
ū
)dξ

ū
−

∑

w⊂u

fw(ξw),in the 
ase of the �rst order terms, i.e. terms with card(u) = 1, 
an be redu
edin
fu(ξu) =

∫

Ξū

f(ξ)p(ξ
ū
)dξ

ū
− f0. (33)RR n° 8191
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hasti
 problems with non-
lassi
al pdfs 15In�ating the expansion (27) into (33) one obtains
fu(ξu) =

P
∑

k=0

βk

∫

Ξū

Ψ̄k(ξ)p(ξū)dξū − f0

=
P
∑

k=0

βk

∫

Ξū

Ψk(ξ)
p(ξ

ū
)

p(ξ)
p̄dξ

ū
− f0.

(34)The ratio between the two probability density p(ξ
ū
) and p(ξ) 
an be 
omputedas

p(ξ
ū
)

p(ξ)
=

p(ξ
ū
)

p(ξ
u
)p(ξ

ū
)
=

1

p(ξ
u
)
, (35)where p(ξ

u
) is the probability density relative to the subset u. The equivalentuniform distribution p̄, in the same way, 
an be de
omposed in the produ
tbetween the equivalent uniform distribution relative to the set u and the othervariables as

p̄ = p̄up̄ū. (36)These last two equation allow to re
ast the �rst order ANOVA term as
fu(ξu) =

P
∑

k=0

βk

p̄u
p(ξ

ū
)

∫

Ξū

Ψk(ξ)p̄ū dξ
ū
− f0. (37)The value of the integral in the last equation depends on the set asso
iatedto the index k. We 
an write

∫

Ξū

Ψk(ξ)p̄ū dξ
ū
=

{

Ψk(ξ) if k ∈ K0
u

0 if k /∈ K0
u
,

(38)where the set K0
u
is obtained as union of the set Ku and the null multi-indexelement (k = 0).For the �rst order terms, i.e. if card(u) = 1, we 
an write

fu(ξu) =
∑

k∈K0
u

βk

p̄u
p(ξ

ū
)
Ψk(ξ)− f0, (39)obviously still holds f0 = β0.To 
ompute the 
onditional varian
e relative to ea
h fun
tion fu the �rststep is to raise to the se
ond power the equation (39) and then integrate overthe spa
e Ξu ⊂ Ξ with the weight fun
tion p(ξ
u
).The equation (39) raised to the se
ond power is

f2
u
(ξu) =

∑

k∈K0
u

β2
k

p̄2
u

p2(ξ
u
)
Ψ2

k(ξ) + 2
∑

i∈K0
u

∑

j≥i+1
j∈K0

u

βiβj

p̄2
u

p2(ξ
u
)
Ψi(ξ)Ψj(ξ)

− 2β0

∑

k∈K0
u

βk

p̄u
p(ξ

u
)
Ψk(ξ) + β2

0

(40)The last equation need to be integrated and then, in the following, we analyzeterm by term the integration of the right hand side of the (40). The �rst termRR n° 8191



Non-polynomial expansion for sto
hasti
 problems with non-
lassi
al pdfs 16of the right hand side integrated 
an be written as
∑

k∈K0
u

β2
k

∫

Ξu

p̄2
u

p2(ξ
u
)
Ψ2

k(ξ) p(ξu)dξu =
∑

k∈K0
u

β2
k

∫

Ξu

p̄2
u

p(ξ
u
)
Ψ2

k(ξ) dξu. (41)The se
ond term 
an be treated in an analogue way
2
∑

i∈K0
u

∑

j≥i+1
j∈K0

u

βiβj

∫

Ξu

p̄2
u

p2(ξ
u
)
Ψi(ξ)Ψj(ξ) p(ξu)dξu =

2
∑

i∈K0
u

∑

j≥i+1
j∈K0

u

βiβj

∫

Ξu

p̄2
u

p(ξ
u
)
Ψi(ξ)Ψj(ξ) dξu.

(42)The third term 
an be dramati
ally simpli�ed as
2β0

∑

k∈K0
u

βk

∫

Ξu

p̄u
p(ξ

u
)
Ψk(ξ) p(ξu)dξu =

2β2
0

∫

Ξu

p̄u
p(ξ

u
)
p(ξ

u
)dξ

u
+ 2β0

∑

k∈Ku

βk

∫

Ξu

p̄u
p(ξ

u
)
Ψk(ξ) p(ξu)dξu = 2β2

0

(43)The �nal form of the 
onditional varian
e, for the �rst order terms, is thenobtained dire
tly by summing up these simpli�ed terms
Du =

∑

k∈K0
u

β2
k

∫

Ξu

p̄2
u

p(ξ
u
)
Ψ2

k(ξ) dξu+

2
∑

i∈K0
u

∑

j≥i+1
j∈Ku

βiβj

∫

Ξu

p̄2
u

p(ξ
u
)
Ψi(ξ)Ψj(ξ) dξu − β2

0 .
(44)5 Numeri
al resultsIn this se
tion some numeri
al results are reported for model problems with
ustom de�ned pdfs. All the results are provided with a 
omparison betweenthe nPC and the 
ollo
ation approa
h. We remark here that we expe
t a betterbehavior in term of 
onvergen
e from the 
ollo
ation approa
h, but the impor-tan
e of the present nPC approa
h is to provide a metamodel of the solutionand a framework to 
ompute high order moments 
onditional statisti
s. Exam-ples with dimensions up to three are here reported and the e�e
tiveness of thestrategy is veri�ed with respe
t to the analyti
al solution.Three di�erent kind of 
ustom pdfs are employed in this work (for a sto
has-ti
 parameter de�ned in [−1, 1]):� a linear pdf p1(ξ) = 1/2 + 1/3ξ� a quadrati
 pdf p2(ξ) = ξ2 + 1/2ξ + 1/6� a non polynomial pdf p3(ξ) = 1/2 + 1/3 sin (πξ).RR n° 8191



Non-polynomial expansion for sto
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 problems with non-
lassi
al pdfs 17In the 
ase of multidimensional problems the pdf is obtained by tensorizationof equal pdfs for ea
h dire
tion of the sto
hasti
 spa
e.The �rst model problem is a monodimensional fun
tion f(ξ) = sin (πξ)+e ξ2de�ned on Ξ = [−1, 1] with a probability distribution equal to p1(ξ).The results obtained for the �rst model problem in term of per
entage errorwith respe
t the analyti
al results are reported in �gure 2. The 
ollo
ationapproa
h and the non polynomial approa
h show the same rate of 
onvergen
e.As evident a lower error is rea
hed by the 
ollo
ation approa
h even if, in this
ase, a fully 
onverged solution 
an be obtained for the problem in both 
ases.
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Figure 2: Comparison between the 
ollo
ation approa
h and the non polynomialapproa
h for the monodimensional problem.In the following some multidimensional 
ases are reported with dimensionsup to three. Two kind of fun
tion are employed� a polynomial fun
tion fpol(ξ) =
∏d

i=1(ξi/2 + 1)� a non polynomial fun
tion fnp(ξ) =
∏d

i=1 sin(πξi).In parti
ular the results for the polynomial fun
tion fpol in dimension twowith distributions (for ea
h dimension) p1(ξ), p2(ξ) and p3(ξ) are reported,respe
tively, in �gures 3, 4 and 5.The results for the polynomial fun
tion fpol in dimension three with dis-tributions (for ea
h dimension) p1(ξ) and p2(ξ) are reported, respe
tively, in�gures 6 and 7.For the non polynomial fun
tion only the 
ase with sto
hasti
 dimensionequal to two is analyzed. In this 
ase the three probability fun
tions are em-ployed and the per
entage errors are reported respe
tively in the �gures 8, 9and 10.The results obtained are in a

ord to our predi
tions: the solution 
onvergesslowly for higher moments with respe
t to the mean and varian
e and the 
on-RR n° 8191
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Figure 3: Comparison between the 
ollo
ation approa
h and the non polynomialfor the polynomial fun
tion fpol with probability distribution p1 (d = 2).
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Figure 4: Comparison between the 
ollo
ation approa
h and the non polynomialfor the polynomial fun
tion fpol with probability distribution p2 (d = 2).vergen
e is more sti� for problems with higher sto
hasti
 dimension and withnon polynomial fun
tion or pdf.A
tually the home made 
ode we employed is a sequential one and is verytime demanding to obtain a fully 
onverged solution for more sti� problems,but we aspe
t to improve the present results with a parallel implementation.RR n° 8191
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Figure 5: Comparison between the 
ollo
ation approa
h and the non polynomialfor the polynomial fun
tion fpol with probability distribution p3 (d = 2).
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Figure 6: Comparison between the 
ollo
ation approa
h and the non polynomialfor the polynomial fun
tion fpol with probability distribution p1 (d = 3).However as a general rule we 
an notify, that as we expe
ted, a simple 
ollo
ationis more e�
ient in term of simulations in pra
ti
ally all the 
ases. However thepresent approa
h retain its interest in the possibility to obtain a metamodel ofthe solution and an estimation of the 
onditional statisti
s.RR n° 8191
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Figure 7: Comparison between the 
ollo
ation approa
h and the non polynomialfor the polynomial fun
tion fpol with probability distribution p2 (d = 3).
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Figure 8: Comparison between the 
ollo
ation approa
h and the non polynomialfor the polynomial fun
tion fnp with probability distribution p1 (d = 2).6 Con
lusions and perspe
tiveIn the present work a novel approa
h has been presented to extend the polyno-mial 
haos expansion to the 
ase of non 
lassi
al de�ned pdfs, i.e. pdfs that falloutside the so-
alled Wiener-Askey s
heme. The strategy is based on the 
las-RR n° 8191
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Figure 9: Comparison between the 
ollo
ation approa
h and the non polynomialfor the polynomial fun
tion fnp with probability distribution p2 (d = 2).
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Figure 10: Comparison between the 
ollo
ation approa
h and the non polyno-mial for the polynomial fun
tion fnp with probability distribution p3 (d = 2).si
al PC approa
h but uniform equivalent distributions are employed to re-mapthe original problem in an uniform one irrespe
tiveless of the true probabilitydistribution. This approa
h eventually degrades the 
onvergen
e of the 
lassi
alapproa
h, in term of number of simulations required to estimate the statisti
s,if a 
lassi
al pdf is employed. This is due to a quadrature rule optimal only inRR n° 8191
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al pdfs 22the 
ase of polynomial fun
tions with uniform distribution. However this draw-ba
k is not mu
h in�uent in real appli
ations 
ases be
ause the model fun
tionis, often, not polynomial. Another drawba
ks 
ould emerge if one 
ompare thepresent strategy to a brutal for
e 
ollo
ation strategy in whi
h every statisti
almoments is de
omposed in expe
tan
ies of the fun
tion and all the fun
tionsitself raised to a power equal to the degree of the maximum statisti
al momentrequired. This last approa
h allows to redu
e dramati
ally the number of inte-grals to be 
omputed. Anyway the present strategy is motivated be
ause theadvantage despite to the higher 
omputational 
ost is to provide, at the sametime, a 
omplete metamodel of the model fun
tion and a known stru
ture of thefun
tion on whi
h is possible to 
ompute 
onditional statisti
s. This possibly isnot 
ompletely explored in this work and only the �rst order 
onditional vari-an
es are expli
itly shown. At the present time only an home made sequential
ode is at our disposal and this limits the possibility to 
ompute high orderstatisti
s for more 
omplex problems in higher dimension than two. To allowmore real appli
ation 
ases, in whi
h the single 
ost of ea
h 
omputation 
anbe mu
h more expensive, we expe
t to really in
rease the e�
ien
y 
ouplingthe present strategy with a Smolyak algorithm to 
ompute the set of quadra-ture points on whi
h the simulations must be performed. In the 
ase of smoothmodel fun
tions and probability distribution, for high dimension problems, the
oupling between our novel nPC approa
h and the sparse grid is straightforward.7 A
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