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Non-polynomial expansion for stohastiproblems with non-lassial pdfsRemi Abgrall, Pietro Maro Congedo, Gianlua Gerai,Gianlua IaarinoProjet-Team BahusResearh Report n° 8191 � Deember 18, 2012 � 23 pages
Abstrat: In this study, some preliminary results about the possibility to extend the lassialpolynomial Chaos (PC) theory to stohasti problems with non-lassial probability distributionsof the variables, i.e. outside the framework of the lassial Wiener-Askey sheme [1℄, are presented.The proposed strategy allows to obtain an analytial representation of the solution in order to builda metamodel or to ompure onditional statistis. Various numerial results obtained on someanalytial problems are then provided to demonstrate the orretness of the presented approah.Key-words: Polynomial Chaos, Colloation, Unertainty Quanti�ation, ANOVA, Conditionalstatistis



Développement non-polynomial pour desproblèmes stohastiques ave des pdfnon-lassiquesRésumé : Dans ette étude, on présente des résultats préliminaires sur lapossibilité d'utiliser la théorie lassique du Chaos Polynomial pour des prob-lèmes stohastiques ave des fontions densité de probabilité non-lassiques. Lastratégie proposée permet de aluler une représentation analytique de la so-lution pour onstruire un metamodèle ou aluler les statistiques. Plusieursrésultats numériques sont présentés pour illustrer la validité de l'approhe pro-posée.Mots-lés : Chaos Polynomial, Colloation, Quanti�ation des inertitudes,ANOVA
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Non-polynomial expansion for stohasti problems with non-lassial pdfs 51 IntrodutionIn reent years the growing interest in Unertainty Quanti�ation (UQ) in thenumerial �eld has lead to many di�erent numerial methods or strategies toquantify the statistis in presene of stohasti inputs. One of the most pop-ular method is the Polynomial Chaos (PC) both in its version intrusive ornon-intrusive [2℄. This lass of methods has bee shown to be very e�ient,ompared to Monte Carlo or olloation strategies, if the model to represent issmooth enough. More reently with the aim to extend the lassial PC theoryto real appliation ases the so alled multi-element PC (me-PC) has been in-trodued by Karniadakis et al. (see for instane [3℄) allowing the representationof probability distributions that fall outside the so-alled Wiener-Askey sheme.This open the way to the representation of inputs haraterized by probabilitydistributions that an be extrated from experiments. However the implemen-tation of a me-PC ode ould be not so straightforward even if a PC ode isalready at disposal and, until this moment, the e�etiveness of this approahto obtain statistial moments higher than the variane has not been done yet.In partiular a simple extension of the simple link between the ANOVA rep-resentation and the PC expansion (see for instane [4℄) is still missing. In thepresent work we would like to reinterpret the problem to extend the PC to nonlassial pdf in a more diret way reovering all the ommon features of thelassial PC, as for instane the link between the expansion and the ANOVAdeomposition to ompute onditional statistis. We propose a strategy basedon a mapping of the original problem on an equivalent uniform stohasti spaeon whih applying the PC analysis. This strategy leads to a non orthogonaland non polynomial (in the general ase) representation that re�ets in a lose ofe�ieny if ompared to the PC in the ase of lassial pdfs. However as will belear later the lose of orthogonality does not a�et the omputation of the oef-�ient of the representation but only the statistial moments omputation. Weexpet anyway to improve these preliminary results with some simple furthersteps, as a oupling with a Sparse Grid algorithm and a parallel implementa-tion, in a short term. The remaining part of the work is organized as follows. Inthe setion �2 the mathematial setting is presented and the higher statistialmoments are de�ned. An analytial de�nition of the ANOVA expansion andhow its re�et in the omputation of onditional statistis is also provided. Anintrodution on the lassial PC is furnished with the aim to make the work aspossible self-ontained in seetion �3. The hearth of the work is the setion �4 inwhih our strategy (nPC) is proposed. Some results on the link between the PCand nPC are then presented and the link between the nPC expansion and theANOVA deomposition is desribed for the �rst order terms of the onditionalvarianes. Finally some numerial results are presented for analytial problemsin dimension up to three for di�erent kind of ustom de�ned pdfs in setion �5.Conluding remarks and future perspetive works are reported as losure in �6.2 Mathematial and problem settingConsider the following problem for an output of interest u(x, t, ξ(ω)):
L(x, t, ξ(ω);u(x, t, ξ(ω))) = S(x, t, ξ(ω)), (1)RR n° 8191



Non-polynomial expansion for stohasti problems with non-lassial pdfs 6where the operator L an be either an algebrai or a di�erential operator (in thisase we need appropriate initial and boundary onditions). The operator L andthe soure term S are de�ned on the domain D × T × Ξ, where x ∈ D ⊂ R
nd ,with nd ∈ {1, 2, 3}, and t ∈ T are the spatial and temporal dimensions. Ran-domness is introdued in (1) and its initial and boundary onditions in term of dseond order random parameters ξ(ω) = {ξ1(ω1), . . . , ξd(ωd)} ∈ Ξ with param-eter spae Ξ ⊂ R

d. The symbol ω = {ω1, . . . , ωd} ∈ Ω ⊂ R denotes realizationsin a omplete probability spae (Ω,F , P ). Here Ω is the set of outomes, F ⊂ 2Ωis the σ-algebra of events and P : F → [0, 1] is a probability measure. Randomparameters ξ(ω) an have any arbitrary probability density funtion p(ξ(ω)),in this way p(ξ(ω)) > 0 for all ξ(ω) ∈ Ξ and p(ξ(ω)) = 0 for all ξ(ω) /∈ Ξ; wean now drop the argument ω for brevity. The probability density funtion p(ξ)is de�ned as a joint probability density funtion from the independent proba-bility funtion of eah variable: p(ξ) = ∏d

i=1 pi(ξi). This assumption allows toan independent polynomial representation for every diretion in the probabilis-ti spae with the possibility to reover the multidimensional representation bytensorization. In the present work the test ases are algebrai, steady equationswith no physial spae dependene (we an drop the spatial argument x), so wean write
L(ξ; f(ξ)) = 0 (2)then the aim is to �nd the statistial moments of the solution f(ξ).The (entered) statistial moments of degree nth are de�ned as

µn(f) =

∫

Ξ

(f(ξ)− E(f))np(ξ)dξ, (3)where E(f) represents the expeted value of the solution f(ξ)

E(f) =

∫

Ξ

f(ξ)p(ξ)dξ. (4)In this work moments up to the degree four are onsidered and in the fol-lowing we refer to the variane Var, skewness s and kurtosis k to indiate,respetively, the seond, third and fourth order statistial moments.Higher order statistis (from order two) an be omputed knowing only ex-petanies of the model funtion f and its values raised to the desired order
Var = E(f2)− E(f)2

s = E(f3)− 3E(f)Var− E(f)3

k = E(f4)− 4E(f3)E(f) + 6E(f2)E(f)2 − 3E(f)4.

(5)This representation of the higher moments will be employed to ompare thestrategy with a olloation approah. The key idea, leading to this last approah,is to ompute the expetany for the funtions f , f2, f3 and f4, obtaineddiretly from the values of the model f and then ombine these expetany toobtain high order statistis. A diret, brutal-fore, olloation approah ouldbe to ompute diretly all the integrals ontained in the equations (5) evaluatingeah term by the preedent statistial moment. The problem redue to omputeonly four integral. This an be done e�iently if the number of quadraturepoints is high enough. Anyway this approah annot provide a metamodel ofRR n° 8191



Non-polynomial expansion for stohasti problems with non-lassial pdfs 7the funtion and an expansion of the solution on whih onditional statistisan be omputed (see for instane [5℄). The theoretial framework on whih theonditional statistis an be obtained based on an ANOVA representation is thesubjet of the following setion.2.1 ANOVA deomposition and sensitivity indexesLet us onsider to have a given equation, or a systems of equations, to solveand to have an output of interest f = f(ξ). The output of the system isdependent by d unertainties parameters ξi assumed so that ξ = {ξ1, . . . , ξd} ∈
Ξ ⊂ R

d. In this work we assume independent distributed random variables
ξi ∈ Ξi and, onsequently, the spae Ξ an be obtained by tensorization of theirmonodimensional spaes, i.e. Ξi ⊂ R, Ξ = Ξ1 × · · · × Ξd.From the independene of the random variables follows diretly p(ξ) =
∏

i p(ξi). Assuming f(ξ) ∈ L2(ξ, p(ξ)) then a Sobol unique funtional deom-position exists:
f(ξ) =

∑

u⊆{1,...,d}

fu(ξu) (6)where u is a set of integers with ardinality v = |u| and ξu = {ξu1
, . . . , ξuv

}.Eah funtion fu is omputed by the relation [4℄:
fu(ξu) =

∫

Ξū

f(ξ)p(ξ
ū
)dξ

ū
−

∑

w⊂u

fw(ξw) (7)where Ξū is the spae Ξ without the dimensions ontained in u and ξ
ū
is thevetor ξ without the variables in u.By de�nition

f0 =

∫

Ξ

f(ξ)p(ξ)dξ (8)is the mean of the funtion f(ξ). This funtional deomposition is alledANOVA if eah of the 2d elements of the deomposition, exept f0, veri�esfor every ξi:
∫

Ξi

fu(ξu)p(ξi)dξi = 0, ∀i ∈ u (9)Diretly from eq. 9 follows the orthogonality:
∫

Ξ

fu(ξu)fw(ξw)p(ξ)dξ = 0, u 6= w (10)2.1.1 Sobol sensitivity indiesEmploying the ANOVA deomposition it is possible to deompose the varianeof f = f(ξ):
Var(f) =

∑

u⊆{1,...,d}
u6=0

Du(fu) (11)where
Du(fu) =

∫

Ξu

f2
u
(ξu)p(ξu)dξu (12)RR n° 8191



Non-polynomial expansion for stohasti problems with non-lassial pdfs 8and Ξu = Ξu1
× · · · × Ξuv

.The Sobol sensitivity indies (SI), are de�ned as:
Su =

Du

Var
(13)measuring the sensitivity of the variane due to the v-order (v = |u|) interationbetween the variables in ξu. It is evident that the summation of the 2d−1 Sobolindies is equal to one.3 Classial Polynomial Chaos approahIn this setion we refer brie�y to the main results relative to the high orderstatis omputation by the lassial PC approah with further extensions forhigher statistial moments provided by the same authors; for exhaustive detailsrefer to [5℄.The solution is expanded as

f(ξ) =

P
∑

k=0

βkΨk(ξ), (14)where Ψk is the polynomial basis orthogonal to the probability density distri-bution p(ξ).Eah of the P + 1 = (n0 + d)!/(n0!d!) oe�ients of the expansion (of totaldegree n0) an be omputed as projetion of the model funtion f(ξ) with thepolynomial basis exploiting the orthogonality onditions, i.e. the polynomialbasis is hosen in aord to the Wiener-Askey sheme to be orthogonal to theprobability distribution p(ξ)

βk =

∫

Ξ
f(ξ)Ψk(ξ)p(ξ)dξ

∫

Ξ
Ψk(ξ)Ψ(ξ)p(ξ)dξ

. (15)The problem is to ompute the integral at numerator while for the denominatorthe value ould be known analytially.Assuming to know the oe�ients βk of the expansion the four statistial

RR n° 8191



Non-polynomial expansion for stohasti problems with non-lassial pdfs 9moments are [5℄
E(f) = β0

Var =

P
∑

i=1

β2
i 〈Ψ

2
i (ξ)〉

s =

P
∑

k=1

β3
k〈Ψ

3
k(ξ)〉 + 3

P
∑

i=1

β2
i

P
∑

j=1
j 6=i

βj〈Ψ
2
i (ξ),Ψj(ξ)〉

+ 6

P
∑

i=1

P
∑

j=i+1

P
∑

k=j+1

βiβjβk〈Ψi(ξ),Ψj(ξ)Ψk(ξ)〉

k =
P
∑

i=1

β4
i 〈Ψ

4
i 〉+ 4

P
∑

i=1

β3
i

P
∑

j=1
j 6=i

βj〈Ψ
3
i ,Ψj〉+ 3

P
∑

i=1

β2
i

P
∑

j=1
j 6=i

β2
j 〈Ψ

2
i ,Ψ

2
j〉

+ 12

P
∑

i=1

β2
i

P
∑

j=1
j 6=i

βj

P
∑

k=j+1
k 6=i

βk〈Ψ
2
i ,ΨjΨk〉

+ 24

P
∑

i=1

P
∑

j=i+1

P
∑

k=j+1

P
∑

h=k+1

βiβjβkβh〈ΨiΨj,ΨkΨh〉

(16)
The expression reported in (16) are obtained thanks to the orthogonality ofthe polynomial basis, i.e.

∫

Ξ

Ψi(ξ)Ψj(ξ)p(ξ)dξ = δij〈Ψ
2
i 〉. (17)3.1 Sensitivity omputation from PC expansionThe omputation of the Sobol indies is possible using every sample stohastimethod (Monte Carlo, quasi-Monte Carlo) but an be done in a very e�ientway when a polynomial expansion of the solution is adopted. The idea is to om-pute the expansion of the solution (trunated) and ompute the Sobol indiesfrom the expansion instead of omputing them on the real funtion. Rememberthe polynomial expansion:

f(ξ) = f̃(ξ) +OT =

P
∑

k=0

βkΨk(ξ) +OT , (18)with a number of terms related to the maximum degree of the polynomial reon-strution no and the dimension of the system d: P +1 = (no+d)!
no!d!

. Eah element
fu of the funtional deomposition of f(ξ) is approximated by the relative term
f̃u:

fu(ξu) ≈ f̃u(ξu) =
∑

k∈Ku

βkΨk(ξu), (19)where the set of indies Ku is given by
Ku =







k ∈ {1, . . . , P}|Ψk(ξu) =

|u|
∏

i=1

φαk

i

(ξui
), αk

i > 0







(20)RR n° 8191



Non-polynomial expansion for stohasti problems with non-lassial pdfs 10and φαk

i

(ξui
) are the monodimensional polynomials for every diretion ξi ofdegree k hosen with respet to the so-alled Wiener-Askey sheme [1℄.Thanks to the orthogonality it is possible to obtain diretly the variane

Ṽar(f) = Var(f̃) ≈ Var(f) and the onditional variane D̃u(fu) = Du(f̃u) ≈
Du(fu) from the following relations:

Ṽar(f) =

P
∑

k=1

β2
k〈Ψk,Ψk〉 (21)

D̃u(fu) =
∑

k∈Ku

β2
k〈Ψk,Ψk〉.Sobol sensitivity indies follows diretly from eq. 21:

Su ≈ S̃u =
D̃u(fu)

Ṽar(f)
=

∑

k∈Ku

β2
k〈Ψk,Ψk〉

∑P

k=1 β
2
k〈Ψk,Ψk〉

. (22)If ustom de�ned probability distribution funtion are employed the or-thonality properties of the basis annot be exploited anymore to ompute theoe�ients of the polynomial expansion. In the following setion we desribe astrategy to reover a solution expansion with respet a non polynomial basis, inthe general ase, in whih the ortoghonality of a support basis is employed toompute the oe�ients of the expansion.4 Handling whatever form of pdf for the ompu-tation of higher order statistisThe state-of-the-art to ompute statistis moments for non lassial pdf is theso-alled multi-element method me-PC [3℄. This family of tehniques allows toe�iently ompute, thanks to a partition of the stohasti spae, the (piee-wise) polynomial approximations of the model funtion f(ξ). Despite to thepossibility to ompute expetany and variane e�iently to ompute high or-der statistis this method enounter the same problems of the lassial PCapproah: high number of integrals to ompute as in the diret approah (seeequations (16)) or sampling onvergene issues as a metamodel approah. Atthe same time a very strong omputational e�ort must be devoted to adapt anexisting PC ode to a multi-element apable one. Anyway the e�etive possibil-ity to link the me-PC method to the ANOVA deomposition has not been yetprovided to ompute onditional statistis.To takle this problem we proposed a mapping proedure that allows to ob-tain a polynomial representation of a funtion depending on a ustom de�neddistributed random vetor. This proedure allows a straightforward implemen-tation starting from an existing PC ode.The proedure is the same of the lassial PC approah, i.e. a polynomialapproximation of the model is omputed and then all the statistial momentsare omputed diretly from this polynomial expansion. Obviously onditionalstatistis an be omputed too.First of all the P + 1 oe�ients must be omputed. If the probabilitydistribution fall outside the so-alled Wiener-Askey sheme a proper orthogonalbasis annot be employed as in the generalized-PC method.RR n° 8191



Non-polynomial expansion for stohasti problems with non-lassial pdfs 11Let us assume to reast the probability density funtion p(ξ) as
p(ξ) =

p(ξ)p̄

p̄
, (23)where p̄ is an equivalent uniform distribution on the spae Ξ

p̄ =
1

∫

Ξ dξ
. (24)All the integral of the kind ∫

f(ξ)p(ξ)dξ an be re-interpreted as statistisof a funtion f̄(ξ) de�ned by
f̄(ξ) =

f(ξ)p(ξ)

p̄
, (25)with an uniform distribution p̄ on Ξ of the parameter vetor.At this stage a polynomial representation of the funtion f̄(ξ) an be ob-tained employing a Legendre basis orthogonal on a stohasti spae embeddedwith an uniform distribution.The P + 1 oe�ients of the series an be omputed as

βk =

∫

Ξ
f̄(ξ)Ψk(ξ)p̄dξ

∫

Ξ Ψk(ξ)Ψ(ξ)p̄dξ
, (26)where the orthogonality of the polynomial basis allows to avoid to ompute themixed terms, i.e. terms of the kind ∫

Ξ
ΨiΨj p̄dξ.The P + 1 terms of the polynomial approximation of the funtion f̄(ξ),obtained on the Legendre basis, ould be employed easily to obtain a polynomialexpansion of f(ξ) on a set of P+1 (non orthogonal) term on the stohasti spaewith distribution p. The proedure is the following

f̄(ξ) = f(ξ)
p(ξ)

p̄
=

P
∑

i=0

βkΨk(ξ) → f(ξ) =

P
∑

i=0

βkΨk

p̄

p(ξ)
=

P
∑

i=0

βkΨ̄k,(27)this is made possible if, as is the ase, no holes in the domain are present,
p(ξ) > 0. We remark that the basis {Ψ̄i

}P

i=0
is not polynomial if the probabilitydistribution p(ξ) is not polynomial and, in the general ase ∫

Ξ
Ψ̄iΨ̄jp(ξ)dξ 6=

δij
∫

Ξ
Ψ̄2

i p(ξ)dξ.However this expansion allows to ompute statistis (eventually onditional)and also the metamodel for the funtion f(ξ). Even in the ase of time de-pendent pdf the points on whih evaluate the model are always the zeros ofthe Legendre polynomial assoiated to the spae. Despite to the possibility toompute the expansion even for a known distribution as for instane a Betadistribution, this tehnique is expeted to perform worst in this ase in whih aproper optimal basis, in term of onvergene, an be hosen. A disussion on therelation of the lassial gPC method with this non polynomial haos expansionis reported in the next setion.
RR n° 8191



Non-polynomial expansion for stohasti problems with non-lassial pdfs 124.1 On the relation between polynomial and non polyno-mial haos approahIn the previous setion a novel tehnique has been presented to ompute theexpansion of the solution for a whatever form of pdf.Let assume to have a polynomial funtion f(ξ) ∈ P
r with a distribution of thevetor parameter ξ ∼ Beta(α, β). We reall here that a Beta(α, β) distributionis desribed as

p(ξ) =
(ξ + 1)α−1(1 − ξ)β−1

B(α, β)2α+β−1
, (28)where the funtion B(α, β) is

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
(29)and the gamma funtion is Γ(n) = (n− 1)!In the generalized-PC ase the Jaobi base an be employed and the numberof points n needed to ompute the integral of order 2r (produt of the funtionand the Jaobi polynomial of degree rth) is 2r = 2n − 1, then n = r + 1 (foreah dimension). If the non polynomial haos is employed the integrand shouldbe of the order 2r + α + β. Of ourse the regularity of the integrand beomesthe same of the PC ase in ase of uniform distribution (α = β = 0). In thegeneral ase an higher number of points is needed to solve orretly the integralswith respet the general ase. However in a general ase the model funtion isnot polynomial and then the advantage of a Gaussian quadrature based on thepolynomial orthogonal basis is less evident. Of ourse this tehniques makesense in the ase of non standard (eventually time dependent) pdfs in whihase the PC tehniques annot be applied without a multi-element tehnique.We remark here that in the ase of disontinuous pdf this proedure ould stillbe applied even if the onvergene ould be slower or even prevented in theworst ases.The other di�erene with respet a standard PC tehnique is in the om-putation of the statistial moments. The basis {

Ψ̄i

}P

i=0
is not orthogonal onthe spae Ξ with respet the distribution p(ξ) and then the mixed terms of theexpansion must be onsidered. When the expansion for f(ξ) is obtained (see

RR n° 8191



Non-polynomial expansion for stohasti problems with non-lassial pdfs 13equation (27)) the statistis an be omputed as (see [5℄ for the orthogonal ase)
E(f) = β0

Var = β2
0(〈Ψ̄

2
0 − 1〉) +

P
∑

k=1

β2
k〈Ψ̄

2
k〉+ 2

P
∑

i=0

P
∑

j=i+1

βiβj〈Ψ̄i, Ψ̄j〉

s =

P
∑

k=0

β3
k〈Ψ̄

3
k(ξ)〉 + 3

P
∑

i=0

β2
i

P
∑

j=0
j 6=i

βj〈Ψ̄
2
i (ξ), Ψ̄j(ξ)〉

+ 6

P
∑

i=0

P
∑

j=i+1

P
∑

k=j+1

βiβjβk〈Ψ̄i(ξ), Ψ̄j(ξ)Ψ̄k(ξ)〉

k =

P
∑

k=0

β4
k〈Ψ̄

4
k(ξ)〉 + 4

P
∑

i=0

β3
i

P
∑

j=0
j 6=i

βj〈Ψ̄
3
i , Ψ̄j〉+ 3

P
∑

i=0

β2
i

P
∑

j=0
j 6=i

β2
j 〈Ψ̄

2
i , Ψ̄

2
j〉

+ 12

P
∑

i=0

P
∑

j=0
j 6=i

P
∑

k=j+1
k 6=i

β2
i βjβk〈Ψ̄i(ξ)

2, Ψ̄j(ξ)Ψ̄k(ξ)〉

+ 24

P
∑

i=0

P
∑

j=i+1

P
∑

k=j+1

P
∑

h=k+1

βiβjβkβh〈Ψ̄i(ξ), Ψ̄j(ξ)Ψ̄k(ξ)Ψ̄h(ξ)〉.

(30)
Obviously the number of integral to ompute depends diretly form thenumber of oe�ients that is diretly related to the dimension d of the problemand the total degree of approximation n0. The number of terms for the nonpolynomial approah an be evaluated as
T̄Var = P + 1 +

(

P

2

)

T̄s = P + 1 + P (P + 1) +

(

P + 1

3

)

T̄k = P + 1 + P (P + 1) + P (P + 1) + (P + 1)

(

P

2

)

+

(

P + 1

4

)

,

(31)where the symbols T̄Var, T̄s and T̄k indiate respetively the number of integralto ompute for variane, skewness and kurtosis for the non polynomial approah.The number of the mixed term to ompute, whih is equal to the di�er-ene between the number of integral to ompute in the lassial PC ase (seeequations (16)), an be shown to by equal to
∆Var =

(

P

2

)

+ 1

∆s = 2P + 1 +

(

P + 1

3

)

−

(

P

3

)

∆k = P 2 + 3P + 1 + (P + 1)

(

P

2

)

+

(

P + 1

4

)

−

(

P

2

)

− P

(

P − 1

2

)

−

(

P

4

)

,(32)RR n° 8191



Non-polynomial expansion for stohasti problems with non-lassial pdfs 14where P depends from both the stohasti dimension d and the total degree ofthe approximation (of the funtion f̄(ξ)).The evolution of the number of the extra terms to ompute is reported forthe ase with n0 = 2 and dimension between 2 and 10 in �gure 1.

d

∆T

2 4 6 8 10

101

102

103

104

∆TVar

∆Ts

∆Tk

Figure 1: Evolution of the extra terms to ompute in the non polynomial ap-proah with respet the standard gPC method. The ase reported is obtainedwith n0 = 2 and a dimension d between 2 and 10.4.2 Computation of the onditional statistis by the nPCThe approah presented in this work allows to reprodue the struture of thesolution f(ξ) in term of omponents even if these omponents are not orthogonaleah other. For this reason the funtional ANOVA deomposition annot bederived in a straightforward way as showed in setion �3.1 identifying diretlythe subset of indexesKu as showed in the equation (20). However the orthogonalbasis of Legendre underlined above the series expansion of the solution allows toobtain in a relative simple way eah �rst order term of the ANOVA expansion,i.e. terms assoiated to the subset u with ardinality equal to one. Reallingthe de�nition of these d terms of the ANOVA expansion, the equation (7) herereported only for onveniene
fu(ξu) =

∫

Ξū

f(ξ)p(ξ
ū
)dξ

ū
−

∑

w⊂u

fw(ξw),in the ase of the �rst order terms, i.e. terms with card(u) = 1, an be reduedin
fu(ξu) =

∫

Ξū

f(ξ)p(ξ
ū
)dξ

ū
− f0. (33)RR n° 8191



Non-polynomial expansion for stohasti problems with non-lassial pdfs 15In�ating the expansion (27) into (33) one obtains
fu(ξu) =

P
∑

k=0

βk

∫

Ξū

Ψ̄k(ξ)p(ξū)dξū − f0

=
P
∑

k=0

βk

∫

Ξū

Ψk(ξ)
p(ξ

ū
)

p(ξ)
p̄dξ

ū
− f0.

(34)The ratio between the two probability density p(ξ
ū
) and p(ξ) an be omputedas

p(ξ
ū
)

p(ξ)
=

p(ξ
ū
)

p(ξ
u
)p(ξ

ū
)
=

1

p(ξ
u
)
, (35)where p(ξ

u
) is the probability density relative to the subset u. The equivalentuniform distribution p̄, in the same way, an be deomposed in the produtbetween the equivalent uniform distribution relative to the set u and the othervariables as

p̄ = p̄up̄ū. (36)These last two equation allow to reast the �rst order ANOVA term as
fu(ξu) =

P
∑

k=0

βk

p̄u
p(ξ

ū
)

∫

Ξū

Ψk(ξ)p̄ū dξ
ū
− f0. (37)The value of the integral in the last equation depends on the set assoiatedto the index k. We an write

∫

Ξū

Ψk(ξ)p̄ū dξ
ū
=

{

Ψk(ξ) if k ∈ K0
u

0 if k /∈ K0
u
,

(38)where the set K0
u
is obtained as union of the set Ku and the null multi-indexelement (k = 0).For the �rst order terms, i.e. if card(u) = 1, we an write

fu(ξu) =
∑

k∈K0
u

βk

p̄u
p(ξ

ū
)
Ψk(ξ)− f0, (39)obviously still holds f0 = β0.To ompute the onditional variane relative to eah funtion fu the �rststep is to raise to the seond power the equation (39) and then integrate overthe spae Ξu ⊂ Ξ with the weight funtion p(ξ
u
).The equation (39) raised to the seond power is

f2
u
(ξu) =

∑

k∈K0
u

β2
k

p̄2
u

p2(ξ
u
)
Ψ2

k(ξ) + 2
∑

i∈K0
u

∑

j≥i+1
j∈K0

u

βiβj

p̄2
u

p2(ξ
u
)
Ψi(ξ)Ψj(ξ)

− 2β0

∑

k∈K0
u

βk

p̄u
p(ξ

u
)
Ψk(ξ) + β2

0

(40)The last equation need to be integrated and then, in the following, we analyzeterm by term the integration of the right hand side of the (40). The �rst termRR n° 8191



Non-polynomial expansion for stohasti problems with non-lassial pdfs 16of the right hand side integrated an be written as
∑

k∈K0
u

β2
k

∫

Ξu

p̄2
u

p2(ξ
u
)
Ψ2

k(ξ) p(ξu)dξu =
∑

k∈K0
u

β2
k

∫

Ξu

p̄2
u

p(ξ
u
)
Ψ2

k(ξ) dξu. (41)The seond term an be treated in an analogue way
2
∑

i∈K0
u

∑

j≥i+1
j∈K0

u

βiβj

∫

Ξu

p̄2
u

p2(ξ
u
)
Ψi(ξ)Ψj(ξ) p(ξu)dξu =

2
∑

i∈K0
u

∑

j≥i+1
j∈K0

u

βiβj

∫

Ξu

p̄2
u

p(ξ
u
)
Ψi(ξ)Ψj(ξ) dξu.

(42)The third term an be dramatially simpli�ed as
2β0

∑

k∈K0
u

βk

∫

Ξu

p̄u
p(ξ

u
)
Ψk(ξ) p(ξu)dξu =

2β2
0

∫

Ξu

p̄u
p(ξ

u
)
p(ξ

u
)dξ

u
+ 2β0

∑

k∈Ku

βk

∫

Ξu

p̄u
p(ξ

u
)
Ψk(ξ) p(ξu)dξu = 2β2

0

(43)The �nal form of the onditional variane, for the �rst order terms, is thenobtained diretly by summing up these simpli�ed terms
Du =

∑

k∈K0
u

β2
k

∫

Ξu

p̄2
u

p(ξ
u
)
Ψ2

k(ξ) dξu+

2
∑

i∈K0
u

∑

j≥i+1
j∈Ku

βiβj

∫

Ξu

p̄2
u

p(ξ
u
)
Ψi(ξ)Ψj(ξ) dξu − β2

0 .
(44)5 Numerial resultsIn this setion some numerial results are reported for model problems withustom de�ned pdfs. All the results are provided with a omparison betweenthe nPC and the olloation approah. We remark here that we expet a betterbehavior in term of onvergene from the olloation approah, but the impor-tane of the present nPC approah is to provide a metamodel of the solutionand a framework to ompute high order moments onditional statistis. Exam-ples with dimensions up to three are here reported and the e�etiveness of thestrategy is veri�ed with respet to the analytial solution.Three di�erent kind of ustom pdfs are employed in this work (for a stohas-ti parameter de�ned in [−1, 1]):� a linear pdf p1(ξ) = 1/2 + 1/3ξ� a quadrati pdf p2(ξ) = ξ2 + 1/2ξ + 1/6� a non polynomial pdf p3(ξ) = 1/2 + 1/3 sin (πξ).RR n° 8191



Non-polynomial expansion for stohasti problems with non-lassial pdfs 17In the ase of multidimensional problems the pdf is obtained by tensorizationof equal pdfs for eah diretion of the stohasti spae.The �rst model problem is a monodimensional funtion f(ξ) = sin (πξ)+e ξ2de�ned on Ξ = [−1, 1] with a probability distribution equal to p1(ξ).The results obtained for the �rst model problem in term of perentage errorwith respet the analytial results are reported in �gure 2. The olloationapproah and the non polynomial approah show the same rate of onvergene.As evident a lower error is reahed by the olloation approah even if, in thisase, a fully onverged solution an be obtained for the problem in both ases.
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Figure 2: Comparison between the olloation approah and the non polynomialapproah for the monodimensional problem.In the following some multidimensional ases are reported with dimensionsup to three. Two kind of funtion are employed� a polynomial funtion fpol(ξ) =
∏d

i=1(ξi/2 + 1)� a non polynomial funtion fnp(ξ) =
∏d

i=1 sin(πξi).In partiular the results for the polynomial funtion fpol in dimension twowith distributions (for eah dimension) p1(ξ), p2(ξ) and p3(ξ) are reported,respetively, in �gures 3, 4 and 5.The results for the polynomial funtion fpol in dimension three with dis-tributions (for eah dimension) p1(ξ) and p2(ξ) are reported, respetively, in�gures 6 and 7.For the non polynomial funtion only the ase with stohasti dimensionequal to two is analyzed. In this ase the three probability funtions are em-ployed and the perentage errors are reported respetively in the �gures 8, 9and 10.The results obtained are in aord to our preditions: the solution onvergesslowly for higher moments with respet to the mean and variane and the on-RR n° 8191
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Figure 3: Comparison between the olloation approah and the non polynomialfor the polynomial funtion fpol with probability distribution p1 (d = 2).
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Figure 4: Comparison between the olloation approah and the non polynomialfor the polynomial funtion fpol with probability distribution p2 (d = 2).vergene is more sti� for problems with higher stohasti dimension and withnon polynomial funtion or pdf.Atually the home made ode we employed is a sequential one and is verytime demanding to obtain a fully onverged solution for more sti� problems,but we aspet to improve the present results with a parallel implementation.RR n° 8191
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Figure 5: Comparison between the olloation approah and the non polynomialfor the polynomial funtion fpol with probability distribution p3 (d = 2).
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Figure 6: Comparison between the olloation approah and the non polynomialfor the polynomial funtion fpol with probability distribution p1 (d = 3).However as a general rule we an notify, that as we expeted, a simple olloationis more e�ient in term of simulations in pratially all the ases. However thepresent approah retain its interest in the possibility to obtain a metamodel ofthe solution and an estimation of the onditional statistis.RR n° 8191
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Figure 7: Comparison between the olloation approah and the non polynomialfor the polynomial funtion fpol with probability distribution p2 (d = 3).
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Figure 8: Comparison between the olloation approah and the non polynomialfor the polynomial funtion fnp with probability distribution p1 (d = 2).6 Conlusions and perspetiveIn the present work a novel approah has been presented to extend the polyno-mial haos expansion to the ase of non lassial de�ned pdfs, i.e. pdfs that falloutside the so-alled Wiener-Askey sheme. The strategy is based on the las-RR n° 8191
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Figure 9: Comparison between the olloation approah and the non polynomialfor the polynomial funtion fnp with probability distribution p2 (d = 2).
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Figure 10: Comparison between the olloation approah and the non polyno-mial for the polynomial funtion fnp with probability distribution p3 (d = 2).sial PC approah but uniform equivalent distributions are employed to re-mapthe original problem in an uniform one irrespetiveless of the true probabilitydistribution. This approah eventually degrades the onvergene of the lassialapproah, in term of number of simulations required to estimate the statistis,if a lassial pdf is employed. This is due to a quadrature rule optimal only inRR n° 8191



Non-polynomial expansion for stohasti problems with non-lassial pdfs 22the ase of polynomial funtions with uniform distribution. However this draw-bak is not muh in�uent in real appliations ases beause the model funtionis, often, not polynomial. Another drawbaks ould emerge if one ompare thepresent strategy to a brutal fore olloation strategy in whih every statistialmoments is deomposed in expetanies of the funtion and all the funtionsitself raised to a power equal to the degree of the maximum statistial momentrequired. This last approah allows to redue dramatially the number of inte-grals to be omputed. Anyway the present strategy is motivated beause theadvantage despite to the higher omputational ost is to provide, at the sametime, a omplete metamodel of the model funtion and a known struture of thefuntion on whih is possible to ompute onditional statistis. This possibly isnot ompletely explored in this work and only the �rst order onditional vari-anes are expliitly shown. At the present time only an home made sequentialode is at our disposal and this limits the possibility to ompute high orderstatistis for more omplex problems in higher dimension than two. To allowmore real appliation ases, in whih the single ost of eah omputation anbe muh more expensive, we expet to really inrease the e�ieny ouplingthe present strategy with a Smolyak algorithm to ompute the set of quadra-ture points on whih the simulations must be performed. In the ase of smoothmodel funtions and probability distribution, for high dimension problems, theoupling between our novel nPC approah and the sparse grid is straightforward.7 AknowledgementsRemi Abgrall has been partially supported by the ERC Advaned Grant AD-DECCO N. 226316, while Gianlua Gerai has been fully supported by the ERCAdvaned Grant ADDECCO N. 226316. Gianlua Gerai also aknowledge thesupport of the Assoiated Team 'AQUARIUS' whih provided the �nanial sup-port for a fruitful visit at the Stanford University at the end of 2011.Referenes[1℄ Rihard Askey and James Wilson. Some basi hypergeometri orthogonalpolynomials that generalize Jaobi polynomials. Memoirs of the AmerianMathematial Soiety, 54(319), 1985.[2℄ Olivier Le Maître and Omar M. Knio. Spetral Methods for Uner-tainty Quanti�ation: With Appliations to Computational Fluid Dynamis.Springer Verlag, 2010.[3℄ Jasmine Foo and George Em Karniadakis. Multi-element probabilisti ol-loation method in high dimensions. Journal of Computational Physis,229:1536�1557, Marh 2010.[4℄ Thierry Crestaux, Olivier Le Maître, and Jean-Mar Martinez. Polynomialhaos expansion for sensitivity analysis. Reliability Engineering & SystemSafety, 94(7):1161�1172, July 2009.
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