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Abstract—Autonomous mapping, especially in the form of SLAM 

(Simultaneous Localization And Mapping), has long since been 

used for many indoor robotic applications and is also useful in 

outdoor intelligent vehicle applications such as object detection. 

Most existing research works on environment mapping and 

object detection in outdoor applications have been dedicated to 

single vehicle system. On the other hand, multi-vehicle 

cooperative perception based on inter-vehicle data sharing can 

bring considerable benefits in many scenarios that are 

challenging for a single vehicle system. In this paper, a new 

method for occupancy grid maps merging is proposed: an 

objective function based on occupancy likelihood is introduced to 

measure the consistency degree of maps alignment; genetic 

algorithm implemented in a dynamic scheme is adopted to 

optimize the objective function. A scheme of multi-vehicle 

cooperative local mapping and moving object detection using the 

proposed occupancy grid maps merging method is also 

introduced. Real-data tests are given to demonstrate the 

effectiveness of the introduced method. 

Keywords—occupancy grid map, SLAM, cooperative perception, 

moving object detection 

I. INTRODUCTION 

Autonomous mapping has long since been a fundamental 
task for mobile robots operating in an unknown environment 
[1]. Since the robot pose is not known a priori in many 
applications, the mapping process is usually juxtaposed with 
the localization process, forming a process called Simultaneous 
Localization And Mapping (SLAM) [2] [3]. Originally, SLAM 
was rooted in indoor environment applications, where the 
purpose of SLAM is to establish a consistent spatial 
representation for the global environment and localize the robot 
in this global environment representation. For outdoor 
environment applications where GPS (Global Positioning 
System) measurements can be available, SLAM gradually loses 
its importance on global mapping and global localization as 
originally in indoor environment applications. Nevertheless, 
SLAM methods can still be employed to improve odometer-
based local localization result and build accurate and consistent 
local maps for object detection [4] [5]. 

Most existing research works on environment mapping and 
object detection in outdoor environment applications have been 
dedicated to single vehicle system (the term “vehicle” and 
“robot” are used interchangeably in this paper). On the other 
hand, multi-vehicle cooperative perception based on inter-
vehicle data sharing can bring considerable benefits in many 
scenarios that are challenging for a single vehicle system. Take 
vehicle overtaking scenario as an example, see Fig.1; this 
scenario is challenging and potentially dangerous, because the 
view of the overtaking vehicle is occluded by the overtaken 
vehicle. What might happen to the overtaking vehicle if a 
careless pedestrian is rushing across the road in front of the 
overtaken vehicle? For safety reason, the overtaking vehicle 
always wants to know what exist in the occluded area; 
unfortunately, it can not have any inference on the occluded 
area.  

 

 
 

With the help of inter-vehicle communication [6], the 
overtaken vehicle can share its perception results with the 
overtaking vehicle so that the overtaking vehicle can indirect 
‘perceive’ the occluded environment. More specifically, the 
term perception here implies certain local map representation 
around the vehicle. Then, an essential requirement for realizing 
this idea of cooperative perception is to merge the local maps 
of the two vehicles into a consistent local map.  
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Fig 1 Potentially dangerous overtaking scenario 



If each vehicle is precisely localized in the same global 
reference, then the local maps from different vehicles can be 
related to each other using the precise localization results and 
local maps merging can be effectively solved. However, a 
vehicle is usually not precisely localized in reality; for a vehicle 
equipped with low-cost GPS, the global localization error can 
be as large as ten meters in the position component. Local maps 
merging at the existence of large vehicle localization error is 
not trivial.  

A typical practice for maps merging is based on estimation 
of inter-vehicle relative pose [7] [8] [9] [10], which is not easy 
to tackle in outdoor traffic environment: first, reliable vehicle 
detection and recognition are still a challenging problem that 
deserves further research works. Second, data association is 
also a challenging problem, especially when vehicle 
localization accuracy is low. Special patterns might be 
designed to facilitate vehicle detection as well as data 
association. However, thousands of vehicles exist in traffic 
environment. The task of designing proper patterns to 
distinguish such huge number of vehicle systems is not trivial; 
besides, occlusions might cause miss detection and false 
detection of these patterns. Even if vehicle detection and data 
association are performed correctly, the detection result usually 
corresponds to partial contour of the detected vehicle 
(sometimes of irregular shape), which makes it difficult to 
extract accurate geometric information of the detected vehicle. 

Another practice for maps merging is to merge the maps 
directly [11], completely ignoring the issue of inter-vehicle 
relative pose estimation. We focus on merging occupancy grid 
maps [12] [13] instead of feature-based maps [14], for the 
general environment representation capability of occupancy 
grid maps. Moreover, as in [11], we want to avoid any 
preliminary procedure of feature extraction and focus on 
directly identifying the alignment of the maps to-be-merged.  

In this paper, a new method for occupancy grid maps 
merging is proposed (this method has been used as a 
component in our previous works and has been briefly 
mentioned in [17]; here the method is presented with more 
details): an objective function based on occupancy likelihood is 
introduced to measure the consistency degree of maps 
alignment; genetic algorithm implemented in a dynamic 
scheme is adopted to optimize the objective function. Then a 
scheme of multi-vehicle cooperative local mapping and moving 
object detection is described, which utilizes the occupancy grid 
maps merging method. The paper is arranged as follows: single 
vehicle local SLAM based on occupancy grids and vehicle 
global localization based on GPS are briefly reviewed in 
Section 2. The proposed occupancy grid maps merging method 
is introduced in Section 3. The scheme of multi-vehicle 
cooperative moving object detection is presented in Section 4. 
Real-data experiments are given in Section 5, followed by a 
conclusion in Section 6. 

II. SINGLE VEHICLE LOCALIZATION AND MAPPING 

A. Single Vehicle Local SLAM based on Occupancy Grid 

Occupancy grid based map representation is used for its 
ability to represent general unstructured outdoor environment. 
The occupancy grid is a two-dimensional lattice of rectangular 

cells and each cell is associated with a real value in the unit 
interval [0, 1]. The cell value represents the degree of the cell 
being occupied or free. The cell value 0.5 represents the cell 
being in unknown state, neither occupied nor free. For cell 
value larger than 0.5, the larger the cell value is, the more likely 
the cell is occupied. For cell value smaller than 0.5, the smaller 
the cell value is, the more likely the cell is free. 

Here, we adopt the incremental maximum likelihood 
SLAM method in [5], considering its computational efficiency 
and its insensitiveness to dynamic entities; this method is 
briefly reviewed. Generally, let x denotes vehicle local pose in 
SLAM, M denotes updated map, u denotes odometer data, z 
denotes range data. Let subscript t denotes the time index. The 
incremental maximum likelihood SLAM is a repeated process 
of executing procedures (1) and (2): 
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The procedure (1) is to search the optimal xt which 
maximizes the marginal likelihood of the t-th pose and 
perception relative to the (t-1)-th pose and map; the grid-based 
maximum likelihood scan matching method in [5] is used for 
the searching. The procedure (2) is to generate a new (t-th) map 
from the old ((t-1)-th) map based on the estimated t-th pose and 
the t-th perceptive data. Detailed implementation is referred to 
[5]. An example of two local maps built by different vehicles is 
shown in the top two sub-figures of Fig.2. 

B. Single Vehicle Global Localization based on GPS 

GPS can provide direct and error-bounded global position 
measurement; the measurement error level depends on the GPS 
quality as well as the environment where the GPS operates. In 
comparatively open area, a RTK-GPS can achieve centimeter-
level positioning accuracy; in contrast, the positioning error of 
a low-cost GPS can be ten meters. Normally, a GPS outputs 
measurements at a low frequency and does not provide direct 
measurement on vehicle orientation, a filtering process is 
usually performed to estimate full state of vehicle pose 
(position and orientation). In the presented works, EKF 
(Extended Kalman Filter) is used for the filtering process, as 
follows: 

1) Global pose evolution 
The evolution of vehicle pose can be modeled according to 

kinematic bicycle model (denoted generally as function F): 
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The X denotes vehicle global pose (different from the vehicle 
local pose x); u denotes vehicle motion variables, which can be 
odometer data. In order to reduce odometer error, the local 
SLAM described in the previous sub-section is used to correct 
odometer data and the corrected odometer data are used as ‘u’ 



in (3a). The FX and Fu in (3b) respectively denote the Jacobian 
matrices of the function F with respect to X and u. 

2) Global pose update 
Let the GPS measurement be denoted as Zgps=(xgps,ygps). 

The measurement model can be described as: 

 gpstgpsgps EXHZ +=   
where Hgps=[I2x2 02x2]; the measurement error Egps is assumed 
to follow the Gaussian distribution N(0,Ȉgps). The global pose 
is updated with the GPS measurement: 
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III. OCCUPANCY GRID MAPS MERGING 

A. An objective function based on occupancy likelihood 

We follow the compounding notation in [4]:  
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Let MA and MB be two occupancy grid maps to-be-merged. 
The process of occupancy grid maps merging can be 
generalized as the following optimization problem: First, 
design an objective function Fc in terms of two arbitrary 
occupancy grid maps M1 and M2, i.e. Fc(M1, M2), which is 
used to measure their consistency degree. Second, search the 
optimal relative pose pBA that maximizes the consistency 

measure between MA and pBA ⊕ MB, i.e. 
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In [11], the objective function Fc consists of a similarity 
term and a lock term: the similarity term which is based on a 
distance-map represents the overall distances between the maps 
to-be-merged; the lock term is a part heuristically added to 
counteract the over-fitting effect. This objective function in [11] 
has two major disadvantages: first, the parameter clock in the 
heuristically added lock term has to be tuned empirically 
according to concrete scenarios.  

Second, this objective function is sensitive to maps inherent 
inconsistency i.e. maps inconsistency that still exists even if the 
maps to-be-merged are aligned correctly. Maps inherent 
inconsistency can be caused by dynamic entities which are 
common in outdoor environment. Maps inherent inconsistency 
can also be caused by the inconsistency of perception poses at 
different vehicles; for example, the same environment might 
appear noticeably different if it is scanned by laser scanners at 
different heights. For the objective function in [11], maps 
inherent inconsistency would cause drastic value change in the 
distance-map based similarity term and false counting of 
agreement and disagreement in the lock term. 

Here, we use an objective function based on occupancy 
likelihood, similar to the idea of the occupancy grid based scan 
matching as introduced in [5]. Let the occupied cells with local 
maximum occupancy state (referred to as local maximum 
occupied cells) in MB be denoted as a set of two-dimensional 
points {oB(1), oB(2), …, oB(nb)}. Let the occupancy state of a point 
p in an occupancy-grid map M be denoted as M(p); then the 
objective function Fc is defined as in (6): 
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  (6) 
The objective function (6) computes the occupancy 

likelihood sum of the local maximum occupied cells of MB in 
MA. The Occ means the set of occupied cells, which are 
selected by a threshold. Here, the Occ threshold is not intended 
to determine whether a grid cell is truly occupied or not in 
reality; it is only used to select grid cells that tend to be 
occupied or be closer to truly occupied cells. So there is fair 
flexibility in setting this threshold. For example, we can set the 
Occ threshold to be 0.6. 

This objective function only takes into account the 
consistent part of the maps to-be-merged; thus it is insensitive 
to maps inherent inconsistency. For local maps of enough size, 
stable and consistent objects (buildings, infrastructures etc) are 
usually the dominating factors, which always contribute to 
successful local maps merging. 

B. Optimization using genetic algorithm 

The initial value of pBA can be computed with GPS based 
vehicle global localization results, yet this initial value might 
be far away from the optimal maps alignment. For intelligent 
vehicle systems with low-accuracy GPS, the initial position 
error of pBA can be twenty meters; initial orientation error of 
pBA can also be large. Besides, the value space of the objective 
function (6) is normally multimodal and of irregular shape on 
the whole. Therefore, local optimization searching techniques 
such as gradient based analytical techniques tend to fail when 
facing such large initial estimate error. 

The strategy of evolutionary genetic algorithm [15] is 
adopted to solve the optimization problem (5). One important 
motivation for using genetic algorithm is that it is independent 
of the objective function value space and it is ready to solve 
multimodal, non-differentiable, or non-continuous problems. 



Genetic algorithm is rather a methodology instead of being 
a list of concrete execution procedures. As an analogy to 
species evolution under the influence of natural selection, the 
fundamental spirit of genetic algorithm is to evaluate the fitness 
values of a group of tentative solution individuals, vary them 
with biologically inspired operations such as crossover and 
mutation, and keep those better individuals. The concrete 
procedures to put this spirit into practice are problem oriented 
and can be specially designed and modified. The concrete 
procedures in our implementation are as follows: 

 

1. Initialization: randomly generate an initial population of 
pBA: 

(1-a) Compute the initial value of pBA(init) with GPS based 
global localization results of the two vehicles. 

(1-b) In a certain error range around pBA(init), randomly 
generate an initial population of pBA i.e. {pBA(k)|k=1,2,…,n}. 
With an intention to examine the robustness of the method, we 
deliberately exaggerate this initial error range to be +30 meters 
in position and +30 degrees in orientation. 

2. Evolution: iteratively perform the following sub-steps as 
follows: 

(2-a) Compute the likelihood value (or fitness value in 
traditional genetic algorithm terms) of each individual in the 
population, according to (6). 

(2-b) Compute mean likelihood value of the population. For 
an individual, if its likelihood value is above the mean 
likelihood value, assign the individual to the elite group; 
otherwise, assign it to the inferior group. 

(2-c) Mutate the individuals in the elite group. For an 
individual, if its mutation has higher likelihood value than its 
own, then replace this individual with its mutation; otherwise, 
just keep this individual originally in the elite group. 

 

FOREND

THENFFIF

FOR

kkkckc

kk

k

 

*  )(*)( 

)(*

}{ 

)BA()BA()BA()BA(

)BA()BA(

BA(elite))BA(

pppp

pmutatep

pp

=>
=

∈
 

 

Among the elite group, the best individual is an exception, 
which gets more times (for example, 100 times) of mutation. If 
no mutation is better, then just keep the best individual 
unchanged; otherwise, keep the best mutation to replace the 
original best individual. 

(2-d) Replace the inferior group with new individuals; more 
specifically, replace each individual in the inferior group with a 
new individual that is generated from old individuals by 
applying the following genetic operations with specified 
probabilities: 

(2-d-i) Copy the best individual (only performed once). 

(2-d-ii) Randomly select an individual from the elite group 
and mutate it to be the new individual.  

(2-d-iii) Randomly select two individuals from the elite 
group, create a new individual by executing crossover on them 
and mutating the crossover result. Two sorts of crossover are 
designed: 

Crossover I: Mix the position parts and orientation parts of 
the two individuals. Let the two elite individuals be denoted as 
pBA(e1)=[xBA(e1), yBA(e1), șBA(e1)]

T and pBA(e2)=[xBA(e2), yBA(e2), 
șBA(e2)]

T; the new individual is generated as follows: 

TT șyxșyx ],,[or   ],,[ BA(e1)BA(e2)BA(e2)BA(e2)BA(e1)BA(e1)

BA(new)
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p

 

Crossover II: Make a random linear combination of the two 
individuals (the Ȝ is a randomly generated real value in [0, 1]: 

BA(e2)BA(e1)BA(new) )1( ppp ȜȜ −+=  

(2-d-iv) Re-initialization: Create the new individual 
according to GPS based vehicle global localization results and 
the error range, as in the initialization process. This re-
initialization practice is to keep the diversity of the population. 

 

When two vehicles meet or re-meet, the initialization step 
is performed once and the sub-steps in evolution are repeatedly 
performed. A dynamic scheme of the genetic algorithm is used: 
the generation of pBA individuals from last period is propagated 
to the current period, according to the change of local map 
coordinates systems. As long as the vehicles are in the 
neighborhood and in cooperation, the evolution step can be 
performed unceasingly. As a result, we only need to assign few 
times of evolution for each period (for example, once), which 
largely reduces computational burden at one period; moreover, 
as the evolution continuous unceasingly, the dynamic scheme 
of genetic algorithm will finally converge to the optimum. In 
our tests, the genetic algorithm usually converges to the 
optimum in only few periods (no more than one second). 

IV. MULTI-VEHICLE COOPERATIVE LOCAL MAPPING AND 

MOVING OBJECT DETECTION 

The purpose of this section is not to propose certain moving 
object detection method, but to demonstrate a scheme of multi-
vehicle cooperative local mapping and moving object detection, 
where the occupancy grid maps merging method can be applied 
to merge the moving object detection results of different 
vehicles. Here, we adopt the consistency based approach and 
the motion object map based approach [4] [5] for single vehicle 
moving object detection.  

Consistency-based detection: given a new scan of range 
measurements and previously constructed occupancy grid maps, 
the idea is to find the inconsistent part between range 
measurements and free space in the local occupancy grid map. 
If a range point is detected on a location of previously free 
space, then it is regarded as a moving point. The range data are 
clustered into segments; for a segment, if the number of 
moving points is larger than a half of the total points, then the 
segment is identified as potential moving object. 



Moving object map based detection: a local moving object 
map is created to store information about previously detected 
moving objects; each cell in the moving object map stores a 
value indicating the number of observations that a moving 
object has been observed at that cell location. If the cell value is 
above certain threshold, the range point associated with this 
cell is regarded as a moving point.  

During multi-vehicle cooperation, a vehicle (referred to as 
ego vehicle) will merge the local occupancy grid map of 
another vehicle into its own occupancy grid map, using the 
method introduced in Section 3. The detected moving objects 
of another vehicle can also be transformed into the ego vehicle 
reference and fused with the detected moving objects of the ego 
vehicle: if a detected moving object of another vehicle and a 
detected moving object of the ego vehicle have at least partial 
overlap, then the two objects are regarded as the same object 
and fused into one object.  

V. EXPERIMENT 

Two CyCab vehicle platforms (developed by IMARA team, 
INRIA) [16] are used for real data experiments which are 
carried out in INRIA campus: each vehicle is equipped with a 
RTK-GPS, odometer sensor, and an IBEO laser scanner. A 
RTK-GPS can achieve centimeter-level positioning accuracy; 
however, the RTK-GPS outputs are intentionally degraded with 
error noise in order to simulate vehicle systems with low-
accuracy GPS. Let the GPS output of one vehicle be degraded 
with an error bias component of (8m, 6m) and a noise 
component of mean 0 and standard deviation 7m; let the GPS 
output of the other vehicle be degraded with an error bias 
component of (-9m, 6m) and a noise component of mean 0 and 
standard deviation 8m. The degraded RTK-GPS outputs are 
used in the tests; the time of the two vehicle systems are related 
to the GPS universal time.  

Each vehicle performs occupancy grid based local SLAM 
using the method in Section 2.1; the local SLAM outputs are 
used to correct odometer data. The degraded GPS 
measurements are fused with corrected odometer data to 
perform global localization, using the method in Section 2.2.  

When the two vehicles are in cooperation mode—service 
detection for initiating cooperation is based on vehicle global 
localization result—cooperative local mapping and moving 
object detection are performed using the method introduced in 
Section 3 and Section 4. Some example results are 
demonstrated in Fig.2-4. 

In Fig.2, the top two sub-figures are the local occupancy 
grid maps built by the two vehicles. The bottom-left sub-figure 
shows the merging effect using the low-accuracy GPS based 
localization results; there is large alignment inconsistency 
between the two local maps. The bottom-right sub-figure 
shows the occupancy grid maps merging effect using the 
method introduced in Section 3; the two local maps are aligned 
correctly. 

Another example of occupancy grid maps merging is 
demonstrated in Fig.3, the top two sub-figures are two local 
occupancy grid maps. The bottom-left sub-figure shows the 
merging effect of map occupied cells; the bottom-right sub-
figure shows the merged occupancy grid map. As we can see, 

there is considerable maps inherent inconsistency between the 
two local maps; however, the proposed occupancy grid maps 
merging method is insensitive to the maps inherent 
inconsistency and merges the two local maps correctly. 

 

 
 

 
 

Cooperative moving object detection is demonstrated in 
Fig.4, each of the left two sub-figures shows the local map and 
moving object detection result of one single vehicle; the 

 

 
Fig 3 (top) local maps of two vehicles; (bottom-left) 

merged maps occupied cells; (bottom-right) merged 

occupancy grid map 

  

 
Fig 2 (top) local maps of two vehicles; (bottom-left) local 

maps merging using low-accuracy GPS localization 

results; (bottom-right) consistent local maps merging 



detected moving objects are marked by blue boxes. The 
merged occupancy grid map and moving object detection result 
are shown in bottom-right sub-figure. Compared with the 
bottom-left sub-figure, the bottom-right sub-figure shows a 
more complete view for the vehicle.  

 
 

VI. CONCLUSION 

This paper proposes a new method for occupancy grid 
maps merging, which uses an objective function based on 
occupancy likelihood and uses genetic algorithm implemented 
in a dynamic scheme to optimize the objective function. The 
occupancy grid maps merging method is used for multi-vehicle 
cooperative local mapping and moving object detection. The 
introduced methods are tested on real-data experiments and 
several performance examples are given to demonstrate the 
effectiveness of the methods. Cooperative moving object 
detection can be valuable for many scenarios such as 
overtaking scenarios that are challenging for single vehicle 
system. 

In future, more advanced moving object detection methods 
can be incorporated into the scheme of multi-vehicle 
cooperative local mapping and moving object detection. In the 
presented application of cooperative moving object detection, 
moving objects are detected based on local map of each single 
vehicle first and then merged. As merged local map can 
provide more complete view than the local map of each single 
vehicle, moving object detection based on merged local map 
might yield better detection result. This can also be a direction 
of future works. 
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Fig 4 (left) local maps and single vehicle moving object 

detection; (top-right) local maps merging; (bottom-right) 

cooperative moving object detection 


