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Autonomous Shopping Cart Platform for

People with Mobility Impairments

Luca Marchetti1 and Daniele Pucci1 and Pascal Morin2

Abstract— Providing a platform able to interact with a spe-
cific user is a challenging problem for assistance technologies.
Among the many platforms accomplishing this task, we address
the problem of designing an autonomous shopping cart. We
assume that the shopping cart is set-up on a unicycle-like
robot endowed with two sensors: an RGB-D camera and a
planar laser range finder. To combine the information from
these two sensors, a data fusion algorithm has been developed
using a particle filter, augmented with a k-clustering step
to extract person estimations. The problem of stabilizing the
robot’s position at a fixed distance from the user has been
solved through classical control design. Results on a real mobile
platform verify the effectiveness of the approach here proposed.

I. INTRODUCTION

Assistive technologies focus their efforts on providing

reliable solutions to help people in the everyday life. One

of the key components of an assistive system is the ability

to actively follow a user, a task well exemplified by a mobile

robot that follows the user. An autonomous shopping cart is

a simple application that provides a good test-bed for a whole

class of problem: a robotic butler that helps on carrying

heavy objects; a robotic lift that has to follow a companion

to accomplish a coordinated task; an automatic walking aid

that should support elderly people and so on.

Platform of such kind should be able to detect and

recognize the user, among other people, and be capable

of following continuously the same user. The environment

should be modelled in such a way the robot can avoid

obstacles, and pursue the user at the same time. We focused

our attention on developing methodologies to accomplish

a safe following of user’s trajectory, while maintaining a

certain degree of freedom on the reference position of the

robot w.r.t. the user.

The involved scientific challenges can be summarised in

two aspects. On one hand, a module must be developed in

order to estimate the user position while identifying other

people in the environment. The selection of the user should

be effective in such a way the continuous following of

the user will not be confused by the presence of other

subjects. This estimation must achieved in a cluttered and

noisy environment. On the other hand, one has to provide

a reliable and feasible way to control the mobile platform,

respecting the peculiarity of human motion and exploiting

the robotic aid.
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Combining these two challenges represents the main con-

tribution of our work. People Position Estimation is a well-

known problem addressed in many scenarios, e.g. video-

surveillance [1] or activity recognition [2]. In the field of

object recognition, the human body represents probably the

most challenging one. The complexity of shape, as well

as the multiplicity of configuration it can achieve require

complex sensors to be captured. Color cameras are amongst

the most effective sensors, even if the information are limited

to the image plane [3]. Recently the evolution of technology

and availability of relatively cheap RGB-D sensors, capable

of perceiving 3D structures, opened the possibility to extend

the range image-based recognition [4]. It is then reasonable

to choose such sensors to capture people positions[5].

These devices, however, usually have a limited field-of-

view. While it is completely reasonable to use multiple

camera to augment the virtual field-of-view [6], other aspects

of the application guided us on choosing a different solution

to cope with this problem. In the case of a robot following a

person, it is important to take care of obstacles that can limit

the motion of the robot. To address this problem, usually

a laser range finder is employed to map the surrounding

[7]. Its high precision on a 2D plane is an effective way to

detect obstacles for the robotic motion. Moreover, the laser

information can also be used to detect and track the legs

of several people [8]. Thanks to the large field of view and

range, and the sensor resolution, the user position can be

estimated with high accuracy.

By exploiting the strengths of both sensors, an improved

position estimation can be obtained. The result is an accurate

person position estimation that can be given as input to a

person following control module. While the human being

is able to move along any direction, a wheeled robotic

platform is usually subjected to kinematic constraints that

limit the range of feasible trajectories [9]. Hence, to achieve

human following by the robot, additional maneuvers may be

necessary when the human trajectory does not satisfy the

aforementioned constraints. This problem has been largely

studied in the last decades and one can rely on existing

techniques to address the control problem [9].

In this paper, we describe how a data fusion algorithm, that

combines information from 2D and 3D sensors, can be ef-

fectively coupled with a trajectory stabilization method, able

to drive the robot to solve the person following challenge.

II. NOTATION

We consider the class of unicycle-like robots sketched in

Figure 1. The following notation is used. Let I = {O;~ı0,~0}



Fig. 1. Unicycle-like robotic platform for autonomous shopping cart.

be a fixed inertial frame with respect to (w.r.t.) which the

robot’s absolute pose is measured. The point M is the middle

point of the wheel’s axis, and B = {M ;~ı,~} is a frame

attached to the robot. The vector ~ı is perpendicular to the

wheel’s axis. The vector of coordinates of M in the basis

of the fixed frame I is denoted as xm = (xm1
, xm2

)T .

Therefore, ~OM = xm1
~ı0 +xm2

~0. The robot’s orientation is

characterized by the angle θm between~ı0 and~ı. The rotation

matrix of an angle θm in the plane is R(θm). With {e1, e2}
we denote the canonical basis in R

2. In view of this notation,

the kinematic model of the robot writes [9]

ẋm = vR(θm)e1
θ̇m = ω.

(1)

with v the robot’s rolling velocity and ω its rotational velocity

considered as kinematic control inputs. The position of the

user is represented by a reference point pR. The vector of

coordinates of pR in the basis of the fixed frame I is denoted

as xr = (xr1 , xr2)
T . Therefore, ~OpR = xr1~ı0 +xr2~0. The

vector of coordinates associated with the linear velocity of

pR w.r.t. I is denoted as ẋr.

III. PEOPLE POSITION ESTIMATION

People detection is one of the main component needed to

have a reliable autonomous shopping cart. In Section I, we

highlighted the advantages of using two different sensors to

achieve the position estimation. Next, we describe the data

fusion architecture pointing out the main characteristics. The

functional blocks are described in Figure 2.

The architecture is two-tiered. The lowest level has a

person estimation method for each sensors. The highest

level combines the two estimations to obtain a more reliable

position estimation.

a) Laser-based position estimation: To detect people

using the laser range finder, we use an implementation of the

Kalman Filter leg tracker, described by Arras et al in [8].

Therefore, we follow the notation presented in that paper to

briefly describe the functioning of this estimator.

The KF-based multi-hypotheses tracker describes a leg

track as piL = (px, py, v
p
x, v

p
y), with px and py position

on the laser plane, and vpx and vpy the components of the

Fig. 2. The data fusion architecture for person position estimation.

velocity. The state prediction of the leg filter uses a constant-

velocity model. The observations of legs are detected using

an Adaboost algorithm [10] that classifies the segments found

in the laser scan according to a set of features. Using these

features, several weak classifiers are used to separate leg

candidates. The combination of all the classifiers generates

the leg observations. The training procedure and how to

obtain a valid set of informative threshold to classify the

segments is explained in [11]. The tracker labels assign each

new measurement to existing leg tracks or creates new tracks.

At any instant, a leg track can be detected (if measurements

are assigned during the last observation phase) or deleted

(if measurements are not assigned). New tracks are labeled

as new track and a false alarm label is used when the

measurements are mistakenly detected as track.

People tracks are extracted from leg tracks using the

following heuristic:

• people have two legs;

• legs are close to each other;

• legs move in similar direction;

• legs have a higher probability of occluding each other,

than being occluded by other people’s legs or objects.

This model is implemented in such a way it takes into

account the possible occlusions, thus avoiding deletion of

track if legs are occluded for a short period of time. Other

considerations about leg track labeling and probability asso-

ciation are described in details in [8] and will be omitted

here.

b) Kinect-based person estimation: The availability of

a ROS-integrated library for user skeleton detection simpli-

fies the problem of detecting human shapes using the RGB-D

data from the Kinect sensor. As for OpenNI library version

1.3, the user needed to perform a peculiar calibration proce-

dure (the so-called ψ pose) to be detected. This limited the

usability of the bundle software for multiple people detection.

As for version 1.5, however, the users can be detected using

a User Generator that does not require any calibration at



all. The output of this module is a set of people position

estimation PK and can be extremely noisy, because the

people’s bodies are recognized applying statistical methods.

This required to develop appropriate filtering procedure to

establish correct person following.

c) Data-fusion for person position estimation: We de-

cided then to use both information, from the laser and the

RGB-D camera, to provide more reliable information to

the control layer. The camera can be really accurate on

estimating the complexity of human body, while the laser

provides a larger field of view and a better precision on

distance estimation.

To combine the advantages of both sensors, we designed

a particle filter with clustering. Each particle represents a

possible position estimation as pi = (px, py, v
p
x, v

p
y). The

posterior density is approximated by:

P(X|z) ≈

|P |∑

i=1

wiδ(X − xi), (2)

where the X is the current state of the probability density

function and wi is a weight associated to the sample xi ∈ X .

The interested reader can find more explanation about this

representation in [12].

The algorithm is described below.

Algorithm 1: People Position Estimation

Data: PL := {position estimation from laser}
PK := {position estimation from Kinect}
P := {particle set}

for pi ∈ P do1

draw particles: p̃it ∼ πt(p
i|P,~vit−1

)2

calculate weight: w̃i
t ∝ LL(p̃

i
t)× LK(p̃it)3

resample: {pit, w
i
t}

|P |
i=1

= resample({p̃it, w̃
i
t}

|P |
i=1

)4

get position estimation clusters: C = KClusterise(P )5

At time t, the particle filter algorithm requires a proposal

distribution (πt) from which it draws samples during the

prediction step. We use the previous set of particles evolved

using a constant velocity model. The update step uses

information from the laser and the RGB-D sensors. A sensor

model calculate the likelihood of each particle to belongs to

the set of laser measurements PL or camera measurements

PK . The likelihood is evaluated as:

LL =
prob(PL|p

i
t)prob(p̃

i
t|p

i
t−1

)

π(p̃it|P̃ , ~v
i
t−1

)
, (3)

LK =
prob(PK |p

i
t)prob(p̃

i
t|p

i
t−1

)

π(p̃it|P̃ , ~v
i
t−1

)
. (4)

The estimated posterior represents the distribution of people

over the sensor’s space. This posterior is usually multimodal,

given the noisy nature of the RGB-D camera and ambiguity

on laser estimation. Therefore, a clustering phase is necessary

to extract all the possible tracks. A track, or a person

estimation, will be the Gaussian approximation (mean and

variance) of a single cluster.

A selection procedure, not described here, selects the best

candidate and assigns it to the control module.

A. K-Clustering

We implemented a k-clustering based technique[13], de-

scribed in Algorithm 2. KClusterise tries to detect up to Nk

clusters. Therefore, it is not a free-cluster algorithm, and

this could potentially lead to a limitation. However, for the

purpose of the presented applications, this is not a critical

problem.

Algorithm 2: KClusterise

Data: P : particle set

K: cluster set, of maximum size NK

O: outliers set

Initialise cluster set: K ← ∅1

Find cluster: K = FindCluster(P )2

Assign particle to cluster:3

O = ClassifyParticles(K,P )
Redistribute outliers: SpreadOutliers(O,K)4

Algorithm 3: FindCluster

// Find equally spaced out centroids

for p ∈ P do1

isFar = true2

for k ∈ K and isFar do3

isFar = (‖p, k‖ > δfar)4

if isFar = true then5

Add particle p as centroid: K ← p6

return K7

First, the algorithm tries to find Nk points (with Nk ≥ 1)

that are equally spaced out (Algorithm 3). Adding particles in

line 6 is done using a priority queue principle, considering

the distance. At the end of procedure, K will contain the

most distant NK points, and they will be used as centroids.

Successively (Algorithm 4), for each point p, it calculates

the Euclidean distance δ between p and clusters k ∈ K. Let

δmin be the minimum distance between p and a cluster k.

Two cases are possible: if δmin is less than the threshold

distance δfar (discussed in Section III-B), p will be put in

cluster k. Otherwise, p will be put into the outliers set O.

When the clusterisation phase is finished, the points in the

outliers set O are evaluated. Each point in O will be put in

the nearest cluster by ignoring the threshold distance.

B. Threshold Distance Function

One of the major problems in clustering techniques is to

find a threshold distance to approximate the correct number

of clusters. There are two possible ways: a fixed value



Algorithm 4: ClassifyParticles

// Classify particles

for p ∈ P do1

added = false2

for k ∈ K and not added do3

δmin = ‖p, k‖4

if δmin < δfar then5

Add particle p to cluster k: k ← p6

added = true7

if added = false then8

Add particle p to outliers set: O ← p9

return O10

Algorithm 5: SpreadOutliers

// Redistribute outlier particles

for p ∈ O do1

δmin =∞2

for k ∈ K do3

δ = ‖p, k‖4

if δ < δmin then5

kcandidate = k6

δmin = δ7

Classify particle p: kcandidate ← p8

or a variable one. The first choice can be computationally

efficient, but it is not flexible w.r.t. environment’s changes.

We adopted the second strategy, by using a dynamic

threshold function. For each position estimation in PL, PK ,

we evaluate the average distance to other estimations as:

δfar =

|PL|∑

i=1,j=2

‖piL, p
j
L‖+

|PK |∑

i=1,j=2

‖piK , p
j
K‖

|PL|+ |PK |
, i 6= j. (5)

The idea behind this function is to keep the position esti-

mation as far as possible to each other. Using the average

of pairwise distance helps us to obtain well-balanced cluster

while keeping them separated.

IV. CONTROL DESIGN

Achieving a reliable person following requires correct

control laws to smoothly let the robot follow a trajectory

constrained by the person’s motion. Our objective is to

describe the desired position of the person w.r.t. the robot,

then minimize the distance between this desired position and

the actual position. From Figure 1 the position of the desired

(or follower) point F is given by xf = xm + R(θm)Pfm,

where Pfm is the vector of coordinates of ~MF = ~OF− ~OM .

Recall that the position of the person, is given by pR. This is

the results of person position estimation described in Section

III.

Let x̃ be the position error in the fixed frame, defined by:

x̃ = xf − xr, (6)

and w.r.t. the mobile frame by:

p̃ = R(θm)T x̃. (7)

Note that here xr = (px, py). Therefore the error dynamics

w.r.t. the mobile frame writes:

˙̃p = −ωSp̃+Mu−R(θm)T ẋr(t), (8)

with M =

[
1 −Pfm2

0 Pfm1

]
, S =

[
0 −1
1 0

]
, u = (v, ω)T

and ẋr = (vpx, v
p
y)

T . Relying on the results in [9], one

deduces the following lemma.

Lemma 1: Assume that Pfm1
6= 0, so that det(M) 6= 0.

Apply the control input

u = −M−1
[
Kp̃−R(θm)T ẋr(t)

]
, (9)

where K =

[
k1 0
0 k2

]
,K > 0. Then,

˙̃p = −ωSp̃−Kp̃, (10)

so that P̃ = 0 is a globally asymptotically stable equilibrium

point for the closed-loop system.

The stability analysis follows by verifying that V (p̃) =
‖p̃‖2 is a strict Lyapunov function for the closed-loop system.

When Pfm1
= 0, the control law (9) is not well defined and

other solutions to the tracking problem must be considered.

This problem will be addressed in a forthcoming paper.

V. RESULTS

The first implementations of the mobile platform have

been conducted on an industrial wheeled robot. The robot

(cfr. Figure 3) has a Kinect mounted on a pan/tilt unit,

which allows a visual servoing procedure to follow a user

moving all around the robot. The OpenNI1 library is used

to detect and estimate the raw positions of all people in

the field-of-view of the camera. A laser is mounted on the

front side of the robot and captures scans of the environment.

This scans are used to estimate the odometry of the robot

(using the Canonical Scan Matcher2). The onboard computer

manages the visual servoing routine, controlling the pan/tilt

unit. The attached laptop, instead, processes data from Kinect

and laser, to model the pose of people and evaluate control

inputs.

The software architecture has been developed using the

ROS3 framework. The actual architecture, illustrated in Fig-

ure 4 is composed of three layers: the robot interface, the

modeling core, and the behaviour component.

The robot interface provides the abstraction layer between

the actual platform and the software components. It is easy to

adapt this interface for several platforms and keep unchanged

the higher levels.

1http://www.openni.org
2http://ros.org/wiki/csm
3http://www.ros.org



RGB-D camera
 • Kinect
 • 57°x43° fov
 • ~0.7-6m range

Pan/Tilt unit

Off-board PC
 • modeling
 • behaviour

Laser range finder
 • Rapid URG
 • 240° fov
 • 0.02-5.6m range

On-board PC 
 • visual-servoing
 • actuator's control

Emergency stop laser
 • SICK

Fig. 3. The robot used to run the experiments.

Fig. 4. The software architecture and modules developed for the au-
tonomous shopping cart robot.

The modeling layer detects the user within the sights of the

sensors and evaluates the control inputs. The user position

estimation is evaluated as described in Section III, while the

control inputs are the results of control laws developed in

Section IV.

The last layer, the behaviour component, handles the

safety measures to ensure the robots avoid close obstacles

(detected by the laser), starts and stops services on request,

enables initialization procedures and so on. In particular,

it selects the first user to be followed, among possible

candidates.

A. Experimental Results

In this section, we focus on the practical experiments

obtained using the robot. We present three different config-

uration, considering the behaviour and estimation performed

by the robot when the follower point xf was placed in

two different positions: A = (1.5, 0) and B = (1, 1). The

positions are depicted in Figure V-A. Supplement material

and high quality versions of the picture presented here can

be found at http://goo.gl/NFnjg.

1) Test A: user in front of the robot: Figure 6 presents

the outcome of the data fusion procedure. The data-fusion

trajectory represents the trajectory of the person passed to

the control module. Despite the high number of hypotheses,

the data fusion algorithm is able to consistently track the

movement of the person. In Figure 7 is presented the

trajectory of the following point w.r.t. the person estimation:

the control inputs are consistent with the estimation. The

Fig. 5. The position of the follower point xf used during tests.

Fig. 6. Results for the data fusion algorithm during test A: xf = (1.5, 0).

Fig. 7. Trajectory of robot given the control input w.r.t. the position
estimation for test A xf = (1.5, 0).



Fig. 8. Results for the data fusion algorithm during test B: xf = (1, 1).

movement of the robot resulted much more smoothed than

the estimation. This effect is due to the different frequency

at which the control commands are sent to the motor (much

lower than the estimation rate).

2) Test B: user at 45◦ in front of the robot: In Figure

8 are presented the same results as for test A, showing the

effectiveness of the data fusion algorithm. In Figure 9 are

presented the trajectory of the following point while at 45◦

w.r.t. the robot. The results are consistent with the test A.

VI. CONCLUSIONS

This article presented a reliable solution to the problem

of person following. A data fusion algorithm has been

presented to reliably detect and estimate the position of

multiple people. Two kinds of sensors have been exploited to

accomplish the position estimation: a laser range finder and a

RGB-D camera. Based on this estimation, a feedback control

law has been designed to track the user. To demonstrate the

effectiveness of the proposed architecture, results have been

presented using a real mobile platform. As future work, we

are investigating how to address the singularity on the control

design. A different control law needs to be developed to

avoid the singularity, in order to have a completely arbitrary

position for the following point xf .
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