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Abstract

The topic of this paper is to present a new methodology for the three-

dimensional numerical simulation of the entrance of high-speed trains in

a tunnel. The movement of the train is made thanks to a technique of

sliding meshes and a conservative treatment of the faces between two do-

mains. All parts of the development are thought with the aim to reduce

the computational time. In particular, non reflecting boundary conditions

for non-structured three-dimensional meshes are developed in order to limit

the calculation domain. Validations of the methodology are presented on

different test cases.
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1. Introduction

During the train entrance in a tunnel, the air initially inside the tunnel

is strongly compressed by a piston effect in the train head neighborhood and

gives rise to a compression wave that propagates at the sound speed in the

tunnel. During its propagation in the tunnel, this wave can be damped in the

case when the railway is on ballasted track, Ozawa [1], or can be steepened

in the case when the railway is on concrete slab track, due to the nonlinear

effects [2]. On reaching the distant tunnel exit, the compression wave is par-

tially reflected back into the tunnel as a rarefaction wave, and a part of it

emerges as a pressure pulse, called micro-wave. In certain circumstances this

micro-wave may be strong enough to generate annoying sonic disturbances.

Indeed, it can generate a booming noise up to 140-150 db or more, Maeda

[3]. The magnitude and the duration of this wave are strongly connected

with the temporal gradient of the initial compression wave. Hence it seems

necessary to simulate with accuracy the generation of the compression wave

both in amplitude and in temporal gradient. It is a challenging task, even

for the current most advanced computers systems.

The flow generated by a train which circulates in a tunnel is three-

dimensional, non stationary, turbulent and compressible. A complete study

has to take into account all these aspects. However, comparing the results
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obtained by Ogawa and Fujii [4] or by Shin and Park [5] that used the Navier-

Stokes equations with the works of Réty and Grégoire [6, 7], Mok and Yoo

[8] as well as Yoon [9], that have chosen an Eulerian approach, one realizes

that the initial wave is perfectly simulated by both approaches. Actually,

the pressure jump caused by the nose train entry does not depend on the

viscosity [10], contrary to the second jump for which the wall friction effects

are involved. However, this second jump, quasi-linear, does not modify the

maximum pressure gradient. That is why Euler equations can be used to

model this phenomenon.

During the displacement of the train, a relative movement with respect to

the tunnel and to the ground can be distinguished. For the management of

this movement, several techniques can be used:

• The chimera method, used by Ogawa [4] or Yoon [9] in a simplified

version, also called overlapping meshes method. The computations

are independently made in several subdomains and an interpolation

has to be done for the transfer of the variables between the domains.

To limit the interpolation errors, it is necessary to refine the common

zones and consequently the computational cost can become very heavy,

especially in the case of explicit time-integration schemes for which

stability criteria induce small time steps.

• The method of meshes deformation, used by Réty [6, 7] or Mok [8] con-

sists in building a new and more regular mesh during the simulation

when the elements of the mesh become too stretched due to the defor-

mations. An interpolation is also necessary to make the link between

the old mesh and the new one.
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• Finally, the technique of sliding meshes consists, as for the chimera

method, to subdivide the computational domain into several subdo-

mains, but without any intersection. This method is well suitable for a

rectilinear movement like the one studied in this paper. Shin and Park

[5] use this technique with an interpolation for the communication be-

tween domains.

During the simulations, the flow around the train is supposed to be station-

ary before it enters the tunnel. To accelerate the convergence towards this

stationary state, non reflecting boundary conditions are needed to allow the

reduction of the computational domain and to eliminate numerical distur-

bances.

This paper presents the development of a three-dimensional simulation

based on the resolution of the Euler equations. The first originality of this

work is to consider the displacement of the train by using a sliding meshes

technique with a conservative treatment of the faces between two domains.

The second one is to extend the non reflecting boundary conditions of Giles

[11] to three-dimensional and unstructured meshes in this sliding meshes

framework for general artificial boundaries. These contributions allow to get

more accurate as well as low expensive numerical simulations, by reducing

the computational domain without spurious non-physical reflection.

The paper is organized as follows: section 2 describes the methodology of slid-

ing meshes. Then, section 3 is devoted to the model, the numerical scheme

used, the non-reflecting boundary conditions implementation and their val-

idation on an overpressure/depression test case. Finally, some validations
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are performed on real cases to evaluate the jump of the pressure and of its

temporal gradient induced by the entrance of a train in a tunnel. Here, ex-

perimental results [3, 6] confirm the reliability of the numerical methodology

used in the present study.

2. Methodology of sliding meshes

Vt

Tunnel walls
External domain
Sliding domainTunnel entrance

train

downstream zone upstream zoneCalculation domain

Cyclic regeneration

Figure 1: Top view of the computational domain.

The methodology [12] adopted here consists in subdividing the domain

into two (non-overlapping) sub-domains. The first one (sliding domain part)

contains the train and can be set in motion, as shown on Figure 1. The

second domain encapsules the first one. It contains walls of the tunnel and

the external domain. The sliding domain contains two additional parts: the

"upstream zone" and the "downstream zone" whose limits are fixed. As the

elements of the mesh arrive at the end of the "upstream zone", due to the

movement of the domain, they are automatically re-injected at the beginning

of the "downstream zone". With this approach, there is no need to regenerate
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the mesh and the length of the sliding domain can be kept constant. Both

sub-domains are independently meshed by means of an automatic Cartesian

mesh generator [13] based on a boundary triangular mesh. The grid generator

relies directly on an octree structure. The boundary cells are truncated and a

merging procedure allows to avoid the convergence problem caused by small

cells (see [13] for all details). Both sub-domains are connected to each other

at common interfaces where a reconstruction of the cells faces is made on

each side to preserve the conservative properties of the numerical scheme.

3. Equations and numerical scheme

3.1. Equations

As mentioned in the introduction, the pressure wave jump generated by

the train entry in the tunnel is modeled by the 3D Euler equations, corre-

sponding to the conservation of mass, quantity of movement and energy :

∂tU + ∇ · H(U) = 0, (1)

where U is the vector of conservative variables and H(U) the flux tensor:

U =























ρ

ρu

ρv

ρw

ρE























,
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H(U) =























ρu ρv ρw

ρu2 + p ρuv ρuw

ρvu ρv2 + p ρvw

ρwu ρwv ρw2 + p

ρuh0 ρvh0 + pv ρwh0























.

Here ρ stands for the volumic mass, u, v, w are the three components of

the speed vector V = (u, v, w)t and E is the energy per unit of mass.

Under the perfect gas assumption, the static pressure p is as usual given

by:

p = (γ − 1)ρ

[

E − 1

2
(u2 + v2 + w2)

]

,

where γ = 1.4 and h0 is the total enthalpy defined by:

h0 = E +
p

ρ
.

Now, let us introduce the translation velocity of the sliding mesh Vt =

(ut, vt, wt)
t, and the relative velocity of the fluid Vr = (ur, vr, wr)

t = V−Vt.

In the sliding domain, equation (1) becomes:

∂tU + ∇ · H(r)(U) = 0. (2)

Where the fluxes tensor H
(r)(U) reads:

H
(r)(U) =























ρur ρvr ρwr

ρuur + p ρuvr ρuwr

ρvur ρvvr + p ρvwr

ρwur ρwvr ρwwr + p

ρurh0 + put ρvrh0 + pvt ρwrh0 + pwt























.
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3.2. Numerical scheme

Integrating equation (1) on a control volume V, we get

∂t

∫ ∫ ∫

V

U dV +

∫ ∫

S

Hn(U) dS = 0,

where the volumic integral of the divergence of H becomes a boundary inte-

gral due to Green-Ostrogradski formula, where Hn(U) = H(U) · n, n being

the normal vector of the control volume.

After discretization of the computational domain, Roe’s scheme [14] is used

to determine the numerical approximation of the flux Hn(U) at the interfaces

of the control volumes. This numerical flux can be defined as the sum of a

centered contribution and of a correction which depends on the eigenvectors

and the eigenvalues of the Jacobian matrix ∂Hn(U)/∂U. These last ones

are well known, see Hirsch [15], in the case of the classical Euler equations.

In order to calculate the numerical flux in the sliding domain, we have to

re-determine them in the case of the Euler equations with a relative velocity.

Let us denote Dn the Jacobian matrix ∂Hn(U)/∂U and Dn

(r) the Jacobian

matrix ∂Hn

(r)(U)/∂U. Clearly:

Hn

(r)(U) = Hn(U) − (Vt)n U ,

so that:

Dn

(r) = Dn − (Vt)n I ,

where I is the identity matrix and (Vt)n = Vt · n.

Consequently, the eigenvalues, λ
(j)
r (1 ≤ j ≤ 5), of Dn

(r) are obtained by

subtracting (Vt)n to the eigenvalues of Dn:

λ(1)
r = λ(2)

r = λ(3)
r = (Vr)n , λ(4)

r = (Vr)n + c and λ(5)
r = (Vr)n − c, (3)
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where c =
√

γp/ρ is the sound speed.

The eigenvectors, useful for the construction of Roe’s scheme, remain the

same.

With this formulation that takes into account the relative velocity, we can

apply second order Roe’s scheme for the spatial discretization. The temporal

integration is realized with a predictor-corrector scheme of Van Leer [16]. To

preserve the TVD property of the scheme during the passage at the second

order, the limiter for non-structured mesh of type Barth and Jespersen [17]

is used.

3.3. Boundary conditions

3.3.1. Flux at the interface of the two meshes

mesh 1

mesh 2

original faces
resulting faces

Vt

n

Figure 2: Construction of common interfaces.

In order to determine the fluxes between the two meshes, a calculation

of the common interface (Figure 2), is made first, using the Sutherland-

Hodgman [18] algorithm for convex polygon clipping. Figure 3 depicted an

example of two polygons clipping. Starting with one edge of the first one,

the separating line passing by its vertices is defined to subdivide the plane
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of the polygon into the inside half-plane containing the first polygon and

the remaining outside half plane. The result polygon becomes the intersec-

tion between the second polygon and the inside half-plane. This process is

repeated for all edges of the first polygon.

first polygonsecond polygon

inside

outside

i
n
s
i
d
e

o
u
t
s
i
d
e

inside

outside

insideoutside

Figure 3: Common interface construction.

The translation velocity of the sliding mesh can a priori be considered

as an additional difficulty. Nevertheless, by definition of the sliding meshes

technique, the normal vectors of the interfaces are always orthogonal to the

translation vector of the mesh, and thus

Vt · n = 0.

So the translation velocity does not interfer in the calculation of the flux at

the interfaces. Hence a classical flux computation can be performed there.

This allows a conservative calculation of the fluxes at the interfaces between
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the two meshes.

Figure 4: Shock tube definition.

The validation of the method is performed on the shock tube defined on
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Figure 4. It is a 4 m length tube separated into two parts by a diaphragm

in its middle, with the closed side initially set at a pressure of 1.25 bar. The

other part is opened to the free atmosphere.

Figure 5: Single block model (left) and configuration with sliding block (right).

Two configurations have been considered, as shown on Figure 5. The first

one consists in a single domain, while the second one is subdivided into two

domains. In this configuration, the second domain can be set in motion.

In order to measure the capability of the method to handle the propa-

gation of strong gradients across the sliding interface, a numerical sensor is

located in the fixed domain just behind the sliding domain, represented by a

cross into Cartesian meshes on Figure 6. On this figure, the sliding domain

is slightly longer than the fixed domain to ensure the cyclic regeneration of
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cells.

(a) single block (b) configuration with sliding block

Figure 6: Sketch of shock tubes Cartesian grids.

The calculation on the second configuration is performed at translation

speed of 0 and 70 m/s. Results of the non-dimensional pressure p∗ =

(p − p∞) /p∞ (with p∞ = 1 atm), recorded at the numerical sensor, are

given on Figure 7.

Qualitatively, it can be shown that the conservative method is in very

good accordance with the reference solution obtained with the single block

calculation, both v equal 0 and v equal 70 m/s. In order to quantify these

results the L∞ norm of non-dimensional pressure errors are summarized in

Table 1.

When the sliding domain does not move, the obtained solution has to

be the same than the solution of the single block. The existing small error

is due to the fact that volumic meshes are slightly different between both

13



‖p∗ − (p∗)ref ‖∞ ‖p∗ − (p∗)ref ‖∞/‖ (p∗)ref ‖∞
v=0 m/s 9.87 × 10−6 1.29 × 10−3

v=70 m/s 7.83 × 10−5 1.03 × 10−2

Table 1: Infinite norms of the non-dimensional pressure errors, sliding mesh validation.

configurations. At the speed of 70 m/s, the error slightly increases. Since

the timestep used for the calculations is the same for both configurations,

the CFL number differs due to the translation velocity of the sliding block.

However, the relative error remains only about 1%.

Now, let us consider a convergence analysis. Without any available ana-

lytical solution, a calculation is performed on the single block with a very fine

mesh size ∆x = 1/32 m which leads to 6 553 600 cells. Then, seven calcula-

tions are made with space mesh size ∆x = 1/2(i+1) m for i = 1, . . . , 7 for the

single block and for the domain with sliding block, with the translation ve-

locity equal to 70 m/s. The evolution of the L∞ norm of the non-dimensional

pressure error is depicted on the Figure 8 versus the space mesh size.

It can be showed that the sliding grid method gives the same convergence

order than the single block. Moreover, the sliding domain curve gets closer

to the single block curve while the space mesh size decreases.
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t (s)

p *

0 0.005 0.01 0.015 0.02

0.0E+00

2.0E-03

4.0E-03

6.0E-03

8.0E-03

1.0E-02

reference
conservative

(a) v=0 m/s

t (s)

p *

0 0.005 0.01 0.015 0.0

0.0E+00

2.0E-03

4.0E-03

6.0E-03

8.0E-03

1.0E-02

reference
conservative

(b) v=70 m/s

Figure 7: Temporal variation of non-dimensional pressure, sliding mesh validation.
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1/∆x

||p
*-(

p *) re
f||

∝
/||

(p
*) re

f||
∝

4 6 8 10 12 14 16
4.0E-03

5.0E-03

6.0E-03

7.0E-03

8.0E-03

9.0E-03

1.0E-02

single block
with sliding block

Figure 8: Convergence analysis of the sliding mesh validation.
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3.3.2. Non reflecting boundary conditions

The non reflecting boundary conditions allow to make the calculations

without the appearance of non physical reflections. Giles [11] introduced

such a type of boundary conditions for the two-dimensional Euler equations

and in the case of boundary faces parallel to one axis of the domain. These

conditions are based on a Fourier decomposition of the solution at the bound-

ary. Then Nicoud extended Giles’ conditions for arbitrary boundary faces in

the case of a subsonic 2D [19] and 3D [20] outflow.

The boundary condition presented here is defined for an arbitrary three-

dimensional face and applied to outflow as well as inflow boundaries. Fur-

thermore, the translation velocity of the sliding domain is taken into account.

Practically, let us suppose that we have to define the fluxes through a face

centered in F (see Figure 9) belonging to a boundary on which some non

reflecting boundary conditions are imposed (see for instance the boundary

of the external domain in dotted line on Figure 1). For that purpose, Euler

equations are written in a characteristic formulation. First, let us define the

three fluxes F
(r)(U), G

(r)(U) and K
(r)(U), respectively, as the first, the sec-

ond and the third column of the flux tensor H
(r)(U). Equation (2) can be

rewritten:

∂tU + A
(r)∂xU + B

(r)∂yU + C
(r)∂zU = 0, (4)

where A
(r), B

(r), C
(r) are the corresponding Jacobian matrices

∂F
(r)(U)

∂U
,

∂G
(r)(U)

∂U
, and

∂K
(r)(U)

∂U
. Let us denote by n the normal vector to this face

and let the matrix D
(r)
n = A

(r)nx + B
(r)ny + C

(r)nz. This matrix can be
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F

P

n

s1

s2

Figure 9: Boundary cell.

diagonalized, with the eigenvalues given by (3):

Λ
(r) = LDn

(r)
L

−1 = diag(λ(1)
r , λ(2)

r , λ(3)
r , λ(4)

r , λ(5)
r ).

Characteristic variables are defined by the relation valid for arbitrary varia-

tions δ, see Hirsch [15]:

δW = LδU, δU = L
−1δW.

Premultiplying (4) by L, we obtain the five equations:










































∂tW1 + Vr.∇W1 = 0

∂tW2 + Vr.∇W2 + 1
2
cs1.(∇W4 + ∇W5) = 0

∂tW3 + Vr.∇W3 + 1
2
cs2.(∇W4 + ∇W5) = 0

∂tW4 + (Vr + cn).∇W4 + c(s1.∇W2 + s2.∇W3) = 0

∂tW5 + (Vr − cn).∇W5 + c(s1.∇W2 + s2.∇W3) = 0,
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where (n, s1, s2) forms an orthonormal basis, see Figure 9. In a full expansion,

it is equivalent to










































∂tW1 + (Vr)n ∂nW1 + (Vr)s1
∂s1

W1 + (Vr)s2
∂s2

W1 = 0

∂tW2 + (Vr)n ∂nW2 + (Vr)s1
∂s1

W2 + (Vr)s2
∂s2

W2 + 1
2
c(∂s1

W4 + ∂s1
W5) = 0

∂tW3 + (Vr)n ∂nW3 + (Vr)s1
∂s1

W3 + (Vr)s2
∂s2

W3 + 1
2
c(∂s2

W4 + ∂s2
W5) = 0

∂tW4 + ((Vr)n + c)∂nW4 + (Vr)s1
∂s1

W4 + (Vr)s2
∂s2

W4 + c(∂s1
W2 + ∂s2

W3) = 0

∂tW5 + ((Vr)n − c)∂nW5 + (Vr)s1
∂s1

W5 + (Vr)s2
∂s2

W5 + c(∂s1
W2 + ∂s2

W3) = 0.

(5)

The outflow condition of Giles, extended by Nicoud [20] for a 3D arbitrary

face is:

∂tW5 = − (Vr)s1
∂s1

W5 − (Vr)s2
∂s2

W5 − (Vr)n (∂s1
W2 + ∂s2

W3) . (6)

Using the fifth equation of (5), condition (6) can be rewritten in its spatial

form:

∂nW5 = ∂s1
W2 + ∂s2

W3. (7)

With the strategy used by Nicoud, we extend the original Giles’ condi-

tions to an arbitrary three dimensional boundary face. Results obtained are

given in Table 2. Those conditions are now named NRBC (Non Reflecting

Boundary Conditions). Those expressions allow us to make the extrapolation

discussed below.

In order to define the fluxes at the boundary, UF is defined from UP

using a suitable extrapolation (see Figure 9), that reads:

UF = UP + (∇U)P · PF

= UP + (∂nU)P PF · n + (∂s1
U)P PF · s1 + (∂s2

U)P PF · s2.
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Flow Conditions

outgoing ∂nW5 = ∂s1
W2 + ∂s2

W3

∂nW1 = 0

incoming ∂nW2 = ∂s1
W2

∂nW3 = ∂s2
W3

∂nW4 = −1

2
(∂s1

W2 + ∂s2
W3)

Table 2: Spatial formulations of NRBC conditions.

(∂s1
U)P and (∂s2

U)P are evaluated by a discretization of the gradient

inside the domain, (∂nU)P is evaluated by the knowledge of the spatial vari-

ation of the characteristic variables from (∂nU)P = L
−1 (∂nW)P .

Two cases have to be considered:

• Outflow: Only the fifth characteristic variable leaves the domain: ∂nWj

(1 ≤ j ≤ 4) are evaluated by a discretization inside the computational

domain and ∂nW5 is derived from ∂s1
W2 + ∂s2

W3 using the Giles con-

ditions (Table 2).

• Inflow: We proceed similarly using this Table 2 to express ∂nWj (1 ≤
j ≤ 4) and ∂nW5 is discretized inside the domain.

To validate these non reflecting boundary conditions, a domain D0 defined

as the unit cube is considered. This domain is discretized by 100 elements in

each direction. As initial condition, a slightly de-centered Gaussian function
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of pressure is imposed:


























































p0 =



















p∞

(

1 + µe−1/(
√

x2+(y−0.15)2+z2−0.3)2
)

for
√

x2 + (y − 0.15)2 + z2 < 0.3,

p∞ else,

u0 = v0 = w0 = 0 m.s−1,

T0 = 293 K,

ρ0 =
p0

R T0
,

(8)

where p∞ = 101325 Pa.

Equation (1) is solved with this initial condition.

This initialization condition implies an overpressure followed by a depres-

sion. Hence arrived at the limit of the domain, the flow is at first outgoing

and then ingoing. This allows to validate both conditions given in Table

2. In order to evaluate the results obtained on this domain D0, a reference

solution was computed using a larger domain which can be considered as

"infinite", since the waves do not reach its boudaries during the simulation

time involved.

Graphs from Figure 10 show the propagation of the wave generated by the

initial data (8). The reference value is represented by the black continuous

lines, while the value given by the calculation onto the truncated domain is

represented by dotted lines blue and circles. The isolines of non-dimensional

pressure p∗ = (p − p∞) /p∞ on the plane x = 0 (top) as well as the difference

of pressure on the lines x = z = 0 (bottom right) and x = z = 0, 25 m

(bottom left) are shown at time t = 0, 0015 s. The Giles’ formulation is
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compared with a simple extrapolation method:














































ρF = ρP +
(−→∇ρ

)

P
· −→PF

uF = uP +
(−→∇u

)

P
· −→PF

vF = vP +
(−→∇v

)

P
· −→PF

wF = wP +
(−→∇w

)

P
· −→PF

pF = pP +
(−→∇p

)

P
· −→PF,

which consists in defining the variables values at the face center F from the

variables values at the cell center P and their gradients, all of them being

evaluated by their values inside the computational domain. Results of this

method are represented by green lines and triangles.

The two lines allow to show the efficiency of the boundary conditions of

NRBC in the case of an almost one-dimensional exit, where the wave is

almost parallel to the boundary: right x = z = 0 m ; and a multidimensional

exit, where the wave arrives with a non zero angle of attack: x = z = 0, 25 m.

It can be seen that the extrapolation method implies an important drift.

Table 3 shows the quantitative results. The error generated by the NRBC

method is about four times lower than the error of the extrapolation method.

‖p∗ − (p∗)ref ‖∞/‖ (p∗)ref ‖∞
NRBC method Extrapolation method

x = z = 0 1.92 × 10−2 7.86 × 10−2

x = z = 0.25 5.71 × 10−2 2.31 × 10−1

Table 3: Relative error norms of non-dimensional pressure, NRBC validation.

Finally, as noticed on the various graphs and on the error on Table 3,
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values obtained on the truncated domain with the NRBC method are in

good accordance with the reference values and no significant reflection can

be seen.

domain D0 domain D0 infinite domain

extrapolation method NRBC method

CPU time (s) 1152 1195 9433

Table 4: Calculations CPU time (in second).

Table 4 indicates requisite CPU time for those simulations. The calcula-

tion on the domain D0, with Giles’ method, is slightly more time consuming

than the extrapolation method on this same domain. Nevertheless, the cal-

culation on the "infinite" domain, which is two times larger than D0 in each

direction, requires about 8 times more computational efforts. With the degree

of convenience between results obtained on domain D0 with Giles’ method

and on the "infinite" domain, it is possible to consider domain D0 rather

than the "infinite" domain and, then, to strongly reduce the computational

time.

In order to realize a convergence analysis, the reference solution obtained

on the "infinite" domain with a mesh size of ∆x = 1/100 m is compared

with numerical solutions resulting of calculations performed on the domain

D0 with mesh size ∆x = 1/(20 ∗ i) m for i = 1, . . . , 4.

Results are displayed on Figure 11. This graph gives the relative L∞ norm

error of the non-dimensional pressure time history for the sensor coordinates

(0.25;0.5;0.25), located at the boundary. It can be shown the error decreases
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with the mesh size.
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(c) x = z = 0

Figure 10: Comparison of NRBC method and extrapolation method with reference data.

(a) Isocontours pressure: ( ) numerical results on "infinite" domain, ( ) numerical

results of NRBC method on domain D0, ( ) numerical results of extrapolation method

on domain D0.
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Figure 11: Evolution of the non-dimensional pressure error of a sensor located at x=z=0.25

and y=0.5, NRBC validation.
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3.3.3. Solid walls

In order to consider the correction of the flux of the numerical scheme for

faces situated on the boundary of the domain, a ghost cell is built in which

the flow velocity Vghost is determined thanks to the flow speed in boundary

cell Vb:

(Vghost)t = (Vb)t and (Vghost)n = − (Vb)n

The other variables are identical. In that way the impermeability condition

is satisfied while introducing the flux correction of Roe.

4. High speed train validations

4.1. Reduced scale tests

To study the influence of the nose shape of the train on the initial com-

pression wave, Maeda [3] made measurements on a reduced scale model. The

body of the reduced train is cylindrical and three shapes of the nose are con-

sidered: conical, parabolic and elliptic.

As stated on Figure 12, these three forms imply a different variation of

section. The tunnel is a cylindrical tube with one sensor of pressure located

at 1 m from the entrance. The blocking ratio σ = Str/Stun, defined as the

maximum cross-sectional area of the train to the one of the tunnel, is 0.116

and the train is launched at 232 km/h, which corresponds for an ambient

temperature of 20◦ C at a Mach number of 0.188. Due to the symmetry of

the configuration, only the quarter of the domain has to be considered. So

the number of cells is about 300 000. Figure 13 represents the triangular

surfacic meshes of the three configurations, and Figure 14 represents the

corresponding volumic cartesian meshes. The numerical results of the jump
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a

2b 2R

conical paraboloid elliptic

1 m

numerical sensor

a = 0.147 m train length = 0.947 m

a/b = 5 tunnel length = 3 m

R = 0.086 m σ = 0.116

M = 0.188

Figure 12: Geometrical ratios and form of the nose.

of pressure and of its temporal gradient recorded at the sensor are compared

with the experimental results on the graphs of Figure 15.

Graphs as well as maxima presented in Table 5 show a very good con-

cordance between the experimental and numerical results. The errors on the

jumps of pressure do not exceed 6%, while the errors on the maxima of gra-

dients of pressure are lower than 4%. We notice that the committed errors

are more important for the conical profile than for two other cases. The ge-

ometrical discontinuity of the conical nose, between nose and body, implies

this most important error.

Although the shape of the nose has little influence on the jump of pressure, it
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(a) circular cone (b) paraboloid (c) ellipsoid

Figure 13: Surfacic meshes.

(a) circular cone (b) paraboloid (c) ellipsoid

Figure 14: Volumic cartesian meshes.

∆P max ∂P/∂t max

shape value (pa) diff./ref. (%) value (kpa/s) diff./ref. (%)

cone
exp. 660 255

num. 702 +6 265 +4

paraboloid
exp. 684 232

num. 712 +4 229 -1

ellipsoid
exp. 689 262

num. 717 +4 259 -1

Table 5: Pressure and its gradient maxima and relative error.
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is noticed that the paraboloid profile clearly minimizes the maximum of the

pressure gradient (see Figure 16). This is due to the fact that the variation of

the cross-sectional area of the parabolic nose is constant (see the variations

of the areas of the sections of shape of the three configurations represented

on Figure 17(b)).

The compression wave is delayed, it appears by chronological order: el-

lipse, parabola, cone, as shown on Figure 16. For a given value of x on the

nose, the section of shape of maximal area is the one of the elliptic nose,

as shown on Figure 17. At this point, the pressure is thus more important

for the ellipse. This value of pressure is reached later for the parabola, and

even later for the cone. This explain the temporal shift of the ascent for the

pressure gradient for the three configurations.
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Figure 15: Comparison of jumps (left) and gradients (right) of pressure for the 3 shapes

of the nose; ◦ ◦ ◦: experimental results, : numerical results.
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Figure 16: Comparison between the numerical results of the three nose shapes.
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Figure 17: Section variation.
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4.2. Full scale test

The full scale test considered here is based on the experiment realized in

situ by the SNCF (French National Railway Company) [6]. This experiment

consists in the entrance of the French Hight Speed Train (TGV) into the

tunnel of Villejuste situated on the high-speed southwest line, in France.

The train measures 74 m and runs at a speed of 220 km.h−1 before entering

in a tunnel of section of area of 46 m2, that gives a blocking ratio of σ =

Str/Stun = 0.21.

(a) Surface mesh (b) Volume mesh

Figure 18: Volumic and surfacic meshes of the TGV.

The interest of this experiment is that our results can be compared with

the experimental data but also with the numerical results obtained by the

SNCF using the software Tg-flo (three-dimensional Eulerian code).

4.2.1. Tg-flo numerical setup

The mesh is composed of tetrahedra and is unstructured. An arbitrary

Lagrange-Euler formulation, which allows to take into account the relative

movement between the tunnel and the train, is used to solve the Euler equa-

tions using a second order Runge-Kutta scheme for the temporal discretiza-

tion, and a finite element method for the spatial one.
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A complete simulation is subdivided in two phases. The first one consists in

the steady state calculation, with a motionless train. The second one corre-

sponds to the train entry in the tunnel. At the beginning of the displacement,

the train is located 15 m downstream of the tunnel.

In order to make this second phase, a mesh deformation is used and a remesh-

ing is done when elements become too small or too stretched.

For the transient simulation (second phase), the computational domain is

subdivided in two thanks of a symmetry condition, this leads to a cells num-

ber of about 200 000. The minimum space mesh size is about 0.1 m.

4.2.2. Metas numerical setup

Concerning Metas, no steady state is performed before the train displace-

ment. Therefore, the train-tunnel distance have to be long enough to obtain

this steady state before the train entry. In addition, if the train-tunnel dis-

tance is too short, the sudden train displacement implies a contamination of

the pressure signal. The initial train-tunnel distance is 160 m, against 15 m

for Tg-flo. Thus, the domain is twice as long as the Tg-flo domain. The

overall physical domain is modeled and no symmetry is used.

For the first calculation, meshes contain about 500 000 elements, and the

minimum space mesh size is 0.2 m. This mesh is globally more coarse than

Tg-flo mesh.

The calculation Metas2 was performed to obtain a better result. To real-

ize that, Metas1 mesh is refined at two important locations: train nose and

tunnel entry. With this refinement, the cells number reaches 1 360 000 and

the minimum space mesh size is as for Tg-flo equal to 0.1 m.
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All the numerical data are summarized in the Table 6.

Tg-flo (SNCF) Metas1 Metas2

domain half-domain full domain full domain

dist. train-tunnel at t=0 ≃15 m 160 m 160 m

nbr of cells 200 000 500 000 1 360 000

(∆x)min 0.1 m 0.2 m 0.1 m

Table 6: Data relative to the numerical experiments, full scale test.

4.2.3. Results

The graphs of Figure 19 compare the different results for the jump of

pressure and the temporal gradient of pressure, obtained by the experiment

result, the numerical solution of the SNCF code and finally Metas simula-

tions. The values of the maxima are presented in Table 7.

∆P max ∂P/∂t max

value (pa) diff./ref. (%) value (pa/s) diff./ref. (%)

experimental 1296 8400

Tgflo 1291 -1 9330 +11

Metas1 1332 +3 9600 +14

Metas2 1251 -3 8795 +4

Table 7: Pressure and its gradient maxima and relative error.

The determination of the pressure amplitude is not easy from the ex-

perimental data. Indeed, as previously mentioned, the pressure signal is
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Figure 19: History of the pressure and temporal pressure gradients.
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decomposed into two successive jumps: the first is consecutive to the train

entry, and the second depends on the wall friction effects. Only the first

is of interest. SNCF researchers defined the pressure jump value from the

time corresponds to the moment where the gradient becomes constant, i.e.

slightly after 0.2 s. Actually, this value overestimates the real value and this

overestimation can be several decades of Pascals. The computation of the

SNCF code slightly underestimates this value of the maximum of pressure,

while our code overestimates it. On the other hand the maximum of gradi-

ent is strongly overestimated by Tg-flo (11%) and Metas1 (14%). This more

important error, for our calculation, can be explained by the difference of the

space mesh size.

Metas2 implies an underestimation of the pressure amplitude, but the error

on the gradient of pressure is divided by more than 3 to falls to 4% and

becomes clearly better than the result obtained by Tg-flo code. As the graph

of the gradient shows, the curve given by the second simulation follows the

shape of the curve of the experimental solution up to the end of the simula-

tion.

Figure 20 displays pressure isocontours on the train and on the tunnel

wall. When the train is at the tunnel entry, the air inside the tunnel is at

rest again. After a distance of 15 m, the generation and the propagation of

the compression wave are clearly highlighted. The little rectangular piece in

front of the tunnel is the "upstream zone", previously mentioned, needful for

the cyclic regeneration of cells.
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(b) train at the entry

(c) train 15 m inside the tunnel

Figure 20: Generation and propagation of the compression wave (in Pa).
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5. Conclusion

An Eulerian code on Cartesian meshes was developed to simulate the en-

trance of a train into a tunnel. The technique of sliding mesh is adopted with

a conservative treatment at the faces between the sliding and fixed meshes.

To accelerate the convergence towards a stationary state of the flow before

the train goes into the tunnel, non-reflective boundary conditions have been

implemented. This allowed to reduce the domain of calculation and also to

prevent from the reflection of numerical disturbances.

The method is validated on model tests as well as on measurements in situ.

The results show that this approach is well adapted for the simulation of the

entrance of a train into a tunnel. With this methodology validated, para-

metrical studies are in progress to study the influence of a hood adjunction

on the temporal gradient of the initial wave.
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