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Abstract. Defining similarities or distances between graphs is one of
the bases of the structural pattern recognition field. An important trend
within this field consists in going beyond the simple formulation of simi-
larity measures by studying properties of graph’s spaces induced by such
distance or similarity measures . Such a problematic is closely related to
the graph embedding problem. In this article, we investigate two types
of similarity measures. The first one is based on the notion of graph
edit distance which aims to catch a global dissimilarity between graphs.
The second family is based on comparisons of bags of patterns extracted
from graphs to be compared. Both approaches are detailed and their
performances are evaluated on different chemoinformatics problems.

1 Introduction

Graphs allow to encode not only the elementary features of a set of objects but
also the relationships between these objects. Graphs constitute thus an efficient
tool to model complex objects or phenomenons. Classification, regression or
clustering operations applied on graphs constitute an important sub field of
the structural pattern recognition framework, all these operations being based
either implicitly or explicitly on a distance or a similarity measure.

Definition of graph distances or graph similarity measures constitute an ac-
tive field within the structural pattern recognition framework. Main distance
definitions are based on one hand on the size of the minimum common super
graph or the maximum common sub graph and on the other hand on the minimal
number of vertex/edge insertion/removal/relabeling required to transform one
graph into an other. This last measure called the edit distance is related to the
notion of maximum common sub graph [2] and provides a nicely interpretable
measure of distance between two graphs. Moreover, assuming basic properties
on the elementary edit costs, one can show that this distance satisfies the 4 prop-
erties of a distance (positivity, separation, symmetry and triangular inequality).
However, the number of calculus required by edit distance computation grows
exponentially with the number of nodes of both input graphs and several heuris-
tics have been proposed to obtain efficient but sub optimal edit distances [8,14].



Restricting structural pattern recognition to pairwise comparisons of graphs
leads to restrict the field to efficient but often basic classification or clustering al-
gorithms such as the k-nearest neighbor or the k-median algorithms. Computing
efficiently more global feature on a set of graphs requires additional properties
of the topology of graph’s space implicitly defined by a distance measure be-
tween graphs. Such a problem may be solved by defining a natural embedding
of graphs. Such an embedding leads to associate explicitly or implicitly a vector
to each graph and to define a metric between these vectors which corresponds
to the metric defined by the graph distance. However, the fact that a distance
satisfies the 4 usual distance’s axioms does not insure that an embedding within
an Hilbert space may be associated to graphs [3]. More precisely, given a set of
n graphs, and a matrix D encoding all pairwise distances between the graphs of
the set, the type of space induced by D is provided by the spectrum of the matrix
Sc = − 1

2 (I − 1
nee

t)D(I − 1
nee

t) where e is the vector of ones (Section 2). The
metric space encoding similarities between graphs is a Krein space if this spec-
trum contains negative eigen values and an Hilbert space otherwise. Krein spaces
have unusual properties such as possibly negative distances between graphs. In
order to avoid to use such spaces, several authors [8] regularize the matrix Sc in
order to remove its negative eigen values hereby slightly modifying the original
metric defined by D. An alternative approach consists in associating a vector to
each graph using for example spectral analysis [12]. The approach is in this case
slightly different since the metric defined between vectors does not correspond to
a metric initially defined in the graph space. A last approach consists in defining
a symmetric similarity measure between graphs. The matrix encoding all pair-
wise similarities between the graphs of a set is called the Gram matrix of this
set. If for some sets of graphs the Gram matrix is non definite positive the em-
bedding space associated to this similarity measure is a Krein space. Otherwise,
the embedding space corresponds to an Hilbert space and the similarity measure
is called a kernel. In this last case the similarity function corresponds to a scalar
product between the vectors associated to both input graphs. One may note
the symmetry between embeddings based on distances and similarity measures.
Both problems are indeed related, since within an Hibert space or a Krein space
a distance measure may be defined from scalar products and conversely.

This paper provides a comparison of both distance and similarity approaches.
We first present two important methods within the distance based embedding
framework in Section 2. Then we provide an overview of graph kernels meth-
ods in Section 3. Both approaches are finally compared in Section 4 on several
chemoinformatics data sets.

2 Graph embedding

Embedding graph in vector space aims to define points in a vector space such
that their mutual distances is as close as possible to the initial graph dissimi-
larity matrix wrt a cost function (eg. graph edit distance). More precisely, let
G={g1, ..., gn} be a set of graphs and d: G × G → R a graph distance function



between pairs of its elements and let D = Dij = d(gi, gj) ∈ R
n×n be the dissim-

ilarity matrix. The aim in the graph embedding is to provide n p-dimensional
vectors xi such that the distance between xi and xj is close as possible to the
similarity Dij between gi and gj . Thus, embedding graph into a vector space
make the graph available to numerous machine learning techniques which re-
quire vectorial representation.

Numerous approaches [4,8,12,18] have been proposed in the literature. In this
paper we recall the approach proposed in [8] and which is based on the constant
shift embedding [15]. Originally, the constant shift embedding was introduced in
order to embed pairwise data into Euclidean vector spaces. In [8], the authors
adapt this method to the domain of graphs. The key issue is to convert general
dissimilarity data into metric data.

Constant shift embedding. We briefly describe the method of Roth et al. [15]
to embed D (restricted by the constraint that self-dissimilarities are equal to
zero) into a Euclidian space, without influencing the distribution of the initial
data. The aim of this approach is to determine a matrix D̃ close to D such that
it exists a set of vectors (xi)i∈{1,...,n} with D̃ij = ‖xi − xj‖

2. The solution of
this problem is of course not unique since any translation of vectors xi would
provide a same distance matrix. In order to overcome this problem we perform

a centralization of matrix D by considering Sc = −
1

2
Dc, where Dc = QDQ is

the definition of the centralization and Q = In − 1
nene

⊺

n is the projection matrix
on the orthogonal complement of en = (1, . . . , 1). Such a matrix Sc satifies:

Dc
ij = Sc

ii + Sc
jj − 2Sc

ij (1)

If Sc is semidefinite positive, its singular value decomposition is equal to Sc =
V ΛV t where columns of V encode the eigen vectors of Sc and Λ is a diagonal

matrix encoding its positive eigen values. Setting X = V (Λ)
1

2 , we obtain Sc =
XXt. Hence, each element Sc

ij of Sc is equal to a scalar product < xi, xj >

between the lines i and j of X. Equation 1 may thus be intepreted as a classical
result on Euclidean norms stating that the squared distance between two vectors
is equal to the sum of the squared norms of these vectors minus twice their scalar
product. The scaled eigen vectors (xi)i∈{1,...,n} provide thus a natural embedding
of matrix D when matrix Sc is definite positive.

Following the constant shift embedding Sc can be transformed into a positive
semidefinite matrix (see Lemma 2 in [15]):

S̃ = Sc − λn(S
c)In

where λn(S
c) is the minimal eigenvalue of the matrix Sc. The diagonal shift of the

matrix Sc transforms the dissimilarity matrix D in a matrix representing squared
Euclidean distances. The resulting embedding of D is defined by (minimal shift
theorem):

D̃ij = S̃ii + S̃jj - 2S̃ij ⇐⇒ D̃ = D − 2λn(S
c)(ene

⊺

n − In)



Setting dimension In PCA it is known that small eigenvalues contain the
noise. Therefore, the dimensionality p can reduced by choosing t ≤ p. Conse-
quently, a n × t map matrix Xt=Vt(Λt)

1/2 will be computed where Vt is the
column-matrix of the selected eigenvectors and Λt the diagonal matrix of the
corresponding eigenvectors.

Graph similarity measure Let us recall how the similarity (or dissimilarity) in
the domain of graphs can be computed. Similarity between two graphs is almost
always referred as a graph matching problem. Graph matching is the process of
finding a correspondence between nodes and edges of two graphs that satisfies
some constraints ensuring that similar substructures in one graph are mapped
to similar substructures in the other. Many approaches have been proposed to
solve the graph matching problem. Among these, the graph edit distance has
been widely used as the most appropriate similarity measure for representing the
distance between graphs. In this paper we use two approaches [7,14] based both
on an approximation of the graph edit distance as an instance of an assignment
problem where the edit distance between two graphs is based on a bipartite graph
matching. In both approaches, the authors formulate the assignment problem by
cost matrix where the optimal match is solved by the Hungarian algorithm.

In [14], each entry of the cost matrix encodes the cost of a node substitu-
tion, deletion or insertion. Substitution costs are defined using the Hungarian
algorithms on the set of incident edges of both vertices. The substitution cost of
two incident edges takes into account the label of the edge and the label of its
incident vertices.

In [7] the cost matrix is encoded differently on a distance (HEOM distance) of
node signatures. A signature describes the node (degree, attributes), the incident
edges attributes but also the degrees of the adjacent nodes. The main differences
with the previous approach is that no prior computation (learning phase) of the
edit cost function are needed and more global information are taken into account
on the graph in the signature.

3 Graph Kernels Methods

Graph embedding methods aim to associate coordinates to graphs. Such an
embedding allows us to define similarity or distance measures from graph’s co-
ordinates. An alternative strategy consists in computing directly a similarity
measure between graphs. Graph kernels can be understood as symmetric graph
similarity measures. Using a semi definite positive kernel, the value K(G,G′),
where G and G′ encode two input graphs corresponds to a scalar product be-
tween two vectors φ(G) and φ(G′) in some Hilbert space, called feature space.
Distance between two graphs G and G′ can be retrieved from kernel function
by the relation (Equation 1) d2(G,G′) = K(G,G) + K(G′, G′) − 2K(G,G′).
Thanks to this possibly implicit embedding of graphs into an Hilbert space,
graph kernels can be combined with machine learning methods based on scalar
products between input data, such as the well-known SVM. This use of kernels



into statistical machine learning method, called kernel trick, provides a natural
connection between structural pattern recognition and graph theory on one hand
and statistical pattern recognition on the other hand.

A large family of graph kernels are based on the extraction of a bag of
patterns from each graph. Methods corresponding to this family consists in three
key steps. First, bags of pattern are built from graphs by enumerating a given
set of patterns P within graphs. This enumeration, possibly implicit, defines an
embedding of graphs into a feature space where each dimension is associated to
a pattern. Second, global similarity between graphs is defined by the similarity
of their bags of patterns. Finally, this similarity between bags is based on a sub
kernel between pattern kp : P×P → R. This sub kernel kp encodes the similarity
of two patterns extracted from graphs.

A common approach defines the set of patterns as all possible walks included
within a graph. A first method, defined by Gärtner and al., proposes a formu-
lation of a kernel based on graph product and powers of adjacency matrix [5]
which computes the number of common walks of the two graphs to be compared.
A second method proposed by Kashima and al. [9] defines a random walk kernel
by considering the probability p(w|G) of encountering a random walk w within
a graph G. Using such probabilities, the kernel is defined as:

krw(G,G′) =
∑

w∈W(G)

∑

w′∈W(G′)

p(w|G)p(w′|G′)k(w,w′) (2)

with W(G) denoting the set of walks extracted from G. Vishwanathan [16] has
proposed an unified and efficient computation of both methods by means of
Sylvester equations. However, comparison of graphs based on random walks
suffers from tottering. Tottering corresponds to possible infinite oscillations be-
tween two nodes which leads to artificially long walks not representative of the
structure of the graphs.

The major drawback of methods based on linear patterns is that linear struc-
tures can not represent most of the structural information encoded within com-
plex and non linear structures such as molecular graphs. In order to tackle this
limitation, Ramon and Gärtner [11] and Mahé and Vert [10] have proposed a
kernel based on the comparison of non linear patterns. This set of non linear pat-
terns is defined as the set of tree patterns, denoted TP , i.e. trees where a same
node can appears more than once. This kernel maps each tree pattern having a
different labeling to a specific dimension in an infinite feature space represent-
ing all possible tree patterns. This embedding may be encoded by projection
φTP

(G) and graph kernel is defined as an inner product between these projec-
tions: KTP

(G,G′) = 〈φTP
(G), φTP

(G′)〉. Computation of this kernel is based on
a recursive comparison of neighborhood matching sets up to a given depth [10].

Mahé and Vert have proposed in [10] an extension of tree pattern kernel which
weights each tree pattern according to its structural complexity. This measure
of structural complexity may be encoded by the branching cardinality or the
ratio between number of nodes and depth of tree patterns. However, since the
number of occurrences of each tree pattern is not explicitly computed during



kernel computation, only an a priori weighting of tree patterns can be applied to
each tree pattern. In addition, as observed on walks, tree patterns suffers from
tottering. However, Mahé and Vert [10] have proposed an extension to prevent
tottering which consists in transforming input graphs.

Another method based on non linear patterns computes an explicit distri-
bution of each pattern within a graph. This method, called treelet kernel [6],
explicitly enumerates treelets included within a graph, the set of treelets being
defined as the 14 trees having a size lower than or equals to 6 nodes. Thanks
to the limited number of different patterns encoding treelets, an efficient algo-
rithm allows to enumerate the number of occurrences of each pattern within a
graph. Given this first enumeration, a first kernel on unlabeled graphs can be
defined. When applying this method to set of labeled graphs, labeling informa-
tion included within treelets is encoded by a canonical key. This canonical key
is defined such as if treelets have a same structure, their canonical key is sim-
ilar if and only if the two treelets are isomorphic. Each treelet being uniquely
identified by the index of its pattern and its canonical key, any graph G can
be associated to a vector f(G) which explicitly encodes the number of occur-
rences of each treelet t by ft(G). Using this vector representation, treelet kernel
between graphs is defined as a sum of sub kernels between common treelets of
both graphs:

KT (G,G′) =
∑

t∈T (G)∩T (G′)

k(ft(G), ft(G
′)) (3)

where k(., .) defines any positive definite kernel between real numbers such as
linear, Gaussian or polynomial kernel. In the same way as tree pattern kernel,
each pattern can be weighted in order to improve kernel accuracy as follows:

KT (G,G′) =
∑

t∈T (G)∩T (G′)

w(t)k(ft(G), ft(G
′)) (4)

However, conversely to tree pattern kernel, the explicit enumeration of each sub
structure provided by treelet kernel method allows to weight each pattern ac-
cording to a property to predict and not only according to an a priori function.
This weighting may be computed using variable selection algorithms [6] or mul-
tiple kernel learning [1].

4 Experiments

Our first experiment is based on two regression problems3 which consist in pre-
dicting molecule boiling points. The first dataset is composed of 150 alkanes, an
alkane corresponding to an acyclic molecule solely composed of carbons and hy-
drogens. A common encoding is to implicitly encode hydrogen atoms using the
valency of carbon atoms . Such an encoding scheme allows to represent alkanes

3 These databases are available on the IAPR TC15 Web page:
http://www.greyc.ensicaen.fr/iapr-tc15/links.html#chemistry



Table 1. Boiling point prediction.

Method
RMSE (◦C) Computation

Alkane Acyclic Time (s)
(1) Gaussian edit distance 10.01 10.27 1.35
(2) Random Walks Kernel 16.28 18.72 19.10
(3) Tree Pattern Kernel 3.48 11.02 4.98
(4) Treelet Kernel 1.92 8.10 0.07

(5) Graph Embedding 6.15 12.3 7.21

as unlabeled graphs. The second dataset is composed of 183 acyclic molecules,
each molecule being composed of heteroatoms and thus encoded as acyclic la-
beled graphs. We evaluate the boiling point of each molecule using several test
sets composed of 10% of the database, the remaining 90% being used as train-
ing set. First, we can note that linear patterns (Table 1, Line 2) do not encode
enough structural information to correctly predict boiling points of molecules.
Conversely, methods based on bags of non linear patterns obtain better results
(Table 1, Lines 3 and 4). Differences between Treelet Kernel and Tree Pattern
Kernel may be explained by the use of a Gaussian kernel for Treelet kernel, which
is not possible with tree pattern computation scheme. In addition, limitation on
the size of patterns induced by explicit enumeration of treelets does not have a
lot of influence on these problems since molecules have a low number of atoms.
Second, Table 1 show results obtain by graph embedding method (Line 5) and
a Gaussian kernel applied on the approximate edit distance as defined by [14]
(Line 1). Graph embedding results have been computed using different subsets
of eigenvalues obtained by applying a threshold on variance encoded within the
matrix.We can note that the improvement on edit distance approximation leads
to better results than approximation defined in [14] when applied to unlabeled
graphs. Finally, the last column of Table 1 shows the time required to compute
the Gram matrix on acyclic dataset. Since most of the methods are computed
within the same order of magnitude (seconds), Treelet Kernel can be computed
in 0.07 seconds thanks to the efficient enumeration of a limited set of patterns.

The second experiment consists of two classification problems. The first one
is taken from the Predictive Toxicity Challenge [17] which aims to predict car-
cinogenicity of 416 chemical compounds applied to female (F) and male (M)
rats (R) and mice (M). This experiment consists of ten different datasets for
each class of animal, each of them being composed of one train set of about 310
molecules and one test set of about 35 molecules. The second dataset is pro-
vided by [13]. This database defined from the AIDS Antiviral Screen Database
of Active Compounds is composed of 2000 chemical compounds. These chemical
compounds have been screened as active or inactive against HIV and they are
split into three different sets. A train set composed of 250 compounds used to
train SVM, a validation set composed of 250 compounds used to find parame-
ters giving the best prediction accuracy and a test set composed of remaining
1500 compounds. Table 2 shows the amount of correctly classified molecules over



Table 2. Classification accuracy on the two classification experiments.

Method
PTC

AIDS
MM FM MR FR

(1) Gaussian Edit Distance 223 212 194 234 99.7%

(2) Random Walks Kernel 216 221 201 232 98.5%
(3) Treelet Kernel (TK) 208 205 209 212 99.1%
(4) TK with variable weighting 217 224 223 250 99.7%

(5) Graph Embedding 218 227 206 239 99.7%

the ten test sets for each class of animal for the first dataset and the accuracy
obtained by differents methods on AIDS dataset. Note however that results ob-
tained by tree pattern kernel are not displayed since the source code provided by
the authors is restricted to molecules with a degree bounded by 4. First, we can
note that method based on graph embedding (Table 2, Line 4) leads to globally
better results than Gaussian kernel applied on an approximation of the graph
edit distance (Table 2, Line 1). This observation highlights the better accuracy
provided by the approximation of edit distance used in graph embedding method.
In the same way, graph embedding methods outperforms Random Walks Kernel
(Table 2, Line 2) and Treelet Kernel (Table 2, Line 4). However, combination
of a variable weighting scheme with Treelet Kernel (Table 2, Line 4) improves
the prediction accuracy of Treelet Kernel and obtains the best results on 3 over
5 datasets a slightly lower prediction accuracy than graph embedding methods
on the two others. However, weighting each treelet according to a property to
predict requires about 30 minutes for each train set of PTC dataset whereas
computational time of graph embedding is performed in about 74 seconds for
each PTC dataset. The accuracy provided by variable weighting can thus be
obtained at the cost of an high computational time.

5 Conclusion

As shown in our experiments graph kernels and graph embedding methods pro-
vide close results in most of experiments. This last point is expected since as
stressed in this paper both approaches are closely related. The main difference
of both approaches should rather be determined from their potential usage. On
one hand, Graph embedding methods provide an explicit embedding in a finite
dimensional space for each input data sets. Hence, this approach is not restricted
to kernel methods but can use explicitly the coordinates associated to graphs.
On the other hand, this approach requires the whole data set to compute an
embedding. Graph kernels based on bag of patterns, only require to compute
the similarity between an input graph and the one of the training set. These
methods may thus be used on unbounded data sets. The choice between both
approaches should thus be determined from the ability for a given application to
obtain the whole data set and from the ability of algorithms applied on graphs
to be kernelized.



Acknowledgments

The authors thanks Salim Jouili for providing the graph embedding code.

References
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