
HAL Id: hal-00769121
https://hal.archives-ouvertes.fr/hal-00769121

Preprint submitted on 28 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CVS-Vintage: A Dataset of 14 CVS Repositories of Java
Software

Martin Monperrus, Matias Martinez

To cite this version:
Martin Monperrus, Matias Martinez. CVS-Vintage: A Dataset of 14 CVS Repositories of Java Soft-
ware. 2012. �hal-00769121�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49833874?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00769121
https://hal.archives-ouvertes.fr


CVS-Vintage: A Dataset of 14 CVS Repositories of
Java Software

Martin Monperrus and Matias Martinez

INRIA Technical Report, 2012.

Abstract

This paper presents a dataset of 14 CVS repositories of Java applications.
This dataset aims at supporting the replication of early papers in the field of
software evolution and mining software repositories. By building this dataset, we
saved some CVS repositories from a probable death by deletion.

1 Introduction

The history of version control systems (sometimes called “revision control system”
or ”software configuration management system”) is long (e.g. Tichy’s paper [22] was
published in 1985). But CVS has a special place in this history, because it has been
the most successful version control system in the early days of open-source [10]. As
a result, the generalized use of CVS has produced rich software repositories, and the
first researchers who explored such repositories (e.g. [18]) did use CVS data. However,
CVS is no longer a mainstream version control system, and this poses two challenges
for research on software evolution.

First, there is a need for scientific data archiving. In many projects, CVS has been
replaced by Subversion (aka SVN) in the mid 2000’s, or by a distributed version control
system (Git, Mercurial) more recently. When a project did not migrate the content of
the CVS repository, the history before the migration date may not be publicly available
anymore, i.e. the original CVS repository may have been lost forever.

Second, many projects have migrated the content of the original CVS repository
to a newer version control system. For instance, there is a tool called cvs2svn that
migrates the software history from CVS to SVN. However, certain early papers on
software evolution published tools which only take CVS data as input. Consequently,
to run those tools, it is not sufficient to find the migrated data to support replication
of early mining papers. Those two concerns, “archiving” and “replication”, motivated
us to create of a dataset of CVS repositories.

To create a dataset of CVS repositories, we crawled “A survey and taxonomy of
approaches for mining software repositories” [12] to identify which CVS repositories
have been used, and tried to find this data again. Sometimes, the data was still publicly

1



available; sometimes we had to personally ask the project members for obtaining it.
This dataset focuses on CVS repositories of Java software. We made this design choice
because we are interested in replicating experiments on mining software repositories that
uses analysis methods that are specific to a given programming language, in our case,
Java. Our approach resulted in a dataset of 14 CVS repositories called CVS-Vintage.

The CVS-Vintage dataset is available as supplementary data on the open access
archive HAL (http://hal.archives-ouvertes.fr/).

2 Methodology

This section presents the methodology that we devised to create a dataset of CVS
repositories of Java applications.

2.1 Inclusion Criteria

We read carefully “A survey and taxonomy of approaches for mining software reposito-
ries” [12] to identify software packages used in previous research. For papers that are
not described with sufficient details, we reviewed the papers as well to identify missing
software packages that may be relevant for our dataset. This resulted in 39 candidates.
Out of those 39 candidates, we selected the packages that are mostly written in Java
(according to the description of their homepage). This resulted in 14 Java software
packages. Then, for each of them, we tried to identify the corresponding repository on
the Internet, which means answering to the following questions: Which organization
hosted the project at the time of the CVS repository (e.g. Sourceforge, Apache, Tigris,
OW2)? If the repository is not available anymore, who to contact? We answered to
those questions by thoroughly searching and browsing the web.

To sum up, a CVS repository is included in a dataset if and only if: 1) it is used in a
paper cited in “A survey and taxonomy of approaches for mining software repositories”
[12] 2) it contains software that is mostly written in Java.

2.2 Data Acquisition

A CVS repository is a folder containing a directory called “CVSROOT” and a set of
folders. Those top-level folders are called a “module” in the CVS terminology. Each
module can contain an arbitrary deep hierarchy of folders. Those folders contain RCS
files [22] ending in with the “,v” extension. For instance, the whole history of “Foo.java”
consists of revisions that are contained in “Foo.java,v”.

To obtain the CVS repositories of the selected 14 Java software packages, we used
one of the following techniques:

2



Copy Certain open-source hosting services support direct copy of the CVS reposito-
ries, often using the rsync protocol1. The main difficulty consists of finding the server
name and the absolute path of the repository (both are rarely documented)2. In the case
of OSS projects of the Eclipse ecosystem, the Eclipse Foundation distributes a gzipped
version of many complete CVS repositories at http://archive.eclipse.org/arch/.

Direct Query When the hosting provider does not support direct extraction, we
asked the administrators of the hosting forge under consideration for a copy of the
repository.

2.3 Post-processing

As discussed in 2.2, we obtained either a single CVS module or a set of CVS modules.
If the former case, we kept this data as is for the dataset. In the latter case, when
we obtained multi-module CVS repositories, we only kept the“dominant” CVS mod-
ule, the one that contain the core functionalities (for instance module “jboss” in the
jboss repository). In other terms, we always include one single CVS module per CVS
repository3).

A CVS repository of open-source software often contains large binary files such as
libraries, images, etc. To save bandwidth and facilitate analysis of Java files only, we
set up two flavors of the dataset: the “full” version contain all files (incl. binaries);
the “light” version, only contains the history of Java files (i.e. only with files ending in
“.java,v”).

3 CVS Repositories

Our inclusion criteria (see 2.1) yields 14 open-source software packages: Argouml,
Columba, Jboss, Jhotdraw, Log4j, org.eclipse.ui.workbench, Struts, Carol, Dnsjava,
Jedit, Junit, org.eclipse.jdt.core, Scarab and Tomcat. This section presents those repos-
itories in alphabetical order.

ArgoUML ArgoUML is a modeling tool that has always been hosted at tigris.org.
The project migrated to SVN in September 2006. The CVS repository is not publicly
available anymore. However, we asked Jack Repenning from tigris.org and fortunately
he could find the original repository on the server and send it to. ArgoUML has been
used in many papers including [24, 6].

1e.g. “$ rsync -av rsync://columba.cvs.sourceforge.net/cvsroot/columba/ columba”
2Since CVS is no longer used, the rsync support is doomed to disappear. For instance, for Apache’s

Log4j, Struts and Tomcat, we found their CVS repositories by chance using the rsync protocol on the
server “minotaur.apache.org” on Feb 8, 2012. As of May 2012, this data is not available anymore.

3for Carol, Columba, JHotdraw, Jboss, Junit

3



Carol Carol is a middleware for Java to abstract over concrete implementations of
remote method invocations. Carol used CVS from August 2002 to May 2007. They
then switched to SVN and the CVS repository files are not publicly available anymore.
We obtained the files4 by contacting Jérémy Casery, the IT administrator of OW2, the
consortium that hosts the project. Carol has been used in [13, 4].

Columba Columba is an email client hosted at sourceforge.net. The project mi-
grated to SVN in July 2006 without migrating the CVS history. Fortunately, we
learned from the sourceforge.net support that they always keep old versioning data,
even when project switch to a new system. We could download the CVS data at
columba.cvs.sourceforge.net (using the rsync protocol)5. Columba has been used in
[5, 14, 15].

Dnsjava Dnsjava is a DNS client hosted at sourceforge.net. The project migrated to
SVN in August 2009. Dnsjava has been used in [13, 3, 1].

Eclipse Eclipse is a integrated development environment (IDE) mostly developed by
IBM. It is legally and technically hosted by a consortium called the “Eclipse Founda-
tion”. With respect to mining software repositories, Eclipse is a monster. First, it is
one of the latest major open-source projects who is still using CVS. Second, their 14
CVS repositories are on the order of magnitude of Gigabytes (on Feb 8, 2012 “eclipse-
cvs.tgz” is 7.6GB compressed!) and millions of file revisions. Consequently, we have to
select a subset of those 14 repositories, otherwise the dataset would be completely biased
towards Eclipse data (in terms of time span, domain, development process, developers).

We selected the oldest CVS repository (“eclipse-cvs.tgz”) which contains the core
functionalities. Inside this repository, we chose to include two modules in the CVS-
Vintage dataset: “org.eclipse.jdt.core” and “org.eclipse.ui.workbench”. The former
contains the code to manipulate Java code (e.g. compiling to bytecode or refactor-
ing), the latter contains the core user-interface of Eclipse. The rationales are as follows:
first, they are top-level directories (hence modules in the sense of CVS), this reflects
their central place in the project since the beginning; second; they still correspond to
a compilable units of well-defined functionality (both are Java projects in the sense
of Eclipse); third, they are orthogonal in terms of domain (code manipulation versus
user-interface) fourth, previous work already used this subset (e.g. reference [16] used
“org.eclipse.jdt.core”); fifth, the number of revisions of those two modules is compara-
ble to other repositories of the dataset. Eclipse has been used in many papers including
[16, 4].

JBoss JBoss is an application server that was hosted at sourceforge.net. The project
stopped using CVS in August 2005. We downloaded the CVS data on the Sourceforge

4The Carol repository contains 4 modules, we selected the main one: “carol”.
5The Columba repository contains 10 modules, we selected the main one: “columba”.

4



server jboss.cvs.sourceforge.net. The JBoss repository contains 112 CVS modules. This
repository has been used to host an ecosystem of related packages rather than a clearly
focused application. According to our heuristics (see Sec. 2), we selected the CVS
module jboss because it corresponds to the core of JBoss and contains the largest
number of revisions of Java files. JBoss has been used in [28, 26, 21].

JEdit JEdit is a text editor that was hosted at gjt.org. The project stopped using
CVS in July 2006. While the jEdit history has been migrated using cvs2svn, the original
CVS repository is not publicly available anymore. We got it by contacting Alan Ezust,
a key project member. JEdit has been used in [17, 28, 11].

JHotDraw JHotDraw is library for building drawing-based user interfaces. The
project, hosted at sourceforge.net, stopped using CVS in April 2005 but the CVS data6

is still available at jhotdraw.cvs.sourceforge.net. JHotDraw has been used in [5, 2, 27].

JUnit JUnit is a testing framework, hosted at sourceforge.net. We downloaded the
original CVS data spanning from Dec 2000 to Jan 2009 at junit.cvs.sourceforge.net.
The repository is composed of 3 CVS modules including the main one called junit.
JUnit has been used in [21, 25, 20].

Log4j Log4j is a testing framework, hosted at apache.org. The original CVS reposi-
tory was abandoned in September 2005 but we found it using the rsync protocol on an
Apache server (see Sec. 2). Log4j has been used in [7, 9, 19].

Scarab Scarab is an issue tracker that is hosted at tigris.org whose CVS repository is
not publicly available anymore. As for ArgoUML, Jack Repenning from tigris.org sent
us the archive. Scarab has been used in [15] and many other Kim’s papers.

Struts Struts is a web application framework that is hosted at apache.org. As for
log4j, we were able to identify and download the original CVS history from Apache
using the rsync protocol. This CVS history goes from June 2000 to September 2004.
Struts has been used in [9, 8].

Tomcat Tomcat is an application server. The project is hosted at apache.org. We
could download and include this package in the dataset with the same protocol as log4j
and struts. Tomcat has been used in [23, 25].

Descriptive Statistics Table 1 shows descriptive statistics of the dataset. It gives
the first and last revision date of the repository, the number of files per repository (all
files and Java files only), the number of revisions (all files and Java revisions only)

6The JHotDraw repository contains 4 modules, we selected the main one: “jhotdraw6”.

5



Name First Rev. Last
Rev.

#Files #Java
Files

%Java
Files

#Rev. #Java
Rev.

%Java
Rev.

Avail. Migr.

argouml 1998/1/26 2006/9/28 10621 4542 42.7% 72356 51395 71% N Y
carol 2002/8/6 2007/5/23 548 336 61.3% 2407 1439 59.8% N Y
columba 2001/4/8 2006/7/28 7731 4503 58.2% 35142 27599 78.5% Y N
dnsjava 1998/9/6 2009/8/8 376 354 94% 5763 5259 91.2% Y Y
eclipse.jdt.core 2001/6/5 2011/9/23 1911 1715 89.7% 80222 64976 80.9% Y -
eclipse.ui.workbench 2002/9/24 2011/6/24 4217 3733 88.5% 40894 38701 94.6% Y -
jboss 2000/4/22 2005/8/18 2516 1933 76.8% 23036 18818 81.7% Y N
jedit 2001/9/2 2006/7/25 1503 593 39.4% 12949 7033 54.3% N Y
jhotdraw 2000/10/12 2005/4/26 634 504 79.5% 3698 3227 87.2% Y Y
junit 2000/12/3 2009/1/28 1416 1198 84.6% 5833 5037 86.3% Y Y
log4j 2000/11/16 2005/9/8 2253 1069 47.4% 12266 7519 61.3% Y Y
scarab 2000/12/18 2005/7/04 3164 1073 33.9% 26393 10779 40.8% N Y
struts 2000/6/1 2004/9/26 4062 1354 33.3% 17695 9088 51.3% Y Y
tomcat 1999/10/9 2005/9/13 2298 1134 49.3% 13528 8394 62% Y N

Table 1: Descriptive Statistics of the CVS-Vintage Dataset.

and the relative frequency of Java files and Java revisions. It also indicates whether
the CVS repository is still publicly available and whether the history was migrated to
a newer version control system (for Eclipse JDT and Workbench UI, “-” means that
they still use CVS). This table supports the following interpretation. First, most of the
repositories have a similar time span, the projects started using CVS around 2000 and
stopped using it around 2005. Second, the selected repositories actually mostly contain
Java software with respect to the ratio of Java files and Java revisions. For instance,
the “argouml” repository (first row) contains 42.7% of Java files and 71% of revisions
concern java source code. Third, the size of the repositories in terms of Java revisions
are commensurable, the biggest repository, “org.eclipse.jdt.core”, accounts for 24.8% of
the dataset.

Finally, our initial goal of “archiving” has proved relevant: in the process of creating
this dataset, we probably “saved” 4 repositories that were already not publicly available
anymore.

4 Conclusion

We have presented a methodology to create a dataset of CVS repositories. The resulting
dataset contains 14 CVS repositories of Java software and 352182 file revisions (in the
sense of Tichy’s RCS). In the process of creating this dataset, we “saved” some data
since certain repositories were already not publicly available anymore and planned for
deletion by the administrators of the corresponding hosting forge.

The CVS-Vintage dataset is available as supplementary data on the open access
archive HAL (http://hal.archives-ouvertes.fr/).

6



References

[1] G. Antoniol, M. Di Penta, and E. Merlo. An automatic approach to identify class
evolution discontinuities. In Workshop on Principles of Software Evolution, 2004.

[2] L. Aversano, G. Canfora, L. Cerulo, C. Del Grosso, and M. Di Penta. An empirical
study on the evolution of design patterns. In ESEC/FSE, 2007.

[3] L. Aversano, L. Cerulo, and C. Del Grosso. Learning from bug-introducing changes
to prevent fault prone code. In Workshop on Principles of software evolution, 2007.

[4] J. Bevan, E. J. Whitehead, Jr., S. Kim, and M. Godfrey. Facilitating software
evolution research with kenyon. In ESEC/FSE, 2005.

[5] S. Breu and T. Zimmermann. Mining aspects from version history. In ASE, 2006.

[6] G. Canfora and L. Cerulo. Fine grained indexing of software repositories to support
impact analysis. In MSR, 2006.

[7] M. Di Penta, D. German, and G. Antoniol. Identifying licensing of jar archives
using a code-search approach. In MSR, 2010.

[8] D. Dig, C. Comertoglu, D. Marinov, and R. E. Johnson. Automated detection of
refactorings in evolving components. In ECOOP, 2006.

[9] D. Dig and R. E. Johnson. How do apis evolve? a story of refactoring. Journal of
Software Maintenance, 18(2), 2006.

[10] K. Fogel, M. Bar, and I. Ebrary. Open source development with CVS. 2001.

[11] H. Kagdi. Improving change prediction with fine-grained source code mining. In
ASE, 2007.

[12] H. Kagdi, M. Collard, and J. Maletic. A survey and taxonomy of approaches
for mining software repositories in the context of software evolution. Journal of
Software Maintenance and Evolution: Research and Practice, 19(2), 2007.

[13] M. Kim and D. Notkin. Using a clone genealogy extractor for understanding and
supporting evolution of code clones. In MSR, 2005.

[14] S. Kim, K. Pan, and E. Whitehead Jr. Micro pattern evolution. In MSR, 2006.

[15] S. Kim, H. Zhang, R. Wu, and L. Gong. Dealing with noise in defect prediction.
In ICSE, 2011.

[16] J. Krinke. A study of consistent and inconsistent changes to code clones. In 14th
Working Conference on Reverse Engineering, 2007.

7



[17] B. Livshits and T. Zimmermann. Dynamine: finding common error patterns by
mining software revision histories. In ACM SIGSOFT Software Engineering Notes,
volume 30, 2005.

[18] A. Mockus, R. T. Fielding, and J. D. Herbsleb. A case study of open source
software development: the apache server. In ICSE, 2000.

[19] C. Parnin, C. Bird, and E. Murphy-Hill. Java generics adoption: how new features
are introduced, championed, or ignored. In MSR, 2011.

[20] D. Schuler and T. Zimmermann. Mining usage expertise from version archives. In
MSR, 2008.

[21] J. Spacco, J. Strecker, D. Hovemeyer, and W. Pugh. Software repository mining
with marmoset: an automated programming project snapshot and testing system.
In ACM SIGSOFT Software Engineering Notes, volume 30, 2005.

[22] W. Tichy. Rcs—a system for version control. Software: Practice and Experience,
15(7), 1985.

[23] F. Van Rysselberghe and S. Demeyer. Mining version control systems for facs
(frequently applied changes). In MSR, 2004.

[24] L. Voinea and A. Telea. Mining software repositories with cvsgrab. In MSR, 2006.

[25] P. Weissgerber, M. Pohl, and M. Burch. Visual data mining in software archives
to detect how developers work together. In MSR, 2007.

[26] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das. Perracotta: mining
temporal api rules from imperfect traces. In ICSE, 2006.

[27] C. Zhang and H. Jacobsen. Efficiently mining crosscutting concerns through ran-
dom walks. In AOSD, 2007.

[28] T. Zimmermann, P. Weibgerber, S. Diehl, and A. Zeller. Mining version histories
to guide software changes. In ICSE, 2004.

8


