
HAL Id: hal-00769225
https://hal.inria.fr/hal-00769225

Submitted on 30 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pigasus : Python for IsoGeometric AnalysiS and Unified
Simulations.
Ahmed Ratnani

To cite this version:
Ahmed Ratnani. Pigasus : Python for IsoGeometric AnalysiS and Unified Simulations.. [Technical
Report] 2012. �hal-00769225�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49833782?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00769225
https://hal.archives-ouvertes.fr

Πgasus : Python for IsoGeometric AnalysiS and Unified
Simulations

Ahmed RATNANI 1

1C.E.A./DSM/IRFM, Cadarache, FR
ahmed.ratnani@cea.fr

Abstract

B-splines and NURBS (Non Uniform Rational B-splines) are widely used in CAD (Computer
Aider Design) models. IGA (IsoGeometric Analysis) consists of using these functions to both de-
fine the geometry and represent the unknowns that are solution of a Partial Differential Equation,
using the Finite Element principle. In this paper we present a new library, namely Πgasus , that
was developped in order to bring a common framework between the users (especially physicists)
and mathematicians. We want to provide a stable and robust framework, that handles complex
geometries and models as it is the case in Plasma Physics. Physicists will be able to use the recent
works and results obtained by mathematicians. Πgasus is a 1D, 2D and 3D Fortran code, inter-
faced with Python. It provides a Geometry module, a FEM (Finite Element Method) computational
engine and a Visualization module.

1 Introduction

The IsoGeometric Analysis has been introduced by Hughes et al [32], in order to bring a common
framework between CAD (Computer Aided Design) and Numerical Simulations. During the whole
process, including refinement and analysis, the geometry is maintained exact. In addition to the
classical refinement strategies, hp-refinement, IGA introduces a new one, namelly the k-refinement. The
latter offers the possiblity to control the regularity of the basis functions, by increasing or decreasing
the multiplicities of knots. From this point of view, IGA can be seen as a generalization of standard
FEMs where more regular functions are used.

In addition to handle complex and CAD geometries, it has been shown [18] that, the use of regular
elements reduces the dimension of the Finite Element spaces, while keeping the desired precision. It
allows to deal with higher order differential operators [25]. Moreover, it has been noticed [45], that
the use of regular elements tends to give better CFL numbers.

For a comprehensive introduction on the subject, we may refeer the reader to the recent book by
Cottrel et al [13]. For an algorithmic overview on B-splines we refeer to the book by DeBoor [20] or
Piegl and Tiller [40]. For an extensive overview on the approximation theory, we may suggest the
books [21, 50].

IGA is getting a large success inside the Engineering and Mathematical communities. The in-
creasing number of publications shows the interest of these communities to this new approach. It has
been used in electromagnetism [11, 10, 45], in incompressible fluid dynamics [9], in fluid-structure
interaction [29, 6] or using a mapped Finite Volume method [26], in structural and contact mechanics
[53, 33]. IGA has been used in Plasmas Physics, in MHD (Magneto-HydroDynamics) problems [46],
and the Kinetic approach [14, 1, 4].

1

An active area of research is the study of local refinement. It seems that T-splines are getting more
popular. Many studies are under investigation to understand the behavior of the discrete spaces
[7, 17] or to glue 2 patchs [16], which is of a big importance for parallelization.

Another active area is how to construct a volume description of a computational domain, given
by its boundary, so we can directly use all existing CAD-models. For those interested in this subject,
we may refeer to the works [35, 36, 37, 12, 59, 60].

Some useful softwares can be found ([57], [19]) to accompany researchers and introduce them
to this new subject. However, for real and complex applications, they present some disadvantages.
They are inflexible for Numerical Simulations combined with Modeling. In the latter, the user may
want to see the effect of adding a new term, or remove it, test a new time scheme, etc In order to
solve partial differential equations (PDEs), one needs to copy the old written code, and then change it.
Hence, we will end up with as many as codes, as the problems we have treated, even if the principal
changes occure while assembling the element matrices.

All these points, motivated me to developp a new library, Πgasus , written in Fortran and inter-
faced with Python. The idea was to simplify as much as possible this interface, so we can recover
the classical language of the Finite Element Method, while maintaining the advantages of a scripted-
language. By sharing the library between different projects, we will keep the same computational
engine, and so reduce redundancy. In addition, the architecture of Πgasus offers the user the ability
to manipulate the geometry and refine it (using the hpk-refinement strategies), use high order and reg-
ular elements, and to manipulate the differential operators even for non-linear problems. The design
of Πgasus gives the user some freedom to define the spaces and manipulate the grids (thus relax the
isoparametric approach, by considering edge, surface, . . . elements).

Πgasus is not intend (for the moment) to be a concurrent of automated FEM softwares like
Freefem++ or Feelpp [41, 28].

This work was motivated by the increasing interactions between physicists and mathematicians
in (computational) plasma physics, trying to answer the question : how can a mathematician study
and improve physicists works and challenges, and make his developpements promptly available? It
was initiated during my Phd-thesis [44] at the INRIA, and pursued at the CEA. We wanted to provide
both physicists and mathematicians a common framework where they can developp their researchs,
take advantage from the IGA approach, but also in the future for production cases.

As the reader will notice it, the user does not need to have a deep knowledge on CAD or B-
splines. The important point is to know how to derive a variational (weak) formulation, and then
ask Πgasus to assemble the different parts of the formulation. Πgasus is delivered with a (2D)
simple and easy GUI interface to create and manipulate the computational domains. The user can
move and manipulate the control points in order to generate the geometry. The basic distribution of
Πgasus does not need any third package or library.

Throughout this article, we will present 2D studies even if the code treats also the 1D and 3D
cases. The current paper is structured as follows. In section 2, we give a brief overview on B-splines,
NURBS and IsoGeometric Analysis approach. In section 3, we present Πgasus on a simple example
(Poisson’s equation). We have made an effort to link each of Πgasus ’s functions to the FEM language.
In section 4, we give much more details on Πgasus : its architecture, the important concepts, utilities
and features. Finally, in section 5, we a non-linear 2D pde as a simple application. This article is not
a tutorial, but we have tried to present as mush as possible the different and interesting parts.

2 An overview on IsoGeometric Analysis

More details on the subject can be found in [21, 50, 40, 20, 13].

2

2.1 Basic properties of B-splines

Definition 2.1 (B-Spline) Let X = {x0, · · · , xp} a non-decreasing sequence of p+ 1 points such that x0 6=
xp. The B-Spline is defined by the following reccurence formula:

N(x;x0, · · · , xp) =
x− x0

xp−1 − x0
N(x;x0, · · · , xp−1) +

xp − x
xp − x1

N(x;x1, · · · , xp) (2.1)

the initialization is given by : N(x;x0, x1) = 1, if x0 6= x1, and 0 otherwise.

In order to construct a B-spline of degree p, we need p+1 points which are called knots in the spline
terminology. Then, to create a family of B-splines, we will need to have a non-decreasing sequence of
knots, also called knot vector.

Let T = (ti)16i6N+k be a non-decreasing sequence of knots, with k = p+ 1. Each set of p+ 1 con-
secutive knots Tj = {tj , · · · , tj+p}will generate a B-spline Nj . This leads to the following definition:

Definition 2.2 (B-Spline series) The j-th B-Spline of order k is defined by the recurrence relation:

Nk
j = wkjN

k−1
j + (1− wkj+1)Nk−1

j+1

where,
wkj (x) =

x− tj
tj+k−1 − tj

N1
j (x) = χ[tj ,tj+1[(x)

for k ≥ 1 and 1 ≤ j ≤ N .

In figures 1 and 2, we give examples of the generated B-splines families depending on the knot
vectors (figure 1) and the order (figure 2).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N1N2N3

Figure 1: B-splines functions associated to the knot vector T = {000 111}, of order k = 3. These are Bernstein polynomials

We note some important properties of a B-splines basis:

• B-splines are piecewise polynomial of degree p = k − 1,

3

 0

 0.5

 1

 1.5

 2

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N1N2N3N4N5N6N7N8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N1N2N3N4N5N6N7N8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N1N2N3N4N5N6N7N8

Figure 2: B-splines functions associated to the knot vector T = {000 1 2 3 44 555}, of order k = 1, 2, 3 (left to right).

• Compact support; the support of Nk
j is contained in [tj , tj+k],

• if x ∈]tj , tj+1[, then only the B-splines {Nk
j−k+1, · · · , Nk

j } are non vanishing at x,

• Positivity: ∀j ∈ {1, · · · , N} Nj(x) > 0, ∀x ∈]tj , tj+k[,

• Partition of unity :
∑N

i=1N
k
i (x) = 1,∀x ∈ R,

• Local linear independence, and finally

• If a knot ti has a multiplicity mi then the B-spline is C(p−mi) at ti

4

2.2 Multivariate tensor product splines

Let us consider d knot vectors T = {T 1, T 2, · · · , T d}. For simplicity, we consider that those knot
vectors are open, which means that k knots on each side are duplicated so that the spline is interpo-
lating on the boundary, and of bounds 0 and 1. In the sequel we will use the notation I = [0, 1]. Each
knot vector T i, will generate a basis for a Schoenberg space [21], Ski(T i, I). The tensor product of
all those spaces is also a Schoenberg space, namely Sk(T), where k = {k1, · · · , kd}. The hypercube
P = Id = [0, 1]d, will be referred to as a patch.
The basis for Sk(T) is defined by a tensor product :

Nk
i := Nk1

i1
⊗Nk2

i2
⊗ · · · ⊗Nkd

id

where, i = {i1, · · · , id}.
A typical cell from P is a cube of the form : Qi = [ξi1 , ξi1+1]⊗ · · · ⊗ [ξid , ξid+1]. To any cell Q, we will
associate its extension Q̃, which is the union of the supports of basis functions, that intersects Q.

2.3 Splines in CAD

In order to have a control on the regularity of the curve, we need to use a piecewise-polynomial
form. This is why the use of B-splines has known a large success. Moreover, the control points (and
polygone) have many geometric interpretations.
Let (Pi)16i6N ∈ Rd be a sequence of control points, forming a control polygon.

Definition 2.3 (B-Spline curve) The B-spline curve in Rd associated to T = (ti)16i6N+k and (Pi)16i6N is
defined by :

C(t) =
N∑
i=1

Nk
i (t)Pi

We have the following properties for a B-spline curve:

• If N = k, then C is just a Bézier-curve,

• C is a piecewise polynomial curve,

• The curve interpolates its extremas if the associated multiplicity of the first and the last knot
are maximum (i.e. equal to k),

• Invariance with respect to affine transformations,

• Strong convex-hull property:

if ti ≤ t ≤ ti+1, then C(t) is inside the convex-hull associated to the control points Pi−p, · · · ,Pi,

• Local modification : moving Pi affects C(t), only in the interval [ti, ti+k],

• The control polygon approaches the behavior of the curve.

Remark 2.4 Remark that there is a kind of duality between knots and control points. We can use multiple
control points : Pi = Pi+1, instead of multiple knots.

5

Deriving a B-spline curve: We have:

C′(t) =
n∑
i=1

Nk
i
′
(t)Pi =

n∑
i=1

(
p

ti+p − ti
Nk−1
i (t)Pi −

p

ti+1+p − ti+1
Nk−1
i+1 (t)Pi

)
=

n−1∑
i=1

Nk−1
i

∗
(t)Qi

(2.2)
where Qi = p Pi+1−Pi

ti+1+p−ti+1
, and {Nk−1

i

∗
, 1 ≤ i ≤ n− 1} are generated using the knot vector T ∗ which

is obtained from T by reducing by one the multiplicity of the first and the last knot (in the case of
open knot vector), i.e. by removing the first and the last knot.

Example: T = {000 2
5

3
5 111}, p = 2, n = 5.

We have C(t) =
∑5

i=1N
3
i
′
(t)Pi, then

C′(t) =
4∑
i=1

N2
i
∗
(t)Qi

where
Q1 = 5{P2 −P1}, Q2 =

10

3
{P3 −P2},

Q3 =
10

3
{P4 −P3}, Q4 = 5{P5 −P4}.

The B-splines {N2
i
∗
, 1 ≤ i ≤ 4} are associated to the knot vector T ∗ = {00 2

5
3
5 11}.

In figure 3, we show an example of a B-spline curve. In this case, the B-splines generated are simply
Berstein polynomials, and the obtained curve is a Bézier curve.

Figure 3: (left) A B-spline curve and its control points, (right) B-splines functions used to draw the curve. N = 9, p = 2 ,
T = {000, 1

4
1
4
, 1
2

1
2
, 3
4

3
4
, 111}

Definition 2.5 (B-spline surface) The B-spline surface of order k associated to the knot vectors {Tξ, Tη} and
the control points (Pi,j)16i6N1,16j6N2 , is defined by

M(ξ, η) =

N1∑
i=1

N2∑
j=1

Ni,j(ξ, η)Pi,j

6

with Ni,j(ξ, η) = N
(1)
i (ξ)N

(2)
j (η)

2.4 Fundamental geometric operations

We can change the curve’s parameters without changing the curve. This refers as to geometric op-
erations. For example, we can elevate the spline’s degree or insert new knots. Many algorithms are
available from the CAD community, and have proved their efficiency [20, 38, 30, 42, 34].
In figure 4, we show the use of some of these geometric operations (elevation degree and knot in-
sertion) on a quadratic B-Spline curve. We show also how one can split a domain by raising the
multiplicity of knots to the spline’s degree. This is an important strategy that may help us for do-
main decomposition and parallelization.
In figure 5, we show the use of the elevation degree and insertion knots algorithms on a 2D domain.
As we can see, the geometry is kept unchanged.

2.5 NURBS

Let ω = (ωi)16i6N be a sequence of non-negative reals. The NURBS (Non-Uniform Rational B-
splines) functions are defined by a projective transformation:

Definition 2.6 (NURBS) The i-th NURBS of order k, associated to the knot vector T and the weights ω, is
defined by

Rki =
ωiN

k
i∑N

j=1 ωjN
k
j

. (2.3)

Notice that when the weights are equal to 1 the NURBS are B-splines.

Definition 2.7 (NURBS curve) The NURBS curve of order k associated to the knot vector T , the control
points (Pi)16i6N and the weights ω, is defined by

M(t) =
N∑
i=1

Rki (t)Pi.

2.6 Modeling conics using NURBS

In this section, we will show how to construct an arc of conic, using rational B-splines. Let us con-
sider the following knot vector : T = {000 111}, the generated B-splines are Bernstein polynomials.
According to 2.3, the general form of a rational Bézier curve of degree 2 is:

C(t) =
ω1N

2
1 (t)P1 + ω2N

2
2 (t)P2 + ω3N

2
3 (t)P3

ω1N2
1 (t) + ω2N2

2 (t) + ω3N2
3 (t)

(2.4)

Let us consider the case ω1 = ω3 = 1. Because of the multiplicity of the knots 0 and 1, the curve C
is linking the control point P1 to P3. Depending on the value of ω2, we get different type of curves
(Table 1).

7

Figure 4: First line : (left) A quadratic B-spline curve and its control points. The knot vector is T = {000, 1
4
, 1
2
, 3
4
, 111}.

(right) The curve after a p-refinement, the degree was raised by 2. Second line : (left) The curve after a h-
refinement by inserting the knots {0.1, 0.2, · · · , 0.9} while the degree is kept equal to 2. (right) The curve after
duplicating the multiplicity of the internal knots { 1

4
, 1
2
, 3
4
}, this leads to a Bézier description. We can then, split

the curve into 4 pieces (sub-domains), each one will corresponds to a quadratic Bézier curve.

2.7 Multivariate tensor product NURBS

As for splines, one can define multivariate tensor product NURBS. For surfaces, we have the follow-
ing definition.

Definition 2.8 (NURBS surface) The NURBS surface of order k associated to the knot vectors {T (1), T (2)},

8

Figure 5: First line : (left) A quadratic NURBS description of a coil and its control points. The knot vector is T =
{000, 1

3
1
3
, 2
3

2
3
, 111}. (right) The curve after a p-refinement, the degree was raised by 2. Second line : the curve

after a h-refinement by inserting the knots {0.1, 0.2, · · · , 0.9}while the degree is kept equal to 2.

the control points (Pi,j)16i6N1,16j6N2 and the weights (ωi,j)16i6N1,16j6N2 , is defined by

M(t(1), t(2)) =

N1∑
i=1

N2∑
j=1

Ri,j(t
(1), t(2))Pi,j

with Ri,j(t(1), t(2)) =
ωi,jN

1
i N

2
j∑

r,s ωr,sN1
rN

2
s

Remark 2.9 NURBS functions inherit most of B-splines properties. Remark that in the interior of a knot
span, all derivatives exist, and are rational functions with non vanishing denominator.

9

nature of the curve
ω2 = 0 line
0 < ω2 < 1 ellipse arc
ω2 = 1 parabolic arc
ω2 > 1 hyperbolic arc

Table 1: Modeling conics using NURBS.

We present here the definition of the perspective mapping. We construct the weighted control points Pωi =
(ωixi, ωiyi, ωizi, ωi), then we define the B-spline curve in four-dimensional space as

Mω(t) =

N∑
i=1

Nk
i (t)Pωi . (2.5)

For fundamental geometric operations on NURBS curves, we use the latest transformation and algorithms on
B-spline curves.

Remark 2.10 NURBS functions allow us to model, exactly, much more domains than B-splines. In fact, all
conics can be exactly represented with NURBS. For more details, see [34].

2.8 IsoGeometric Analysis

The idea behind the IGA method is to use the same functions that define the physical domain, to
approach the solution of a partial differential equation.
In the sequel, we consider 2 knot vectors Tξ = {ξ1, · · · , ξN1+p1+1} and Tη = {η1, · · · , ηN2+p2+1}. Let
Wξ = {ωξ1, · · · , ω

ξ
N1
} and Wη = {ωη1 , · · · , ω

η
N2
} be two weight sequences, and (Pij)16i6N1,16j6N2 a

sequence of control points. This defines a mapping

F(ξ, η) =
∑

16i6N1,16j6N2

Rξi (ξ)R
η
j (η)Pij (2.6)

that maps the rectangular patch [ξ1, ξN1] × [η1, ηN2] onto the physical domain Ω. Where Rξ and Rη

are NURBS functions defined by knot vectors Tξ and Tη, and weights Wξ and Wη.
As said before, we consider only open knot vectors. Without loss of generality, we shall consider
knot vectors of the form:

ξ1 = · · · = ξp1+1 = η1 = · · · = ηp2+1 = 0,

and
ξN1+1 = · · · = ξN1+p1+1 = ηN2+1 = · · · = ηN2+p2+1 = 1.

LetK be a cell in the physical domain. Q is the parametric associated cell and such thatK = F(Q).
Let JF be the Jacobian of the transformation F, that maps any parametric domain point (ξ, η) into the
physical domain point (x, y) (figure 6).

2.8.1 Refinement strategies

Refining the grid can be done in 3 different ways. This is the most interesting aspects of B-splines
basis,

10

Q

F

Patch
Physical Domain

K
Q

F

Patch
Physical Domain

K

Figure 6: Mapping from the patch to the physical domain: (left) initial patch, (right) patch after h-refinement in the η
direction. Here, we have K = F(Q)

• using the patch parameter h, by inserting new knots. This is the h-refinement, it is the equiva-
lent to mesh refinement of the classical Finite Element Method.

• using the degree p, by elevating the B-spline degree. This is the p-refinement, it is equivalent to
use higher finite element order in the classical FEM.

• using the regularity of B-splines, by increasing / decreasing the multiplicity of inserted knots.
This is the k-refinement. This new strategy does not have an equivalent in the classical FEM.

An active area of research is the study of local refinement. It is important to notice that the use of
tensor products leads to the existence of a lot of superfluous control points, that might exist because
of the presence of a cartesian grid in the parametric domain. Sederberg et al. [52] defined the notion
of T-splines that allows us to reduce the number of those control points. In [22] Dörfel et al. use
T-splines for local h-refinement in isogeometric analysis. It seems that T-splines are getting more
popular. Many studies are under investigation to understand the behavior of the discrete spaces
[7, 17] or to glue 2 patchs [16], which is of a big importance for parallelization. For more information
on this subject, we refer to [48, 49, 39, 51, 8] or [58, 55] for PHT-splines. For details on implementation
see [47]. In [56], authors propose the use of a hierarchical local refinement method. THB-splines
are used in [24]. Dokken, Kvamsdal and their team from SINTEF are currently developing another
approach for local refinement, based on LR-splines [54].

2.8.2 Patch

Starting from the geometric description of the domain, which gives a coarse mesh, we can then, use
h/p/k refinements to create the computational grid. We can also use multiple patches to describe
more complex domains [32, 13]. There are many ways to stick those patches together.

2.8.3 Grid generation

For this purpose, we use alternatively h and p-refinement. The minimal degree of basis functions is
imposed by the domain design. When inserting knots, we can use uniformly-spaced knots or non
uniformly-spaced ones. In figure 7, we give an example of such a refinement.

11

Figure 7: Grid generation: (left) The coarsest mesh, (right) Domain after h-refinement. The minimal degree of basis func-
tions is 2 in this example.

3 Introducing Πgasus

In this section, we will consider the resolution of an elliptic partial differential equation on a square
domain Ω. We will see how we can recover the classical FEM language, for the IGA approach. We
also will separate the different differential operators in the equation and how we can construct them
using Πgasus .

Let us consider the following problem:

For given functions A, f, b, find u such that:{
−∇ · (A∇u) + bu = f ,Ω

u = 0 , ∂Ω
(3.7)

Introducing the matrix :
Σ = (Σi,j)16i,j6n

and the vectors :
L = (Li)

T
16i6n−nD

[uh] = ([uh]i)T16i6n

where, we denote for i, j ∈ {1, .., n}

Σi,j =

∫
Ω
∇ϕi A∇ϕj dΩ +

∫
Ω
b ϕi ϕj dΩ

Li =

∫
Ω
f ϕi dΩ

here, n denotes the dimension of the discrete space and nD the number of Dirichlet elements.

12

Using a variational formulation and the Green’s formulae, we know that after discretization, we
have to solve the linear system:

Σ [uh] = L .

The matrix Σ is nothing else but the sum of the Stiffness matrix S and Mass matrix M .

S =

∫
Ω
∇ϕi A∇ϕj dΩ

M =

∫
Ω
b ϕi ϕj dΩ

In practice, the user will need to define, discretize and assemble the two differential operatorsM and
S. To do so, we must start by defining the discrete FE space (see subsection 3.1), with the appropriate
boundary conditions and set the computational grid. Then, he needs to define two fields, one for the
right hand side term, and the other for the solution of the pde (see subsection 3.2). Finally, he defines
the discretized differential operators M and S (see subsection 3.3). In the following subsections, we
will detail and explain each step of a typical Πgasus script. For instance, we will solve the Poisson’s
equation on the unit square domain with the source term :

f(x, y) = 8π2 sin(2πx) sin(2πy)

and the analytical solution
u(x, y) = sin(2πx) sin(2πy)

3.1 Spaces Definition

The Galerkin Finite Element Method relies on the fact that we approach the inifinite dimensional
spaces, where the unknowns may live, by a sequence of finite dimensional subspaces. With
Πgasus we recover this approach and start by creating these finite dimensional subspaces.

1 # def ine the d i s c r e t e space
2 V = space (as_file=ls_domain)
3 # s e t boundary condi t ions
4 # here we use Homogeneous D i r i c h l e t on whole the boundary
5 V .dirichlet (faces= [[1 , 2 , 3 , 4]])
6 V .set_boundary_conditions ()

The discrete space needs a geometry that may be given by in XML or HDF5 file. Once the space was
defined, we have to associate a grid (quadrature points).

1 # c r e a t e a grid (using Gauss−Legendre quadrature points)
2 V .create_grids (type=” legendre ” , k=lpi_glorder)

3.2 Fields Definition

The Field object can be used to define either the right hand side term or the unknown.

1 # def ine the r i g h t hand s ide
2 func_f = lambda x ,y : [2 . 0 * ((2 *pi) * * 2) * sin (2 *pi * x) * sin (2 *pi * y)]
3 F_V = field (space=V , func = func_f)
4
5 # t h i s i s the unknown
6 func_u = lambda x ,y : [sin (2 *pi * x) * sin (2 *pi * y)]
7 U_V = field (space=V , func = func_u)

13

3.3 Matrices Definition

Here, we show how we can construct and assembly the differential operators involved in our PDE.
The Mass matrix operator is of the form Mass∫

Ω
f([u],x) ϕb ϕb′ dΩ

while the Stiffness matrix is ∫
Ω

(A([u],x) ∇ϕb) · ∇ϕb′ dΩ

In this example, we have f([u],x) = 1.0 and A([u],x) = IdR3 is the identity matrix in R3. Using
Πgasus , this can be defined as

1 # def ine the mass matrix
2 func_mass = lambda x ,y : [1 . 0]
3 M_V = matrix (spaces= [V , V] , ai_type=MASS , func=func_mass)
4 # def ine the s t i f f n e s s matrix
5 func_stiff = lambda x ,y : [1 . 0 , 0 . 0 , 0 . 0 , 1 . 0]
6 S_V = matrix (spaces= [V , V] , ai_type=STIFFNESS , func=func_stiff)

3.4 Initialization

Once we have defined all the operators and fields that we need to model our PDE, we have to initial-
ize Πgasus .

1 fe .initialize ()

3.5 Assembling Process

Using the function assembly, we can assemble the operators that we need. We can imagine, that for
a given problem, one of the operators will remain unchanged while the others may change at each
iteration. In this case, the user can specify which matrices or fields to assemble, by given it in the
matrices or fields lists.

1 fe .assembly (matrices= [M_V , S_V] , fields= [F_V])

3.6 Solving the linear system

You can either use the integrated linear solver for Πgasus , or export matrices to python and use
your favorite solver. Next, we show how the later one can be done using spsolve and SuperLU.

1 # export matr ices to scipy−c s r format
2 Mass_V = M_V .to_csr ()
3 Stiffness_V = S_V .to_csr ()
4 Sigma = Mass_V + Stiffness_V
5
6 # export the r i g h t hand s ide
7 lpr_rhs = F_V .get ()
8
9 # solv ing using spsolve

14

10 from scipy .sparse .linalg import spsolve
11 lpr_u = spsolve (Sigma , lpr_rhs)
12
13 # solv ing using splu
14 from scipy .sparse .linalg import splu
15 op_Sigma = splu (Sigma .tocsc ()) # F a c t o r i z a t i o n
16 lpr_u = op_Sigma .solve (lpr_rhs)
17
18 # import the r i g h t hand s ide i n t o Pigasus
19 U_V .set (lpr_u)

Remark 3.1 The user can also manipulate the objects Fields and matrices using the operators *=, += or
.dot(. . .)

In (figure 8), we plot the numerical solution of Poisson’s equation on the unit square.

Figure 8: Poisson’s equation on the unit square : plot of the numerical solution

3.7 Computing the error norm

In Πgasus , the norms are modeled as operators on fields. The user can compute the classical L2, H1,
etc, . . . , norms for a given field.
An example of declaration is:

1 N_U = norm (field=U_V , type=NORM_L2)

Here we show how to compute the L2 norm.

1 # s e t the NURBS/B−s p l i n e s c o e f f i c i e n t s ,
2 # in the case of using e x t e r n a l s o l v e r
3 U_V .set (lpr_u)
4 # assemble the norm operator
5 fe .assembly (norms= [N_U])
6
7 lr_norm = N_U .get ()

15

As seen, through the previous example, Πgasus is designed following the classical FEM lan-
guage. In the next section, we shall give much more detail about the architecure of Πgasus and the
offered notions and objects.

4 Dive into Πgasus

In this section, we will introduce some advanced utilities and give much more precision on the design
of the library. We start by introducing the Geometry module, the architecture and then present the
fundamentals concepts/objects.

4.1 Geometry Module

An important difference between CAD and the numerical simulation worlds, is the nature of a given
domain. In CAD, a circle is a curve, but in order to solve the Poisson’s equation (for example) on
a circular domain (for example) we need a 2D description. Hence, even if there are many powerful
tools for CAD, they present at least this disadvantage. It is also complicated for mathematicians and
physicists to use such tools. Remember that the user wants a volume description of its domain. For
more details, we refer to [35, 36, 37, 12]. For all these reasons, we prefered to developp our own
module for geometry, with a simple interface for the user and a classical XML format. We have
also added HDF5 format to handle heavy data, as the user may want to store his domain after the
refinement process.

4.1.1 Formats

There are two ways to store the geometry. For heavy data (especially in 3D), you have to use the
HDF5 format. Weights are stored here as the d + 1 component of the control point (where d is the
space dimension). In (Appendix, source code 1) we show the XML-file of the linear description of the
unit square.

4.1.2 Geometry utilities

In (Appendix, source code 2), we show how to use a p-refinement. Now let’s take the linear description
of the unit square, and perform

1. a p-refinement: we will elevate the spline degree : +1 in the ξ-direction and +1 in the η-
direction,

2. an h-refinement: we will insert {0.25, 0.5, 0.75} in the ξ-direction and {0.3, 0.7} in the η-
direction,.

The detail of the script is given in (Appendix, source code 3). In order to do a k-refinement, you can
either do a h-refinement then a p-refinement, or do directly a hp-refinement with duplicated knots
(Appendix, source code 4). In (Appendix, source code 5) we show a simple example of how we can
duplicate a given geometry and modify it to have a multi-patchs description.

Remark 4.1 We have developed a 2D-CAD designer tool, in order to manipulate and generate directly, the
volume description of the computational domain [43].

16

4.2 Πgasus architecture

In the following subsection, we present the architecture behind Πgasus .
Although there is no Singleton notion in Python, we can define an alternative using the following
classical idea.

1 def singleton (cls) :
2 instances = {}
3 def getinstance () :
4 i f cls not in instances :
5 instances [cls] = cls ()
6 return instances [cls]
7 return getinstance

Then, we can define the common obj class, which will contain all spaces, fields, matrices, . . . , dec-
larations. Each time the user will declare a new space (for example), it will be automatically added
into the common obj.spaces list.

1 @singleton
2 c l a s s common_obj (object) :
3 def __init__ (s e l f) :
4 # . . .
5 # importing the Fortran module
6 # . . .
7 import pyfem as py
8 s e l f .pyfem = py .pyfem
9 # . . .

10
11 # . . .
12 # def in ing o b j e c t s l i s t s
13 # . . .
14 s e l f .fields = []
15 s e l f .matrices = []
16 s e l f .spaces = []
17 s e l f .mappings = []
18 s e l f .grids = []
19 s e l f .norms = []
20 # . . .

Remark 4.2 All objects (Fields, Matrices and Norms) are stored with a sub-domain (patch) id. As seen before,
the user will use the fundamental geometric operations, to split the computational domain into many sub-
domains while keeping the geometry exact. Then he will provide this new description to construct the Finite
Element space.

4.2.1 Spaces

The notion of spaces has been introduced in the previous section. Let us just give some additional
remarks. The user can define a space using an exterior mapping (not defined by the IGA approach).
For example, he can give an analytic mapping (or a new metric) or even a CAD-description using
splines or nurbs.

Remark 4.3 We have choosed to use a tensorial approach for Πgasus . This means that inside each element,
the grid is viewed as n-arrays rather than an array of Rn. A patch is a collection of elements. The user can
stick patchs together by using the duplicate function.

17

Figure 9: An UML class diagram for Πgasus

1 V = space (as_file=ls_domain)
2 V .duplicate (faces_base= list_faces_duplicated , faces= list_faces_duplicata)
3 V .set_boundary_conditions ()

Remark 4.4 The user can provide how to calculate the basis (and their derivatives) on each element. For
example, he can give the values of the basis (and their derivatives) over the 1D-quadrature points.

Remark 4.5 For (non-homogeneous) boundary conditions, the user can create an adequate space using a grid
with a boundary profile.

The dirichlet function is used to set Dirichlet boundary condition on the appropriate domain faces.
This is given as a list over patchs (see figure 10).

face 1 face 2
face 1

face 4

face 3

face 2

Figure 10: Faces numerotation for boundary conditions. (left) 1D case, (right) 2D case.

1 V .dirichlet (faces= [[2 , 4]])

which will set the boundaries defined by {ξ = 0.0, ∀η} and {ξ = 1.0, ∀η}, in the 2D case, to Dirichlet
condition.

18

In the case where we use a multi-patch description, the user can specify the Dirichlet boundary
condition as shown in figure 11.

1 V .dirichlet (faces= [[1 , 2 , 3] , [1 , 3 , 4]])

1 1

2

3 3

44 2Ω1 Ω2

Figure 11: Faces numerotation for boundary conditions for a multi-patchs domain in the 2D case.

The duplicate function can be used to set periodic boundary conditions or to stick patchs together
with a C0 condition. It tells Πgasus that all basis defined by ”face-base” have the same ID (see [31]
for details on FEM connectivities structures) as those by ”face”. Both ”face-base” and ”face” must be
lists of couples [patch id, num face]. To set a periodic boundary condition:

1 V .duplicate (faces_base= [[0 , 1]] , faces= [[0 , 3]])

To stick two patchs together:

1 V .duplicate (faces_base= [[0 , 4]] , faces= [[1 , 2]])

4.2.2 Vectorial spaces

The basic definition of spaces, leads to scalar functions. In order to define a vectorial space, the user
must proceed as on paper, he starts by defining spaces for each coordinate, on the patch and without
a mapping, then he defines the whole space as a vect space. In the following example, we show a
typical construction, for the Maxwell’s time domain problem [45].

In 2D domains, Maxwell’s equations can be decoupled into two systems. The first involving
the (Ex, Ey, Hz) components is called the Transverse Electric (TE) mode, and the second, involving
the (Hx, Hy, Ez) components is called the Transverse Magnetic (TM) mode. As both modes can be
discretized in the same manner, The TE mode reads

∂E

∂t
− rotH = −J, (4.8)

∂H

∂t
+ rot E = 0, (4.9)

div E = ρ, (4.10)

where the components are defined by E =

(
Ex
Ey

)
, H = Hz . Let us define the following scalar spaces

:
V = Sp,pα,α, W1 = Sp,p−1

α,α−1, W2 = Sp−1,p
α−1,α

and the vectorial space
W = W1×W2

19

The discrete spaces V and W are involved in the DeRham sequence [45].

1 p = 3
2 n = 63
3
4 ls_etiq = ” p ”+str (p) +”x”+str (p) +” n ”+str (n) +”x”+str (n)
5
6 ls_domain_V = ”domain p”+str (p) +”x”+str (p) +” n ”+str (n) +”x”+str (n) +” . xml”
7 ls_domain_W1 = ”domain p”+str (p) +”x”+str (p - 1) +” n ”+str (n) +”x”+str (n) +” . xml”
8 ls_domain_W2 = ”domain p”+str (p - 1) +”x”+str (p) +” n ”+str (n) +”x”+str (n) +” . xml”
9 ls_domain_W = ”domain W . xml”

10
11 # *
12 # D e f i n i t i o n of the space V
13 # *
14 V = space (as_file=ls_domain_V)
15 V .set_boundary_conditions ()
16 V .create_grids (type=” legendre ” , k=lpi_ordregl)
17 # *
18
19 # *
20 # D e f i n i t i o n of the space W1
21 # *
22 W1 = space (as_file=ls_domain_W1)
23 W1 .set_boundary_conditions ()
24 W1 .create_grids (space=V)
25 # *
26
27 # *
28 # D e f i n i t i o n of the space W2
29 # *
30 W2 = space (as_file=ls_domain_W2)
31 W2 .set_boundary_conditions ()
32 W2 .create_grids (space=V)
33 # *
34
35 # *
36 # D e f i n i t i o n of the space W as W1 x W2
37 # *
38 W = space_vect (spaces= [W1 ,W2])
39 W .set_boundary_conditions ()
40 W .create_grids (space=V)
41 # *

4.2.3 Fields

As said previously, the notion of Field is intended to model a right hand side or an unknown. Next
we list some of its attributs:

• space : This is the discrete space on which the field is defined.

• func : This is a given function for the field. It can be used either for the source term or the exact
solution.

• type : This is the projection/interpolation type.

• operator : This is used to apply an operator to a field, defined previously.

• field : This is the operande for the operator (must be given if the type is FIELD OPERATOR).

• func arguments : This is a list of fields used for a non-linear field (i.e. f([g],x)).

20

Remark 4.6 The user can define a field as a function of a list of fields. In the following example, we show how
to model a term of the form :

f(u, x, y) = u2 + x2∂xu+ (x+ y)∂yu

In fact, we will need to define a new field u2 = v · ∇u which is a FIELD OPERATOR of type GRAD applied
on the fields u with an argument function v = [x2, x+ y].

1 # . . .
2 # Defining the F i e l d Operator
3 # . . .
4 func_v = lambda x ,y : [x ˆ 2 , x+y]
5 U2 = field (space=V , operator=GRAD , field=U , func = func_v)
6 # . . .
7
8 # . . .
9 # t h i s i s the non−l i n e a r part

10 # . . .
11 func_F = lambda list_F ,x ,y : [list_F [0] ˆ 2 + list_F [1]]
12 F = field (space=V , func = func_F , func_arguments= [U ,U2])
13 # . . .

4.2.4 Matrices

A matrix ise stored naturally in a compact format thanks to its profile. The latter is easily computed
thanks to the spaces connectivities. In order to construct a matrix, you need to specify the following
parameters:

• space : This is a couple of the discrete spaces on which the Differential Operator is defined.

• ai type : This is the type of the Differential Operator (MASS, STIFFNESS, ADVECTION, ...)

• func : This is a given parameter function for the matrix.

• matrices : This is used to construct a composed (block) matrix.

• transpose : If we want to transpose the matrix during the construction.

• func arguments : This is a list of fields used for a non-linear field (i.e. f([u],x)).

• addto : if we want to add the local element matrix directly to a global matrix previously defined.
This will reduce the memory cost.

In table 2, we give the list of the implemented Differential Operators.

Operator Contribution
Mass

∫
Ω f([u],x) ϕb ϕb′ dΩ

Stiffness
∫

Ω(A([u],x)∇ϕb) · ∇ϕb′ dΩ
Advection

∫
Ω v([u],x) · ∇ϕb ϕb′ dΩ

Second derivatives
∫

Ω v([u],x) · D2ϕb dΩ

Table 2: List of the implemented Differential operators

21

The user can also create Block-matrices or import a matrix. In the following example we show
how to construct a Block-Matrix. The user can choose which part to update during the assembling
process.

1 M_V = matrix (matrices= [[A_1 ,B_1] , [C_1 ,D_1]])

and then, he can change the blocks by calling

1 M_V .set (matrices= [[A_2 ,B_2] , [C_2 ,D_2]])

Where each two matrices X1 and X2 (X ∈ {A,B,C,D}) are defined on the same spaces, and have
the same profile. The user can choose which matrices to update, by calling

1 # M i s a Block−matrix = [[A, B] , [C,D]] defined previously by
2 # M = matrix (matr ices = [[A, B] , [C,D]])
3 # i f f o r example , only A and D must be re−evaluated then the user must c a l l
4
5 M .assembly ([[True , Fa l se] , [False , True]])

4.2.5 Grids

Πgasus offers different types of grids. The user can associate to the discrete space, a volume, a surface,
an edge or a boundary grid. The volume, surface, edge profiles are related to the elements, while the
boundary profile is for the whole patch (sub-domain). Here is an example of how to create a grid for
a given discrete space.

1 # *
2 # D e f i n i t i o n of the space V
3 # *
4 V = space (as_file=ls_domain_V)
5 V .set_boundary_conditions ()
6 V .create_grids (type=” legendre ” , k=lpi_ordregl , profile=”boundary”)
7 # *

By grids, we mean, by default, quadrature ones. The user can use the predefined ones, or gives his
own grids, as follows:

1 # *
2 # D e f i n i t i o n of the space V
3 # *
4 V = space (as_file=ls_domain_V)
5 V .set_boundary_conditions ()
6 V .create_grids (list_nodes=list_x , list_weights=list_w)
7 # *

The user can also create a grid without associating it to any space. This may be interesting if he wants
to take advantage of the B-splines and NURBS tranformations, in order to developp, for example, a
Finite Difference code.

1 # *
2 # D e f i n i t i o n of the grid G
3 # *
4 geo = cg .cad_geometry (ls_domain)
5 G = grids (profile=”volume” , api_k=lpi_ordregl , ao_geometry=geo .list [:] , as_type=” legendre ”)

22

6 # *

In addition, Πgasus offers the possibility to create, manipulate a metric object and associate it to a
grid. Remember that when using a CAD-description to manipulate the metric, we never need to
store the whole grid. On each element, we only store the 1D array, the grid will be constructed, on
the fly, at each assembling step.

1 # *
2 # D e f i n i t i o n of Metr ics
3 # *
4
5 # . . .
6 # using a CAD−d e s c r i p t i o n
7 # . . .
8 M1 = metric (geometry=geo .list [:])
9 # . . .

10
11 # . . .
12 # using an a n a l y t i c a l funct ion
13 # . . .
14 F = lambda r ,t : [r * np .cos (2 . * np .pi * t) , r * np .sin (2 . * np .pi * t)]
15
16 DF = lambda r , t : [np .cos (2 . * np .pi * t) \
17 , - 2 . * np .pi * r * np .sin (2 . * np .pi * t) \
18 , np .sin (2 . * np .pi * t) \
19 , 2 . * np .pi * r * np .cos (2 . * np .pi * t)]
20
21 M2 = metric (analytic= [F ,DF])
22 # . . .
23
24 # . . .
25 # using a l i s t of points and d e r i v a t i v e s
26 # . . .
27 M3 = metric (points=lpr_points)
28 # . . .
29
30 # *

Then we can associate the metric to a grid, as the following.

1 # *
2 # D e f i n i t i o n of the grid G
3 # *
4 geo = cg .cad_geometry (ls_domain)
5 G = grids (type=” legendre ” , k=lpi_ordregl , metric=Met)
6 # *

4.2.6 Diagnostics

The user can apply different operators to a given field. Once for example, you have the Finite Element
description, you can ask Πgasus to evaluate the field or its derivatives. Now let’s take the example
of Anisotropic Diffusion, which writes :

∂tu−∇ · (K∇u) = f, Ω (4.11)
u = 0, ∂Ω (4.12)

23

In general, u denotes the temperature (inside the plasma), and K the conductivity. In this example,
we consider the evolution of a Gaussian pulse, where:

K =

(
Dµ‖ sin2(θ) + µ⊥ cos2(θ) D(µ‖ − µ⊥) sin(θ) cos(θ)

D(µ‖ − µ⊥) sin(θ) cos(θ) Dµ‖ cos2(θ) + µ⊥ sin2(θ)

)
(4.13)

We would like to visualize the perpendicular diffusion effect.

1 def func_b (x , y) :
2 lr_tetha = get_tetha (x , y)
3 return [cos (lr_tetha) , sin (lr_tetha)]
4
5 U_V .set_func (func_b)
6 lpr_values = U_V .eval (0 , operator=GRAD_S)

In figure 12, we plot the numerical solution and the transverse part.

Figure 12: Anisotropic Diffusion on the [−1, 1] × [−1, 1] square : plot of the solution (right) and the normal (transverse)
part (left)

4.3 Visualization using Pylab

Let us start by recalling a very important result for splines curves.
The following result shows how we can approach the values at some knots using the B-splines

coefficients. Let us define the average knots as, tj =
tj+1+···+tj+k−1

k−1 , for each j ∈ {1, · · · , N + 1}.

Theorem 4.7 With the above notations, we have, for each S ∈ Sk(T, I) ∩ C1,

|S(tj)− [S]j | 6 C(k)h2‖D2S‖[tj+1,tj+k−1] (4.14)

where h := maxi∈Λ(ti+1 − ti).
If we define V S =

∑
i∈Λ S(ti)Ni, then we have

‖S − V S‖ . h2, ∀S ∈ Sk(T, I) ∩ Cm, m > 2 (4.15)

24

As we can notice, the results of this form are important; we do not need to evalute the spline surface
for visualization. We will only need to associate at each average knot, the correspondant coefficient.
In the next example, we show how to do a fast-plot of a given field:

1 # Default c a l l
2 F_V .fast_plot ()

The function fast plot has the following arguments:

ai patch id the current patch,

useControlPoints is True if the B-slines coefficients will be associated to the control points as a first
approximation,

savedPoints used if useControlPoints is False. If it is True, the user must provide list P.

list P a list of the associated points to B-slines coefficients.

The user still has the possibility to create his own grid and then evaluate the field.

4.4 Parallelization

Πgasus was designed in order to be parallelized, even if the current version is sequential. In the
future it will be possible to use generic frameworks as Murge [27], PetSc [5], Hips [23] and have a
direct link with some linear solvers (Pastix [27], Mumps [2, 3]).

5 Application to a non-linear equation

In this section, we show as an application of IGA, the resolution of a non-linear partial differential
equation. We will present two methods: Picard and Newton’s algorithms.
In the sequel, we shall consider the following problem:
Find u such that: {

−∇ · (A∇u) +Bu = F (x, u) ,Ω
u = 0 , ∂Ω

(5.16)

Let Vh be the discrete space, such that Vh = span{ϕb, b ∈ {1, · · · , n}}, then the variational formula-
tion of (5.16) is : ∫

Ω
(A∇u) · ∇ϕb +

∫
Ω
Buϕb =

∫
Ω
F (x, u)ϕb, ∀b ∈ {1, · · · , n} (5.17)

thus, by expanding uh over Vh, using uh =
∑

b∈{1,··· ,n}[u]bϕb, we get :∑
b∈{1,··· ,n}

[u]b{
∫

Ω
(A∇ϕb) · ∇ϕb′ +

∫
Ω
Bϕbϕb′} =

∫
Ω
F (x, uh)ϕb′ , ∀b′ ∈ {1, · · · , n} (5.18)

this leads to solve the problem :

S[u] = F([u]) (5.19)

where,

Sb,b′ =

∫
Ω

(A∇ϕb) · ∇ϕb′ +
∫

Ω
Bϕbϕb′ , ∀b, b′ ∈ {1, · · · , n} (5.20)

F([u])b′ =

∫
Ω
F (x, uh)ϕb′ , ∀b′ ∈ {1, · · · , n} (5.21)

25

5.1 Picard’s algorithm

To solve iteratively 5.19, let us start with the Picard algorithm, which is the simplest one but also the
less accurate.

1. X0 is given,

2. knowing Xn, we solve :

SXn+1 = F(Xn) (5.22)

5.2 Newton’s algorithm

Let us define the function :

g(X) = SX −F(X) (5.23)

thus [u] is a zero of the function g. To solve 5.19, we use Newton’s method. As Jg(X) = S −JF(X), the
Newton’s method is:

• X0 is given,

• knowing Xn, we solve :

Jg(Xn)(X
n+1 −Xn) = −g(Xn) (5.24)

The algorithm is the following:

1. we compute the mass matrix associated to the function : ∂uF , i.e :

Mn
b,b′ =

∫
Ω
∂uF (x,

∑
b∈{1,··· ,n}

Xn
b ϕb)ϕbϕb′ (5.25)

2. compute the term F(Xn):

[F(Xn)]b′ =

∫
Ω
F (x,

∑
b∈{1,··· ,n}

Xn
b ϕb)ϕb′ (5.26)

3. compute g(Xn):

g(Xn) = SXn −F(Xn) (5.27)

4. compute Jg(Xn):

Jg(Xn) = S − JF(Xn) = S −Mn (5.28)

5. solve Jg(Xn)(X
n+1 −Xn) = −g(Xn), and then find Xn+1

26

5.3 Numerical results : Example from combustion theory

In this section, we shall solve the equation :

−∆u = −aeβu (5.29)

This example occurs in combustion theory, but also models the electrostatic potential in a charged
body.
The general form of solutions is :

u(x, y) =
1

β
ln

8C

aβ
− 2

β
ln |(x+A)2 + (y +B)2 − C| (5.30)

for more solutions, we refer to [15].
In order to have the function u, vanishing at the boundary, we shall take the following values of
parameters:

C = −1

2
, A = B = 0, aβ = −4

which gives,

u(x, y) = − 2

β
ln |x2 + y2 +

1

2
| (5.31)

One can easily check that u verifies:

−∆u =
4

β
eβu (5.32)

In the following test, we took β = −1.
To have homogeneous Dirichlet boundary condition, the domain will be a circle of radius

√
2

2 , cen-
tered at 0.

In figure 13, we plot the numerical solution. In figure 14, we plot the evolution of the error with
respect to the number of iterations for Picard and Newton algorithms. As expected, we recover the
good behavior of the Newton’s algorithm.

In the Appendix, we give the detailed codes for Picard’s (source code 6) and Newton’s methods
(source code 7).

6 Conclusions

In this article, we present a new library Πgasus developed to use the new paradigm of the IsoGeo-
metric Analysis. Πgasus was designed in order to give a comfortable framework for both mathema-
cians and users. The parallelization of the library is under developpement. The library will also offer
local refinements and multiple entry-points for linear solvers. Another active aera is to provide fast
solvers and preconditionners, for a specific class of domains and problems, especially in plasmas
physics problems and electromagnetism.

For the moment, the library is mainly used at the C.E.A. Cadarache, and shortly at the IPP Garching
and FOM Institute for Plasma Physics. People interested by the library, can contact the author. In the
future, it will be available for downloads, subjected to a a specific licence.

Acknowledgement : We warmly thank G. Latu, V. Grandgirard, G. Dif-Pradalier (CEA-Cadarache),
B. Nkonga (University of Nice) and E. Sonnendrücker (University of Strasbourg and IPP-Garching),
for useful discussions and advices. This project was founded by the ANYMOS-ANR.

27

Figure 13: Non-elliptic equation using Picard’s algorithm : plot of the numerical solution

Appendix

Geometry module

1 <xml>
2 <patch>
3 <param domain>
4 <n>2 ,2</n>
5 <p>1 ,1</p>
6 </param domain>
7 <knots>
8 0 . 0 , 0 . 0 , 1 . 0 , 1 . 0
9 </knots>

10 <knots>
11 0 . 0 , 0 . 0 , 1 . 0 , 1 . 0
12 </knots>
13 <points>
14 0 . 0 , 0 . 0 , 1 . 0 ;
15 1 . 0 , 0 . 0 , 1 . 0 ;
16 0 . 0 , 1 . 0 , 1 . 0 ;
17 1 . 0 , 1 . 0 , 1 . 0
18 </points>
19 </patch>
20 </xml>

Source Code 1: XML description of the unit square

1 import cad_geometry as cg
2
3 ls_file = ”domain . xml”
4 geo = cg .cad_geometry (ls_file)
5 geo .refine (patch_id=0 ,api_p= [2 , 3])
6 geo .save (” out . xml”)

Source Code 2: p-refinement example: Starting from the latter description, we use the following script to elevate the spline
degree : +2 in the ξ-direction and +3 in the η-direction.

28

Figure 14: Non-elliptic equation: evolution of the error during the (left) Picard’s and (right) Newton’s algorithms.

1 import cad_geometry as cg
2 import numpy as np
3
4 ls_file = ”domain . xml”
5 geo = cg .cad_geometry (ls_file)
6
7 N = 5
8 lpr_ksi = np .linspace (0 . 0 , 1 . 0 , N) [1 :−1]
9 lpr_eta = np .array ([0 . 3 , 0 . 7])

10 geo .refine (patch_id=0 ,api_p= [1 , 1] , apr_t=[lpr_ksi , lpr_eta])
11
12 geo .save (” out . xml”)

Source Code 3: hp-refinement example

1 import cad_geometry as cg
2 import numpy as np
3
4 ls_file = ”domain . xml”
5
6 geo = cg .cad_geometry (ls_file)
7
8 lpi_P = [1 , 1]
9 lpi_N = [1 4 , 1 4]

10
11 # . . .
12 li_d = 0
13 li_m = int (lpi_N [li_d] /2)
14 a = np .linspace (0 . 0 , 0 . 5 ,li_m+2) [1 :−1]
15 b = np .linspace (0 . 5 , 1 . 0 ,li_m+2) [1 :−1]
16 lpr_x = np .zeros (lpi_N [li_d] , dtype=np .double)
17 lpr_x [: li_m] = a ; lpr_x [li_m :] = b

29

18
19 lpr_ksi = lpr_x
20 # . . .
21
22 # . . .
23 li_d = 1
24 li_m = int (lpi_N [li_d] /2)
25 a = np .linspace (0 . 0 , 0 . 5 ,li_m+2) [1 :−1]
26 b = np .linspace (0 . 5 , 1 . 0 ,li_m+2) [1 :−1]
27 lpr_x = np .zeros (lpi_N [li_d] , dtype=np .double)
28 lpr_x [: li_m] = a ; lpr_x [li_m :] = b
29
30 lpr_eta = lpr_x
31 # . . .
32
33 geo .refine (patch_id=0 ,api_p=lpi_P , apr_t=[lpr_ksi , lpr_eta])
34
35 lpr_ksi = np .array ([0 . 5 , 0 . 5])
36 lpr_eta = np .array ([0 . 5 , 0 . 5])
37 geo .refine (patch_id=0 , apr_t=[lpr_ksi , lpr_eta])
38
39 ls_domain = ”domain p”+str (lpi_P [0] + 1) +”x”+str (lpi_P [1] + 1) +” n ”+str (lpi_N [0] + 1) +”x”+str (lpi_N←↩

[1] + 1) +” . xml”
40 geo .save (ls_domain)

Source Code 4: hpk-refinement example

1 import cad_geometry as cg
2
3 ls_file = ”domain . xml”
4 geo = cg .cad_geometry (ls_file)
5
6 # we d up l i c a t e the patch
7 geo .list *= 2
8
9 import numpy as np

10 N = [6 3 , 6 3]
11 P = [1 , 1]
12
13 lpr_ksi = np .linspace (0 . 0 , 1 . 0 , N [0]) [1 :−1]
14 lpr_eta = np .linspace (0 . 0 , 1 . 0 , N [1]) [1 :−1]
15
16 # r e f i n e the 1 s t patch
17 geo .refine (patch_id=0 ,api_p=P , apr_t=[lpr_ksi , lpr_eta])
18
19 # r e f i n e the 2nd patch
20 geo .refine (patch_id=1 ,api_p=P , apr_t=[lpr_ksi , lpr_eta])
21
22 # t r a n s l a t i o n through ex = [1 , 0]
23 v = [1 . 0 , 0 . 0]
24 geo .list [1] . translate (v)
25
26 ls_domain = ”domain p”+str (P [0] + 1) +”x”+str (P [1] + 1) +” n ”+str (N [0]) +”x”+str (N [1]) +” mp . xml”
27 geo .save (ls_domain)

Source Code 5: multi-patchs example

Scripts for the nonlinear examples

1 # ! /usr/bin/python
2
3 from test_params import *
4 from pigasus .fem .constants import *

30

5 from pigasus .fem .field import *
6 from pigasus .fem .norm import *
7 from pigasus .fem .grids import *
8 from pigasus .fem .matrix import *
9 from pigasus .fem .space import *

10
11 import pigasus .fem .fem as fem
12 fe = fem .fem (stdoutput=True ,ai_detail=0)
13
14 # *
15 # D e f i n i t i o n of the space V
16 # *
17 V = space (as_file=ls_domain)
18 V .dirichlet (faces= [[1 , 2 , 3 , 4]])
19 V .set_boundary_conditions ()
20 V .create_grids (type=” legendre ” , k=lpi_ordregl)
21 # *
22
23 # *
24 # D e f i n i t i o n of f i e l d s
25 # *
26 from numpy import log , exp
27
28 func_u0 = lambda x ,y : [− 2 . 0 * log (x * * 2 + y * * 2 + 0 . 5)]
29 U0_V = field (space=V , func = func_u0)
30
31 func_u = lambda x ,y : [− 2 . 0 * log (x * * 2 + y * * 2 + 0 . 5)]
32 U_V = field (space=V , func = func_u)
33
34 # . . . t h i s i s the non−l i n e a r part
35 def func_F (list_F , x , y) :
36 re turn [4 . 0 * exp (list_F [0])]
37 F_V = field (space=V , func = func_F , func_arguments=[U_V])
38 # *
39
40 # *
41 # D e f i n i t i o n of norms
42 # *
43 N_U = norm (field=U_V , type=NORM_L2)
44
45 # *
46 # D e f i n i t i o n of matr ices
47 # *
48 func_mass = lambda x ,y : [1 . 0]
49 M_V = matrix (spaces=[V , V] , ai_type=MASS , func=func_mass)
50 func_stiff = lambda x ,y : [1 . 0 , 0 . 0 , 0 . 0 , 1 . 0]
51 S_V = matrix (spaces=[V , V] , ai_type=STIFFNESS , func=func_stiff)
52 # *
53
54 fe .initialize ()
55
56 fe .assembly (matrices=[M_V , S_V] , fields=[U0_V , U_V , F_V])
57
58 Mass_V = M_V .to_csr ()
59 Stiffness_V = S_V .to_csr ()
60
61 from scipy .sparse .linalg import spsolve
62
63 # i n i t i a l i z a t i o n
64 # lpr u = spsolve (Mass V , U0 V . get ())
65 lpr_u = np .zeros (U_V .size)
66 U_V .set (lpr_u) ; np .savetxt (” runs/u 0 . t x t ” , lpr_u)
67
68 list_norm = []
69
70 fe .assembly (norms=[N_U])
71 list_norm .append (N_U .get ())
72
73 # *

31

74 i = 0
75 miniter = i
76 minerror = error
77 list_minerror = []
78 lpr_u_old = lpr_u
79 # *
80 while ((error > tol) and (i < niter)) :
81
82 p r i n t (” i t e r a t i o n = ”+str (i))
83
84 i = i + 1
85
86 F_V .reset ()
87
88 fe .assembly (fields=[F_V])
89 lpr_source = F_V .get ()
90 # p r i n t ”F (u) = ” , l p r s o u r c e
91 lpr_u = spsolve (Stiffness_V , lpr_source)
92
93 #computing the e r r o r between X ˆ (n+1) and Xˆ n : X ˆ (n+1) − Xˆ n
94 lpr_delta = lpr_u − lpr_u_old
95 lpr_u_old = lpr_u
96 U_V .set (lpr_u)
97
98 error = max (abs (lpr_delta))
99 i f (minerror > error) :

100 minerror = error
101 miniter = i
102 list_minerror .append (minerror)
103
104 i f (np .mod (i , nfreq) == 0) :
105 numdiag = i / nfreq
106
107 np .savetxt (” runs/u ”+str (numdiag) +” . t x t ” , lpr_u)
108
109 fe .assembly (norms=[N_U])
110 list_norm .append (N_U .get ())
111
112 np .savetxt (’ runs/l2norm ’+ls_etiq+ ’ . t x t ’ , np .array ([list_norm]))
113 np .savetxt (” runs/minerror . t x t ” , np .array (list_minerror))
114 p r i n t (” Solving done using Picard ’ s method”)
115 p r i n t (” a f t e r ”+str (i) +” i t e r a t i o n s , with a t o l e r a n c e of ”+str (tol))
116 # p r i n t ” l i s t m i n e r r o r = ” , l i s t m i n e r r o r
117 # p r i n t ” l i s t n o r m = ” , l i s t n o r m

Source Code 6: Non-elliptic equation using Picard’s algorithm

1 # ! /usr/bin/python
2
3 from test_params import *
4 from scipy .io import mmread , mmwrite
5 from pigasus .fem .constants import *
6 from pigasus .fem .field import *
7 from pigasus .fem .norm import *
8 from pigasus .fem .grids import *
9 from pigasus .fem .matrix import *

10 from pigasus .fem .space import *
11
12 import pigasus .fem .fem as fem
13 fe = fem .fem (stdoutput=True ,ai_detail=0)
14
15 # *
16 # D e f i n i t i o n of the space V
17 # *
18 V = space (as_file=ls_domain)
19 V .dirichlet (faces= [[1 , 2 , 3 , 4]])
20 V .set_boundary_conditions ()

32

21 V .create_grids (type=” legendre ” , k=lpi_ordregl)
22 # *
23
24 # *
25 # D e f i n i t i o n of f i e l d s
26 # *
27 from numpy import log , exp
28
29 func_u0 = lambda x ,y : [− 2 . 0 * log (x * * 2 + y * * 2 + 0 . 5)]
30 U0_V = field (space=V , func = func_u0)
31
32 func_u = lambda x ,y : [− 2 . 0 * log (x * * 2 + y * * 2 + 0 . 5)]
33 U_V = field (space=V , func = func_u)
34
35 # . . . t h i s i s the non−l i n e a r part
36 def func_F (list_F , x , y) :
37 re turn [4 . 0 * exp (list_F [0])]
38 F_V = field (space=V , func = func_F , func_arguments=[U_V])
39
40 def func_dF (list_F , x , y) :
41 re turn [4 . 0 * exp (list_F [0])]
42 dF_V = field (space=V , func = func_dF , func_arguments=[U_V])
43 # *
44
45 # *
46 # D e f i n i t i o n of norms
47 # *
48 N_U = norm (field=U_V , type=NORM_L2)
49 # *
50
51 # *
52 # D e f i n i t i o n of matr ices
53 # *
54 func_mass = lambda x ,y : [1 . 0]
55 Ma_V = matrix (spaces=[V , V] , ai_type=MASS , func=func_mass)
56
57 Mn_V = matrix (spaces=[V , V] , ai_type=MASS , func=func_dF , func_arguments=[U_V])
58
59 func_stiff = lambda x ,y : [1 . 0 , 0 . 0 , 0 . 0 , 1 . 0]
60 S_V = matrix (spaces=[V , V] , ai_type=STIFFNESS , func=func_stiff)
61 # *
62
63 fe .initialize ()
64
65 fe .assembly (matrices=[Ma_V ,S_V] , fields=[U0_V , U_V])
66
67 Mass_V = Ma_V .to_csr ()
68 Stiffness_V = S_V .to_csr ()
69
70 from scipy .sparse .linalg import spsolve
71
72 # i n i t i a l i z a t i o n
73 # lpr u = spsolve (Mass V , U0 V . get ())
74 lpr_u = np .zeros (U_V .size)
75 # p r i n t ” s i z e : ” , U V . s i z e
76 U_V .set (lpr_u) ; np .savetxt (” runs/u 0 . t x t ” , lpr_u)
77
78 list_norm = []
79
80 fe .assembly (norms=[N_U])
81 list_norm .append (N_U .get ())
82
83 # *
84 i = 0
85 miniter = i
86 minerror = error
87 list_minerror = []
88 # *
89 while ((error > tol) and (i < niter)) :

33

90
91 p r i n t (” i t e r a t i o n = ”+str (i))
92
93 i = i + 1
94
95 F_V .reset ()
96 dF_V .reset ()
97 fe .assembly (fields=[F_V , dF_V])
98 fe .assembly (matrices=[Mn_V])
99

100 # get the assemblied terms
101 M_n = Mn_V .to_csr ()
102 lpr_source = F_V .get ()
103
104 #compute g (Xˆ n)
105 lpr_rhs = − Stiffness_V .dot (lpr_u) + lpr_source
106
107 #compute J n
108 J_n = Stiffness_V − M_n
109 lpr_delta = spsolve (J_n , lpr_rhs)
110
111 #compute X ˆ (n+1) = Xˆ n + d e l t a
112 lpr_u = lpr_u + lpr_delta
113
114 U_V .set (lpr_u)
115
116 error = max (abs (lpr_delta))
117 i f (minerror > error) :
118 minerror = error
119 miniter = i
120 list_minerror .append (minerror)
121
122 i f (np .mod (i , nfreq) == 0) :
123 numdiag = i / nfreq
124 np .savetxt (” runs/u ”+str (numdiag) +” . t x t ” , lpr_u)
125
126 fe .assembly (norms=[N_U])
127 list_norm .append (N_U .get ())
128
129 np .savetxt (’ runs/l2norm ’+ls_etiq+ ’ . t x t ’ , np .array ([list_norm]))
130 np .savetxt (” runs/minerror . t x t ” , np .array (list_minerror))
131 p r i n t (” Solving done using Newton ’ s method”)
132 p r i n t (” a f t e r ”+str (i) +” i t e r a t i o n s , with a t o l e r a n c e of ”+str (tol))
133 p r i n t ” f i n a l e r r o r i s ” , str (minerror)

Source Code 7: Non-elliptic equation using Newton’s algorithm

34

References

[1] Abiteboul, J., Latu, G., Grandgirard, V., Ratnani, A., Sonnendrücker, E., and Strugarek, A. Solv-
ing the vlasov equation in complex geometries. ESAIM: Proc., 32:103–117, 2011.

[2] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. A fully asynchronous multifrontal
solver using distributed dynamic scheduling. SIAM Journal on Matrix Analysis and Applications,
23(1):15–41, 2001.

[3] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet. Hybrid scheduling for the parallel
solution of linear systems. Parallel Computing, 32(2):136–156, 2006.

[4] Back, A., Crestetto, A., Ratnani, A., and Sonnendrücker, E. An axisymmetric pic code based on
isogeometric analysis. ESAIM: Proc., 32:118–133, 2011.

[5] Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. Efficient man-
agement of parallelism in object oriented numerical software libraries. In E. Arge, A. M. Bru-
aset, and H. P. Langtangen, editors, Modern Software Tools in Scientific Computing, pages 163–202.
Birkhäuser Press, 1997.

[6] Y. Bazilevs, M.-C. Hsu, and M.A. Scott. Isogeometric fluidøstructure interaction analysis with
emphasis on non-matching discretizations, and with application to wind turbines. Computer
Methods in Applied Mechanics and Engineering, (0):–, 2012.

[7] Dmitry Berdinsky, Min jae Oh, Tae wan Kim, and Bernard Mourrain. On the problem of insta-
bility in the dimension of a spline space over a t-mesh. Computers Graphics, 36(5):507 – 513, 2012.
Shape Modeling International (SMI) Conference 2012.

[8] A. Buffa, D. Cho, and M. Kumar. Characterization of t-splines with reduced continuity order on
t-meshes. Computer Methods in Applied Mechanics and Engineering, 201-204(0):112 – 126, 2012.

[9] A. Buffa, C. de Falco, and G. Sangalli. Isogeometric analysis: Stable elements for the 2d stokes
equation. International Journal for Numerical Methods in Fluids, 65(11-12):1407–1422, 2011.

[10] A. Buffa, J. Rivas, G. Sangalli, and R. Vázquez. Isogeometric discrete differential forms in three
dimensions. SIAM J. Numerical Analysis, 49(2):818–844, 2011.

[11] A. Buffa, G. Sangalli, and R. V·zquez. Isogeometric analysis in electromagnetics: B-splines ap-
proximation. Computer Methods in Applied Mechanics and Engineering, 199(17ø20):1143 – 1152,
2010.

[12] E. Cohen, T. Martin, R.M. Kirby, T. Lyche, and R.F. Riesenfeld. Analysis-aware modeling: Un-
derstanding quality considerations in modeling for isogeometric analysis. Computer Methods
in Applied Mechanics and Engineering, 199(5-8):334 – 356, 2010. Computational Geometry and
Analysis.

[13] J.A Cottrell, T. Hughes, and Y. Bazilevs. Isogeometric Analysis, toward Integration of CAD and FEA.
John Wiley & Sons, Ltd, first edition, 2009.

[14] N. Crouseilles, A. Ratnani, and E. Sonnendrücker. An isogeometric analysis approach for the
study of the gyrokinetic quasi-neutrality equation. Journal of Computational Physics, 231:373–393,
2012.

35

[15] Polyanin A. D. and Zaitsev V. F. Handbook of Nonlinear Partial Differential Equations. Chapman,
Hall CRC, 2004. BocaRaton.

[16] L. Beirào da Veiga, A. Buffa, D. Cho, and G. Sangalli. Isogeometric analysis using t-splines on
two-patch geometries. Computer Methods in Applied Mechanics and Engineering, 200(21-22):1787 –
1803, 2011.

[17] L. Beirào da Veiga, A. Buffa, D. Cho, and G. Sangalli. Analysis-suitable t-splines are dual-
compatible. Computer Methods in Applied Mechanics and Engineering, (0):–, 2012.

[18] L. Beirao daVeiga, A. Buffa, J. Rivas, and G. Sangalli. Some estimates for h-p-k refinement in
isogeometric analysis. Numerische Matematik, 118:271 – 305, 2011.

[19] C. de Falco, A. Reali, and R. V·zquez. Geopdes: A research tool for isogeometric analysis of
pdes. Advances in Engineering Software, 42(12):1020 – 1034, 2011.

[20] C. DeBoor. A practical guide to splines. Springer-Verlag, New York, applied mathematical sciences
27 edition, 2001.

[21] R.A. DeVore and G.G. Lorentz. Constructive Approximation. Springer-Verlag, Berlin, Heidelberg,
1993.

[22] Michael R. Dörfel, Bert Jüttler, and Bernd Simeon. Adaptive isogeometric analysis by local h-
refinement with t-splines. Computer Methods in Applied Mechanics and Engineering, 199(5-8):264 –
275, 2010. Computational Geometry and Analysis.

[23] Jérémie Gaidamour and Pascal Hénon. HIPS : a parallel hybrid direct/iterative solver based on
a Schur complement approach. In PMAA 08, Neuchâtel, Suisse, 2008-06.

[24] Carlotta Giannelli, Bert Juttler, and Hendrik Speleers. Thb-splines: The truncated basis for hi-
erarchical splines. Computer Aided Geometric Design, 29(7):485 – 498, 2012. Geometric Modeling
and Processing 2012.

[25] Hector Gomez, Thomas J.R. Hughes, Xes˙s Nogueira, and Victor M. Calo. Isogeometric analysis
of the isothermal navierøstokesøkorteweg equations. Computer Methods in Applied Mechanics and
Engineering, 199(25ø28):1828 – 1840, 2010.

[26] Ch. Heinrich, B. Simeon, and St. Boschert. A finite volume method on nurbs geometries and its
application in isogeometric fluidøstructure interaction. Mathematics and Computers in Simulation,
82(9):1645 – 1666, 2012.

[27] P. Hénon, P. Ramet, and J. Roman. PaStiX: A High-Performance Parallel Direct Solver for Sparse
Symmetric Definite Systems. Parallel Computing, 28(2):301–321, January 2002.

[28] C. PrudhH́omme, V. Chabannes, V. Doyeux, M. Ismail, A. Samake, and G. Pena. Feel++: A
computational framework for galerkin methods and advanced numerical methods. 2012. Sub-
mitted.

[29] Ming-Chen Hsu and Yuri Bazilevs. Blood vessel tissue prestress modeling for vascular
fluidøstructure interaction simulation. Finite Elements in Analysis and Design, 47(6):593 – 599,
2011. The Twenty-Second Annual Robert J. Melosh Competition.

[30] Qi-Xing Huang, Shi-Min Hu, and Ralph R. Martin. Fast degree elevation and knot insertion for
b-spline curves. Computer Aided Geometric Design, 22(2):183 – 197, 2005.

36

[31] T. Hughes. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover
Publications Inc., 2003.

[32] T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs. Isogeometric analysis: Cad, finite elements, nurbs,
exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering,
194(39-41):4135 – 4195, 2005.

[33] Alexander Konyukhov and Karl Schweizerhof. Geometrically exact theory for contact interac-
tions of 1d manifolds. algorithmic implementation with various finite element models. Computer
Methods in Applied Mechanics and Engineering, 205ø208(0):130 – 138, 2012. Special Issue on Ad-
vances in Computational Methods in Contact Mechanics dedicated to the memory of Professor
J.A.C. Martins.

[34] W. Tiller L. Piegl. The NURBS Book. Springer-Verlag, Berlin, Heidelberg, 1995. second ed.

[35] T. Martin, E. Cohen, and R.M. Kirby. Volumetric parameterization and trivariate b-spline fitting
using harmonic functions. Computer Aided Geometric Design, 26(6):648 – 664, 2009. Solid and
Physical Modeling 2008, ACM Symposium on Solid and Physical Modeling and Applications.

[36] Tobias Martin and Elaine Cohen. Volumetric parameterization of complex objects by respecting
multiple materials. Computers Graphics, 34(3):187 – 197, 2010. Shape Modelling International
(SMI) Conference 2010.

[37] Tobias Martin, Elaine Cohen, and Robert M. Kirby. Mixed-element volume completion from
nurbs surfaces. Computers Graphics, 36(5):548 – 554, 2012. Shape Modeling International (SMI)
Conference 2012.

[38] Goldman R. N. and Lyche T. Knot Insertion and Deletion Algorithms for B-Spline Curves and Sur-
faces. SIAM, Philadelphia, USA, 1993.

[39] N. Nguyen-Thanh, H. Nguyen-Xuan, S.P.A. Bordas, and T. Rabczuk. Isogeometric analysis us-
ing polynomial splines over hierarchical t-meshes for two-dimensional elastic solids. Computer
Methods in Applied Mechanics and Engineering, 200(21-22):1892 – 1908, 2011.

[40] L.A. Piegl and W. Tiller. The NURBS book. Springer Verlag, 1997.

[41] O. Pironneau, F. Hecht, and A. Le Hyaric. Freefem++.
http://www.freefem.org/ff++/ftp/freefem++doc.pdf.

[42] Hartmut Prautzsch and Bruce Piper. A fast algorithm to raise the degree of spline curves. Com-
put. Aided Geom. Des., 8:253–265, October 1991.

[43] A. Ratnani. Caid : A cad tool for isogeometric computational domains. INRIA report: In prepa-
ration.

[44] A. Ratnani. Isogeometric analysis in plasma physics and electromagnetism. 2011. Phd thesis,
INRIA, Université de Strasbourg. URL : http://tel.archives-ouvertes.fr/tel-00628060/en/.

[45] A. Ratnani and E. Sonnendrücker. An arbitrary high-order spline finite element solver
for the time domain maxwell equations. Journal of Scientific Computing, pages 1–20, 2011.
10.1007/s10915-011-9500-8.

[46] A. Ratnani and E. Sonnendrücker. Isogeometric analysis in reduced magnetohydrodynamics.
Computational Science & Discovery, 5(1):014007, 2012.

37

[47] Daniel Rypl and Boek Patz·k. Object oriented implementation of the t-spline based isogeometric
analysis. Advances in Engineering Software, 50(0):137 – 149, 2012. CIVIL-COMP.

[48] Dominik Schillinger, Luca Dedè, Michael A. Scott, John A. Evans, Michael J. Borden, Ernst
Rank, and Thomas J.R. Hughes. An isogeometric design-through-analysis methodology based
on adaptive hierarchical refinement of nurbs, immersed boundary methods, and t-spline cad
surfaces. Computer Methods in Applied Mechanics and Engineering, 2012.

[49] Dominik Schillinger and Ernst Rank. An unfitted hp-adaptive finite element method based on
hierarchical b-splines for interface problems of complex geometry. Computer Methods in Applied
Mechanics and Engineering, 200(47-48):3358 – 3380, 2011.

[50] L. L. Schumaker. Spline Functions: Basic Theory. Wiley (New York), 1981.

[51] M.A. Scott, X. Li, T.W. Sederberg, and T.J.R. Hughes. Local refinement of analysis-suitable t-
splines. Computer Methods in Applied Mechanics and Engineering, 213-216(0):206 – 222, 2012.

[52] T.W. Sederberg, D.L. Cardon, J. Zheng, and T. Lyche. T-spline simplification and local refine-
ment. ACM Trans, Graphics, 23:276–283, 2004.

[53] S. Shojaee, E. Izadpanah, N. Valizadeh, and J. Kiendl. Free vibration analysis of thin plates by
using a nurbs-based isogeometric approach. Finite Elements in Analysis and Design, 61(0):23 – 34,
2012.

[54] Dokken T. Workshop on: ”Non-Standard Numerical Methods for PDE’s”, Pavia, Italy, jun 29 -
jul 02.

[55] Li Tian, Falai Chen, and Qiang Du. Adaptive finite element methods for elliptic equations over
hierarchical t-meshes. Journal of Computational and Applied Mathematics, 236(5):878 – 891, 2011.
The 7th International Conference on Scientific Computing and Applications, June 13-16, 2010,
Dalian, China.

[56] A.-V. Vuong, C. Giannelli, B. Juttler, and B. Simeon. A hierarchical approach to adaptive local
refinement in isogeometric analysis. Computer Methods in Applied Mechanics and Engineering,
200(49-52):3554 – 3567, 2011.

[57] A.-V. Vuong, Ch. Heinrich, and B. Simeon. Isogat: A 2d tutorial matlab code for isogeometric
analysis. Computer Aided Geometric Design, 27(8):644 – 655, 2010. Advances in Applied Geometry.

[58] Ping Wang, Jinlan Xu, Jiansong Deng, and Falai Chen. Adaptive isogeometric analysis using ra-
tional pht-splines. Computer-Aided Design, 43(11):1438 – 1448, 2011. Solid and Physical Modeling
2011.

[59] Gang Xu, Bernard Mourrain, Régis Duvigneau, and André Galligo. Optimal analysis-aware
parameterization of computational domain in 3d isogeometric analysis. Computer-Aided Design,
2011.

[60] Gang Xu, Bernard Mourrain, Régis Duvigneau, and André Galligo. Parameterization of com-
putational domain in isogeometric analysis: Methods and comparison. Computer Methods in
Applied Mechanics and Engineering, 200(23-24):2021 – 2031, 2011.

38

	Introduction
	An overview on IsoGeometric Analysis
	Basic properties of B-splines
	Multivariate tensor product splines
	Splines in CAD
	Fundamental geometric operations
	NURBS
	Modeling conics using NURBS
	Multivariate tensor product NURBS
	IsoGeometric Analysis
	Refinement strategies
	Patch
	Grid generation

	Introducing gasus
	Spaces Definition
	Fields Definition
	Matrices Definition
	Initialization
	Assembling Process
	Solving the linear system
	Computing the error norm

	Dive into gasus
	Geometry Module
	Formats
	Geometry utilities

	gasus architecture
	Spaces
	Vectorial spaces
	Fields
	Matrices
	Grids
	Diagnostics

	Visualization using Pylab
	Parallelization

	Application to a non-linear equation
	Picard's algorithm
	Newton's algorithm
	Numerical results : Example from combustion theory

	Conclusions
	References

