# On the hull number of some graph classes 

Julio Araujo, Victor Campos, Frédéric Giroire, Nicolas Nisse, Leonardo Sampaio, Ronan Soares

## To cite this version:

Julio Araujo, Victor Campos, Frédéric Giroire, Nicolas Nisse, Leonardo Sampaio, et al.. On the hull number of some graph classes. Theoretical Computer Science, Elsevier, 2013, 475, pp.1-12. 10.1016/j.tcs.2012.12.035 . hal-00770650

## HAL Id: hal-00770650 <br> https://hal.inria.fr/hal-00770650

Submitted on 7 Jan 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

# On the hull number of some graph classes. ${ }^{\text {th }}$ 

J. Araujo ${ }^{\text {a,b,* }}$, V. Campos ${ }^{\text {b }}$, F. Giroire ${ }^{\text {a }}$, N. Nisse ${ }^{\text {a, } 1}$, L. Sampaio ${ }^{\text {a, }, 1,2}$, R. Soares ${ }^{\text {a,b, }}{ }^{\text {, }}$<br>${ }^{a}$ MASCOTTE Project, I3S (CNRS \& UNS) and INRIA, INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 Sophia-Antipolis Cedex France.<br>${ }^{b}$ ParGO Research Group - Universidade Federal do Ceará - UFC - Campus do Pici, Bloco 910. 60455-760 Fortaleza, CE - Brazil.


#### Abstract

In this paper, we study the geodetic convexity of graphs focusing on the problem of the complexity to compute a minimum hull set of a graph in several graph classes.

For any two vertices $u, v \in V$ of a connected graph $G=(V, E)$, the closed interval $I[u, v]$ of $u$ and $v$ is the the set of vertices that belong to some shortest $(u, v)$-path. For any $S \subseteq V$, let $I[S]=\bigcup_{u, v \in S} I[u, v]$. A subset $S \subseteq V$ is geodesically convex or convex if $I[S]=S$. In other words, a subset $S$ is convex if, for any $u, v \in S$ and for any shortest $(u, v)$-path $P, V(P) \subseteq S$. Given a subset $S \subseteq V$, the convex hull $I_{h}[S]$ of $S$ is the smallest convex set that contains $S$. We say that $S$ is a hull set of $G$ if $I_{h}[S]=V$. The size of a minimum hull set of $G$ is the hull number of $G$, denoted by $h n(G)$. The Hull Number problem is to decide whether $h n(G) \leq k$, for a given graph $G$ and an integer $k$. Dourado et al. showed that this problem is NP-complete in general graphs.

In this paper, we answer an open question of Dourado et al. [1] by showing that the HULL Number problem is NP-hard even when restricted to the class of bipartite graphs. Then, we design polynomial time algorithms to solve the HULL NUMBER problem in several graph classes. First, we deal with the class of complements of bipartite graphs. Then, we generalize some results in [2] to the class of $(q, q-4)$-graphs and to cacti. Finally, we prove tight upper bounds on the hull numbers. In particular, we show that the hull number of an $n$-node graph $G$ without simplicial vertices is at most $1+\left\lceil\frac{3(n-1)}{5}\right\rceil$ in general, at most $1+\left\lceil\frac{n-1}{2}\right\rceil$ if $G$ is regular or has no triangle, and at most $1+\left\lceil\frac{n-1}{3}\right\rceil$ if $G$ has girth at least 6 . Keywords: Graph Convexity, Hull Number, Bipartite Graph, Cobipartite Graph, Cactus Graph, ( $q, q-4$ )-Graph.


[^0]
## 1. Introduction

A classical example of convexity is the one defined in Euclidean spaces. In an Euclidean space $E$, a set $S \subseteq E$ is said to be convex if for any two points $x$ and $y$ of $S,[x, y] \subseteq S$, i.e., the set of points lying in the straight line segment between $x$ and $y$ also belongs to $S$. Note that if two convex sets $X, Y \subseteq E$ contain a given set $S \subseteq E$ of points, then their intersection $X \cap Y$ is also a convex set of $E$ containing $S$. Hence, we can define the convex hull of $S$ as the minimum convex set that contains $S$. Reciprocally, given a convex set $S$ of $E$, a hull set of $S$ is any subset $S^{\prime}$ of $S$ such that $S$ is the convex hull of $S^{\prime}$. A naive way to compute the convex hull $H$ of a set $S$ consists in starting with $H=S$ and, while it is possible, adding $[x, y]$ to $H$ for any $x, y \in H$. However there exist more efficient algorithms. For instance, for any set $S$ of a $d$-dimensional euclidean space, the gift wrapping algorithm computes the convex hull and a minimum-inclusion hull set of $S$ in polynomial-time in the size of $S$ ( $d$ being fixed). For more results concerning the convexity in Euclidean spaces, we refer to [3].

In order to capture the abstract notion of convexity, [4] defines an alignment over a finite set $X$ as a family $\mathcal{C}$ of subsets of $X$ that is closed under intersection and that contains both $X$ and the empty set. The members of $\mathcal{C}$ are called the convex sets of $X$. The pair $(X, \mathcal{C})$ is then called an aligned space. An example of aligned space $(E, C)$ is the one where $E$ is an euclidean space and $\mathcal{C}=\{H \subseteq E: \forall x, y \in H,[x, y] \subseteq H\}$. Given an aligned space $(X, \mathcal{C})$, the definitions of convex hull and hull set are generalized as follows. For any $S \subseteq X$, the convex hull of $S$ is the smallest member of $\mathcal{C}$ containing $S$. For any $S \in \mathcal{C}$, a hull set of $S$ is a set $S^{\prime} \subseteq S$ such that $S$ is the convex hull of $S^{\prime}$.

Various notions of convexity can be defined in graphs as specific alignments over the set of vertices. This paper is devoted to the study of the geodetic convexity of graphs. Let $G=(V, E)$ be a connected undirected graph. For any $u, v \in V$, let the closed interval $I[u, v]$ of $u$ and $v$ be the the set of vertices that belong to some shortest $(u, v)$-path. The closed interval of a set of vertices can be seen as an analog to segments in Euclidian spaces. For any $S \subseteq V$, let $I[S]=\bigcup_{u, v \in S} I[u, v]$. A subset $S \subseteq V$ is geodesically convex or convex if $I[S]=S$. In this paper convexity refers to the geodesical variant. In other words, a subset $S$ is convex if, for any $u, v \in S$ and for any shortest $(u, v)$-path $P, V(P) \subseteq S$. That is, the geodetic convexity can be defined as the alignment $\mathcal{C}$ over $V$ where $\mathcal{C}=\{S \subseteq V: I[S]=S\}$.

Given a subset $S \subseteq V$, the convex hull $I_{h}[S]$ of $S$ is the smallest convex set that contains $S$. We say that $S$ is a hull set of $G$ if $I_{h}[S]=V$. That is, $S$ is a hull set of $G$ if, starting from the vertices of $S$ and successively adding in $S$ the vertices in some shortest path between two vertices in $S$, we eventually obtain $V$. The size of a minimum hull set of $G$ is the hull number of $G$, denoted by $h n(G)$. The Hull Number problem is to decide whether $h n(G) \leq k$, for a given graph $G$ and an integer $k$ [5]. This problem is known to be NP-complete in general graphs [1]. In this paper, we consider the problem of the complexity to compute an inclusion-minimum hull set of a graph in several graph classes.

Our results. We first answer an open question of Dourado et al. [1] by showing that the Hull Number problem is NP-hard even when restricted to the class of bipartite graphs (Section 3). Then, we design polynomial time algorithms to solve the Hull Number problem in several graph classes. In Section 4, we deal with the class of complements of bipartite graphs. In

Section 5 we generalize some results in [2] to the class of ( $q, q-4$ )-graphs. Section 6 is devoted to the class of cacti. Finally, we prove tight upper bounds on the hull number of certain graphs in Section 7. In particular, we show that the hull number of an $n$-node graph $G$ without simplicial vertices is at most $1+\left\lceil\frac{3(n-1)}{5}\right\rceil$ in general, at most $1+\left\lceil\frac{n-1}{2}\right\rceil$ if $G$ is regular or has no triangle, and at most $1+\left\lceil\frac{n-1}{3}\right\rceil$ if $G$ has girth at least 6 .

Related work. In the seminal work [5], the authors present some upper and lower bounds on the hull number of general graphs and characterize the hull number of some particular graphs. The corresponding minimization problem has been shown to be NP-complete [1]. Dourado et al. also proved that the hull number of unit interval graphs, cographs and split graphs can be computed in polynomial time [1]. Bounds on the hull number of triangle-free graphs are shown in [6]. The hull number of the cartesian and the strong product of two connected graphs is studied in [7, 8]. In [9], the authors have studied the relationship between the Steiner number and the hull number of a given graph. An oriented version of the Hull Number problem is studied in [10, 11].

Other parameters related to the geodetic convexity have been studied in [12, 13]. Variations of graph convexity have been further proposed and studied. For instance, the monophonic convexity that deals with induced paths instead of shortest paths is studied in [4, 14]. Another example is the $P_{3}$-convexity where just paths of order three are considered [4, 15]. Other variants of graph convexity and other parameters are mentioned in [16].

## 2. Preliminaries

In this paper, we adopt the graph terminology defined in [17]. Otherwise stated, all graphs considered in this work are simple, undirected and connected. Let $G=(V, E)$ be a graph. Given a vertex $v, N(v)$ denotes the (open) neighborhood of $v$, i.e., the set of neighbors of $v$. Let $N[v]=$ $N(v) \cup\{v\}$ be the closed neighborhood of $v$. A vertex $v$ is universal if $N[v]=V$. A vertex is simplicial if $N[v]$ induces a complete subgraph in $G$. Finally, a subgraph $H$ of $G$ is isometric if, for any $u, v \in V(H)$, the distance $\operatorname{dist}_{H}(u, v)$ between $u$ and $v$ in $H$ equals $\operatorname{dist}_{G}(u, v)$.

This section is devoted to basic lemmas on hull sets. These lemmas will serve as cornerstone of most of the results presented in this paper.

Lemma 1 ([5]). For any hull set $S$ of a graph G, S contains all simplicial vertices of $G$.
Lemma 2 ([1]). Let $G$ be a graph which is not complete. No hull set of $G$ with cardinality hn $(G)$ contains a universal vertex.

Lemma 3 ([1]). Let $G$ be a graph, $H$ be an isometric subgraph of $G$ and $S$ be any hull set of $H$. Then, the convex hull of $S$ in $G$ contains $V(H)$.

Lemma 4 ([1]). Let $G$ be a graph and $S$ a proper and non-empty subset of $V(G)$. If $V(G) \backslash S$ is convex, then every hull set of $G$ contains at least one vertex of $S$.


Figure 1: Subgraph of the bipartite instance $G(\mathcal{F})$ containing the gadget of a variable $x_{i}$ that appears positively in clauses $C_{1}$ and $C_{2}$, and negatively in $C_{8}$. If $x_{i}$ appears positively in $C_{j}$, link $a_{i}^{5}$ to $c_{j}$ through $y_{i}^{j}$. If it appears negatively, we use $b_{i}^{5}$ instead of $a_{i}^{5}$.

## 3. Bipartite graphs

In this section, we answer an open question of Dourado et al. [1] by showing that the Hull Number Problem is NP-complete in the class of bipartite graphs. Since the Hull Number Problem is in NP, as proved in [1], it only remains to prove the following theorem:

Theorem 1. The Hull Number problem is NP-hard in the class of bipartite graphs.
Proof. To prove this theorem, we adapt the proof presented in [1]. We reduce the 3-SATisfiability Problem to the Hull Number problem in bipartite graphs. Let us consider the following instance of 3-SAT. Given a formula in the conjunctive normal form, let $\mathcal{F}=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ be the set of its 3 -clauses and $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ the set of its boolean variables. We may assume that $m=2^{p}$, for a positive integer $p \geq 1$, since it is possible to add dummy variables and clauses without changing the satisfiability of $\mathcal{F}$ and such that the size of the instance is at most twice the size of the initial instance. Moreover, we also assume, without loss of generality, that each variable $x_{i}$ and its negation appear at least once in $\mathcal{F}$ (otherwise the clauses where $x_{i}$ appeared could always be satisfied).

Let us construct the bipartite graph $G(\mathcal{F})$ as follows. First, let $T$ be a full binary tree of height $p$ rooted in $r$ with $m=2^{p}$ leaves, and let $L=\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$ be the set of leaves of $T$. We then construct a graph $H$ as follows. First, let us add a vertex $u$ that is adjacent to every vertex in $L$. Then, any edge $\{w, v\} \in E(T)$ with $w$ the parent of $v$ is replaced by a path with $2^{h(v)}$ edges, where $h(v)$ is the distance between $v$ and any of its descendent leaves. Note that, in $H$, the distance between $r$ and any leaf is $\sum_{i=0}^{p-1} 2^{i}=2^{p}-1=m-1$. Moreover, it is easy to see that $|V(H)|=O(m \cdot \log m)$.

The following claims are proved in [1].
Claim 1. Let $v, w \in V(T) \backslash\{r\}$. The closed interval of $v, w$ in $H$ contains the parents of $v$ in $T$ if and only if $v$ and $w$ are siblings in $T$.

Claim 2. The set $L$ is a minimal hull set of $H$.
Then, let $H^{\prime}$ be obtained by adding a one degree vertex $u^{\prime}$ adjacent to $u$ in $H$. Finally, we build a graph $G(\mathcal{F})$ from $H^{\prime}$ by adding, for any variable $x_{i}, i \leq n$, the gadget defined as follows.

Let us start with a cycle $\left\{a_{i}^{1}, a_{i}^{2}, v_{i}^{1}, b_{i}^{2}, b_{i}^{1}, b_{i}^{3}, b_{i}^{4}, v_{i}^{2}, a_{i}^{4}, a_{i}^{3}\right\}$ plus the edge $\left\{v_{i}^{2}, v_{i}^{1}\right\}$. Then, add the vertex $v_{i}^{3}$ as common neighbor of $v_{i}^{2}$ and $u$. Add a neighbor $b_{i}^{5}$ (resp., $a_{i}^{5}$ ) adjacent to $b_{i}^{3}$ (resp., $a_{i}^{3}$ ) and a path of length $2^{h(r)}-3=m-3$ edges between $b_{i}^{5}$ (resp., $a_{i}^{5}$ ) and $r$. Let $D$ be the set of internal vertices of all these $2 n$ paths between $a_{i}^{5}$, resp., $b_{i}^{5}$, and $r, i \leq n$. Finally, for any clause $C_{j}$ in which $x_{i}$ appears, if $x_{i}$ appears positively (resp., negatively) in $C_{j}$ then add a common neighbor $y_{i}^{j}$ between $c_{j}$ and $a_{i}^{5}$ (resp., $b_{i}^{5}$ ). See an example of such a gadget in Figure 1. Note that $|V(G(\mathcal{F}))|=O(m \cdot(n+\log m))$.
Lemma 5. $G(\mathcal{F})$ is a bipartite graph.
Proof. Let us present a proper 2-coloring $c$ of $G(\mathcal{F})$. Let $c(r)=1$, and for each vertex $w$ in $V(H)$, define $c(w)$ as 1 if $w$ is in an even distance from $r$, and 2 otherwise. Clearly, $c$ is a partial proper coloring of $G(\mathcal{F})$ and moreover we have $c(u)=1$ and $c\left(c_{j}\right)=2$, for any $j \in\{1, \ldots, m\}$ (Indeed, any $c_{i}$ is at distance $m-1$ (odd) of $r$ in $H$ ). Let $c\left(u^{\prime}\right)=2$. For every $i \in\{1, \ldots, n\}$ and for any $j$ such that $x_{i} \in C_{j}$, let $c\left(y_{i}^{j}\right)=1$. For any $i \leq n$, for any $x \in\left\{b_{i}^{5}, a_{i}^{5}, v_{i}^{3}, b_{i}^{4}, a_{i}^{4}, b_{i}^{1}, v_{i}^{1}, a_{i}^{1}\right\}$, $c(x)=2$.

Again, this partial coloring of $G(\mathcal{F})$ is proper. One can easily verify that this coloring can be extended to $\left\{a_{i}^{1}, a_{i}^{2}, v_{i}^{1}, b_{i}^{2}, b_{i}^{1}, b_{i}^{3}, b_{i}^{4}, v_{i}^{2}, a_{i}^{4}, a_{i}^{3}\right\}$ for any $i \leq n$. Moreover, since $c(r)=1$ and $c\left(a_{i}^{5}\right)=2\left(c\left(b_{i}^{5}\right)=2\right.$ ), for every $i \in\{1, \ldots, n\}$, and since the path that we add in $G(\mathcal{F})$ between $r$ and $a_{i}^{5}\left(b_{i}^{5}\right)$ is of odd length $m-3$, one can completely extend $c$ in order to get a proper 2-coloring of $G(\mathcal{F})$.

Claim 3. The set $V(G(\mathcal{F})) \backslash\left\{a_{i}^{1}, a_{i}^{2}, v_{i}^{1}, b_{i}^{1}, b_{i}^{2}\right\}$ is convex, for any $i \in\{1, \ldots, n\}$.
Proof. Denote $W_{i}=\left\{a_{i}^{1}, a_{i}^{2}, v_{i}^{1}, b_{i}^{1}, b_{i}^{2}\right\}$, for some $i \in\{1, \ldots, n\}$, and $W_{i}^{\prime}=\left\{a_{i}^{3}, b_{i}^{3}, v_{i}^{2}\right\}$. By contradiction, suppose that there exists an $(x, y)$-shortest path containing a vertex of $W_{i}$, for some $x, y \in V(G(\mathcal{F})) \backslash W_{i}$. Observe that it implies that that there are $x^{\prime}, y^{\prime} \in W_{i}^{\prime}$ such that $I\left[x^{\prime}, y^{\prime}\right]$ contains a vertex of $W_{i}$, since $W_{i}^{\prime}$ contains all the neighbors of $W_{i}$ in $V(G(\mathcal{F})) \backslash W_{i}$. However, it is easy to verify that for any pair $x, y \in W_{i}^{\prime}, I[x, y]$ contains no vertex of $W_{i}$. This is a contradiction.

Lemma 6. $\operatorname{hn}(G(\mathcal{F})) \geq n+1$.
Proof. Let $S$ be any hull set of $G(\mathcal{F})$. Clearly $u^{\prime} \in S$, because $u^{\prime}$ is a simplicial vertex of $G(\mathcal{F})$ (Lemma 1). Furthermore, Claim 3 and Lemma 4 imply that $S$ must contain at least one vertex $w_{i}$ of the set $\left\{a_{i}^{1}, a_{i}^{2}, v_{i}^{1}, b_{i}^{1}, b_{i}^{2}\right\}$, for every $i \in\{1, \ldots, n\}$. Hence, $|S| \geq n+1$.

The main part of the proof consists in showing:
Lemma 7. $\mathcal{F}$ is satisfiable if and only if $h n(G(\mathcal{F}))=n+1$.

First, consider that $\mathcal{F}$ is satisfiable. Given an assignment $A$ that turns $\mathcal{F}$ true, define a set $S$ as follows. For $1 \leq i \leq n$, if $x_{i}$ is true in $A$ add $a_{i}^{1}$ to $S$, otherwise add $b_{i}^{1}$ to $S$. Finally, add $u^{\prime}$ to $S$. Note that $|S|=n+1$. We show that $S$ is a hull set of $G(\mathcal{F})$. First note that $a_{i}^{5}, c_{j} \in I\left[a_{i}^{1}, u^{\prime}\right]$, for every clause $C_{j}$ containing the positive literal of $x_{i}$. Similarly, observe that $b_{i}^{5}, c_{j} \in I\left[b_{i}^{1}, u^{\prime}\right]$, for every clause $C_{j}$ containing the negative literal of $x_{i}$. Since $A$ satisfies $\mathcal{F}$, it follows $L \subseteq I_{h}[S]$. Therefore, $H$ being an isometric subgraph of $G(\mathcal{F})$, Lemma 3 and Claim 3 imply that $V(H) \subseteq I_{h}[S]$. Furthermore, the shortest paths between $r$ and $u$ have length $m$, which implies that all vertices $a_{i}^{5}, b_{i}^{5}, y_{i}^{j}(i \leq n)$ and all vertices in $D$ are included in $I_{h}[S]$. It remains to observe that $I_{h}\left[a_{i}^{5}, b_{i}^{5}, w, u^{\prime}\right]$, where $w \in\left\{a_{i}^{1}, b_{i}^{1}\right\}$, contains the variable subgraph of $x_{i}$. Therefore we have that $S$ is a hull set of $G(\mathcal{F})$.

We prove the sufficiency by contradiction. Suppose that $G(\mathcal{F})$ contains a hull set $S$ with $n+1$ vertices and that $\mathcal{F}$ is not satisfiable.

Recall that, by Lemma $1, u^{\prime} \in S$. For any $i \leq n$, let $W_{i}$ as defined in Claim 3. Recall also that there must be a vertex $w_{i} \in W_{i} \cap S$, for any $i \leq n$. Since $v_{i}^{1} \in I\left[u^{\prime}, a_{i}^{1}\right], v_{i}^{1} \in I\left[u^{\prime}, b_{i}^{1}\right], a_{i}^{2} \in$ $I\left[u^{\prime}, a_{i}^{1}\right]$ and $b_{i}^{2} \in I\left[u^{\prime}, b_{i}^{1}\right]$, we can assume, without loss of generality, that $w_{i} \in\left\{a_{i}^{1}, b_{i}^{1}\right\}$, for every $i \in\{1, \ldots, n\}$ (indeed, if $w_{i} \in\left\{v_{i}^{1}, a_{i}^{2}\right\}$, it can be replaced by $a_{i}^{1}$, and if $w_{i}=b_{i}^{2}$, it can be replaced by $b_{i}^{1}$ ). Therefore $S$ defines the following truth assignment $\mathcal{A}$ to $\mathcal{F}$. If $w_{i}=a_{i}^{1}$ set $x_{i}$ to true, otherwise set $x_{i}$ to false. As $\mathcal{F}$ is not satisfiable, there exists at least one clause $C_{j}$ not satisfied by $\mathcal{A}$.

Using the hypothesis that $\mathcal{F}$ is not satisfiable, we complete the proof by showing that there is a non empty set $U$ such that $V(G(\mathcal{F})) \backslash U$ is a convex set and $U \cap S=\emptyset$. That is, we show that $I_{h}[S] \subseteq V(G(\mathcal{F})) \backslash U$ for some $U \neq \emptyset$, contradicting the fact that $S$ is a hull set.

For any clause $C_{j}$, let us define the subset $U_{j}$ of vertices as follows. Let $P_{j}$ be the path in $T$ between $c_{j}$ and $r$, let $X_{j}$ be the $p$ vertices in $V(T) \backslash V\left(P_{j}\right)$ that are adjacent to some vertex in $P_{j}$. Then, $U_{j}$ is the union of the vertices that are either in $P_{j}$ or that are internal vertices of the paths resulting of the subdivision of the edges $\{x, y\}$ where $x, y \in P_{j} \cup X_{j}$. Another way to build the set $U_{j}$ is to start with the set of vertices in the (unique) shortest path between $c_{j}$ and $r$ in $H$ and then add successively to this set, the vertices of $V(H) \backslash(V(T) \cup\{u\})$ that are adjacent to some vertex of the current set.

Now, let $U^{\prime}=\cup_{j \in J} U_{j}$ where $J$ is the (non empty) set of clauses that are not satisfied by $\mathcal{A}$. Note that $r \in U^{\prime}$.

For any $i \leq n$, let $Z_{i}$ be defined as follows. If $w_{i}=a_{i}^{1}\left(x_{i}\right.$ assigned to true by $\left.\mathcal{A}\right)$, then $Z_{i}$ is the union of $\left\{b_{i}^{\ell}: \ell \leq 5\right\}$ with the set of the $y_{i}^{k}$ that are adjacent to $b_{i}^{5}$. Otherwise, $w_{i}=b_{i}^{1}\left(x_{i}\right.$ assigned to false by $\mathcal{A}$ ), then $Z_{i}$ is the union of $\left\{a_{i}^{\ell}: \ell \leq 5\right\}$ with the set of the $y_{i}^{k}$ that are adjacent to $a_{i}^{5}$.

Finally, let $U=U^{\prime} \cup\left(\bigcup_{i \leq n} Z_{i}\right) \cup D$. In Figure $1, U$ is depicted by the white vertices, assuming that clause $C_{2}$ is false and that $x_{i}$ is set to false by $\mathcal{A}$. Observe that $U \cap S=\emptyset$.

It remains to prove that $V(G(\mathcal{F})) \backslash U$ is a convex set. Consider the partition $\left\{A_{1}, A_{2}, A_{3}\right\}$ of $V(G(\mathcal{F})) \backslash U$ where $A_{1}=V(H) \backslash(U \cup\{u\}), A_{2}=\left\{u, u^{\prime}\right\}$ and $A_{3}=V(G(\mathcal{F})) \backslash\left(U \cup A_{1} \cup A_{2}\right)$. To prove that $V(G(\mathcal{F})) \backslash U$ is convex, let $w \in A_{i}$ and $w^{\prime} \in A_{j}$ for some $i, j \in\{1,2,3\}$. We show that $I\left[w, w^{\prime}\right] \cap U=\emptyset$ considering different cases according to the values of $i$ and $j$. Recall that $V(H) \backslash\{u\}$ induces a tree $T^{\prime}$ rooted in $r$ and that, if a vertex of $T^{\prime}$ is in $A_{1}$, then, by definition of
$U^{\prime}$, all its descendants in $T^{\prime}$ are also in $A_{1}$ (i.e., if $v \in U \cap V\left(T^{\prime}\right)$, then all ancestors of $v$ in $T^{\prime}$ are in $U$ ). It is important to note that, for any vertex $v$ in $A_{1}$, the shortest path in $G(\mathcal{F})$ from $v$ to any leaf $\ell$ of $T^{\prime}$ is the path from $v$ to $\ell$ in $T^{\prime}$ (in particular, such a shortest path does not pass through $r$ and any vertices in $D$ ).

- The case $i=j=2$, i.e., $m, m^{\prime} \in\left\{u, u^{\prime}\right\}$, is trivial;
- First, let us assume that $w \in A_{1}=V(H) \backslash(U \cup\{u\})$ and $w^{\prime} \in A_{2}=\left\{u, u^{\prime}\right\}$. If $w^{\prime}=u$ (resp., if $w^{\prime}=u^{\prime}$ ) then $I_{h}\left[w, w^{\prime}\right]$ consists of the subtree of $T^{\prime}$ rooted in $w$ union $u$ (resp., union $u$ and $u^{\prime}$ ). Hence, $I_{h}\left[w, w^{\prime}\right] \cap U=\emptyset$ because no descendants of $w$ in $T^{\prime}$ are in $U$.
- Second, let $w, w^{\prime} \in A_{1}$. If one of them, say $w$, is an ancestor of the other in $T^{\prime}$, then $I_{h}\left[w, w^{\prime}\right]$ consists of the path between them in $T^{\prime}$ (remember that $r \in U$ so $w \neq r$ ). Since no descendants of $w$ in $T^{\prime}$ are in $U, I_{h}\left[w, w^{\prime}\right] \cap U=\emptyset$. Otherwise, there are three cases: (1) either $I_{h}\left[w, w^{\prime}\right]$ consists of the path $P$ between $w$ and $w^{\prime}$ in $T^{\prime}$, or (2) $I_{h}\left[w, w^{\prime}\right]$ consists of the union of the subtree $R$ of $T^{\prime}$ rooted in $w$, the subtree $R^{\prime}$ of $T^{\prime}$ rooted in $w^{\prime}$ and $u$, or (3) $I_{h}\left[w, w^{\prime}\right]=R \cup R^{\prime} \cup P \cup\{u\}$. Again, $\left(R \cup R^{\prime} \cup\{u\}\right) \cap U=\emptyset$ because no descendants of $w$ and $w^{\prime}$ in $T^{\prime}$ are in $U$. Hence, it only remains to prove that when $P \subseteq I_{h}\left[w, w^{\prime}\right]$ then $P \cap U=\emptyset$. It is easy to check that $P \subseteq I_{h}\left[w, w^{\prime}\right]$ only in the following case: there exist $x, y, z \in V(T)$ such that $x$ is the parent of $y$ and $z$ in $T$, and $w$ (resp., $w^{\prime}$ ) is a vertex of the path resulting from the subdivision of $\{x, y\}$ (resp., $\{x, z\}$ ). In this case, it means that all clause-vertices that are descendants of $y$ and $z$ are not in $U$. Therefore $x \notin U$ and hence no descendants of $x$ are in $U$. In particular, $P \cap U=\emptyset$.
- Assume now that $w \in A_{3}$. Let $i \leq n$ such that $w$ belongs to the gadget $G_{i}$ corresponding to variable $x_{i}$. Let us assume that $w_{i}=b_{i}^{1}$. The case $w_{i}=a_{i}^{1}$ can be handled in a similar way by symmetry. Then, by definition, $U$ contains $\left\{a_{i}^{1}, \cdots, a_{i}^{5}\right\}$ and the $y_{i}^{j}$, s adjacent to $a_{i}^{5}$. With this setting, $x_{i}$ is set to false in the assignment $\mathcal{A}$. If there is a vertex $y_{i}^{j}$ adjacent to $b_{i}^{5}$, let $C_{j}$ be the other neighbor of $j_{i}^{j}$. By definition, it means that clause $C_{j}$ contains the negation of variable $x_{i}$. Since $x_{i}$ is set to false, it means that clause $C_{j}$ is satisfied and so $C_{j} \notin U$.
Let $x \in V\left(G_{i}\right) \backslash U$. Then, any shortest path $P$ from $w$ to $x$ either passes through $V\left(G_{i}\right) \backslash U$ or, there is $y_{i}^{j}$ adjacent to $b_{i}^{5}$ such that $P$ passes through $y_{i}^{j}, C_{j}, u$ and $v_{i}^{3}$ (the latter case may occur if $a \in\left\{y_{i}^{j}, b_{i}^{5}\right\}$ and $b=v_{i}^{3}$, or $a=y_{i}^{j}$ and $b \in\left\{v_{i}^{3}, v_{i}^{2}\right\}$ where $\{a, b\}=\{x, w\}$ ). Hence, such a path $P$ avoids $U$, and the result holds if $x=w^{\prime} \in A_{3} \cap G_{i}$.
Similarly, if $x \in\left\{u, u^{\prime}\right\}$, then, any shortest path $P$ from $w$ to $x$ either passes through $V\left(G_{i}\right) \backslash$ $U$ or through $y_{i}^{j}, C_{j}, u$ with $y_{i}^{j}$ adjacent to $b_{i}^{5}$. In particular, if $x=w^{\prime} \in\left\{u, u^{\prime}\right\}=A_{2}$, then the result holds.
Now, let $x=C_{j^{\prime}}$ be a leaf of $T^{\prime}$ that is not in $U$. Then, any shortest path $P$ from $w$ to $x$ either passes through $u$ or through $y_{i}^{j}, C_{j}$ and, if $j \neq j^{\prime}$, through $u$. In any case, $P$ avoids $U$. If $w^{\prime} \in A_{3} \backslash G_{i}$, any path between $w$ and $w^{\prime}$ passes through $u$ or through one or two leaves that are not in $U$. Finally, if $w^{\prime} \in A_{1}$, let $R$ be the subtree of $T^{\prime}$ rooted in $w^{\prime}$. Note,
$V(R) \subseteq I_{h}\left[w, w^{\prime}\right]$. Moreover, any shortest path from $w$ to $w^{\prime}$ contains a leaf of $R$, i.e., a leaf not in $U$. By previous remarks, in all these cases, the shortest paths between $w$ and $w^{\prime}$ avoid $u$, and $I_{h}\left[w, w^{\prime}\right]$ are disjoint from $U$.

We conclude this section by showing one approximability result. Let $\operatorname{IG}(G)$ be the incidence graph of $G$, obtained from $G$ by subdividing each edge once. That is, let us add one vertex $s_{u v}$, for each edge $u v \in E(G)$, and replace the edge $u v$ by the edges $u s_{u v}, s_{u v} v$.

Proposition 2. $h n(I G(G)) \leq h n(G) \leq 2 h n(I G(G))$.
Proof. Let $I G(G)$ be the incidence graph of $G$. Observe that any hull set of $G$ is a hull set of $I G(G)$, since for any shortest path, $P=\left\{v_{1}, \ldots, v_{k}\right\}$ in $G$ there is a shortest path $P^{\prime}=\left\{v_{1}, s_{v_{1} v_{2}}\right.$, $\left.v_{2}, \ldots, s_{v_{k-1} v_{k}}, v_{k}\right\}$ in $I G(G)$ (the edges were subdivided). Consequently, $h n(I G(G)) \leq h n(G)$. However, given a hull set $S_{h}$ of $I G(G)$, one may find a hull set of $G$ by simply replacing each vertex of $S_{h}$ that represents an edge of $G$ by its neighbors (vertices of $G$ ). Thus, $h n(G) \leq$ $2 h n(I G(G))$.

Corollary 1. If there exists a $k$-approximation algorithm $B$ to compute the hull number of bipartite graphs, then B is a $2 k$-approximation algorithm for any graph.

## 4. Complement of bipartite graphs

A graph $G=(V, E)$ is a complement of a bipartite graph if there is a partition $V=A \cup B$ such that $A$ and $B$ are cliques. In this section, we give a polynomial-time algorithm to compute a hull set of $G$ with size $h n(G)$. We start with some notation.

Given the partition $(A, B)$ of $V$, we say that an edge $u v \in E$ is a crossing-edge if $u \in A$ and $v \in B$. Denote by $S$ the set of simplicial vertices of $G$. Let $S_{A}=S \cap A$ and by $S_{B}=S \cap B$. Let $U$ be the set of universal vertices of $G$. Note that, if $G$ is not a clique, $U \cap S=\emptyset$. Let $H$ be the graph obtained from $G$ by removing the vertices in $S$ and $U$, and removing the edges intraclique, i.e., $V(H)=V \backslash(U \cup S)$ and $E(H)=\{\{u, v\} \in E: u \in A \cap V(H)$ and $v \in B \cap V(H)\}$. Let $\mathcal{C}=\left\{C_{1}, \cdots, C_{r}\right\}(r \geq 1)$ denote the set of connected components $C_{i}$ of $H$. Observe that, if $G$ is neither one clique nor the disjoint union of $A$ and $B, H$ is not empty and each connected component $C_{i}$ has at least two vertices, for every $i \in\{1, \ldots, r\}$. Indeed, any vertex in $A \backslash S_{A}$ (resp., in $B \backslash S_{B}$ ) has a neighbor in $B \cap V(H)$ (resp. in $A \cap V(H)$ ).

Theorem 3. Let $G=(A \cup B, E)$ be the complement of a bipartite n-node graph. There is an algorithm that computes $h n(G)$ and a hull set of this size in time $O\left(n^{7}\right)$.

Proof. We use the notations defined above. Recall that, by Lemma $1, S$ is contained in any hull set of $G$. In particular, if $G$ is a clique or $G$ is the disjoint union of two cliques $A$ and $B$, then $h n(G)=n$. From now on, we assume it is not the case. By Lemma 2, no vertices in $U$ belong to any minimal hull set of $G$. Now, several cases have to be considered.

Claim 4. If $U=\emptyset, S_{A} \neq \emptyset$ and $S_{B} \neq \emptyset$, then $S$ is a minimum hull set of $G$ and thus $h n(G)=|S|$.
Proof. Since $G$ has no universal vertex, a simplicial vertex in $S_{A}$ (in $S_{B}$ ) has no neighbor in $B$ (resp., in $A$ ). Since $G$ is not the disjoint union of two cliques, every vertex $u \in A \backslash S_{A}$ has a neighbor $v \in B \backslash S_{B}$ and vice-versa. Thus, $s_{a} u v s_{b}$ is a shortest $\left(s_{a}, s_{b}\right)$-path, for any $s_{a} \in A$ and $s_{b} \in B$, and then $u, v \in I_{h}[S]$.

Hence, from now on, let us assume that $U \neq \emptyset$ or, w.l.o.g., $S_{B}=\emptyset$.
Again, if there is some simplicial vertex in $G$, i.e., if $S_{A} \neq \emptyset$, all the vertices of $S$ belong to any hull set of $G$ and thus $h n(G) \geq|S|$. In fact, for each connected component of $H$, we prove that it is necessary to choose at least one of its vertices to be part of any hull set of $G$.
Claim 5. If $U \neq \emptyset$ or $S_{B}=\emptyset$ or $S_{A}=\emptyset$, then $h n(G) \geq|S|+r$.
Proof. Again, all vertices of $S$ belong to any hull set of $G$. We show that, for any $1 \leq i \leq r, V \backslash C_{i}$ is a convex set. Thus, by Lemma 4, any hull set of $G$ contains at least one vertex of $C_{i}$ for any $i \leq r$.

It is sufficient to show that no pair $u, v \in V(G) \backslash C_{i}$ can generate a vertex $v_{i}$ of $C_{i}$. By contradiction, suppose that there exists a pair of vertices $u, v \in V(G) \backslash C_{i}$ such that there is a shortest $(u, v)$-path $P$ containing a vertex $v_{i}$ of $C_{i}$. Consequently, $u$ and $v$ must not be adjacent and we consider that $u \in A$ and $v \in B$. If $U=\emptyset$, then, w.l.o.g., $S_{B}=\emptyset$ and $v$ is not simplicial and has at least one neighbor in $A$. Hence, since $U \neq \emptyset$ or $S_{b}=\emptyset, u$ and $v$ are at distance two. Consequently, $P=u v_{i} v$. However, if $v_{i} \in A, v$ belongs to $C_{i}$, because of the crossing edge $v_{i} v$, otherwise, $u \in C_{i}$. In both cases we reach a contradiction.

Now, two cases remain to be considered. We recall that $U \neq \emptyset$ or $S_{B}=\emptyset$.

1. If $r \geq 2$, then $h n(G)=|S|+r$, and we can build a minimum convex hull by taking the vertices in $S$, one arbitrary vertex in $A \cap C_{i}$ for all $i<r$ and one arbitrary vertex in $B \cap C_{r}$. Let $R=\left\{v_{1}, \ldots, v_{r}\right\}$ such that $v_{i} \in C_{i} \cap A$ for any $i<r$ and $v_{r} \in C_{r} \cap B$.

Claim 6. $S \cup R$ is a hull set of $G$.
Proof. Since all vertices in $U$ are generated by $v_{1}$ and $v_{r}$ (that are not adjacent, since they are in different components), it is sufficient to show that $S \cup R$ generates all the vertices in $C_{i}$, for any $i \in\{1, \ldots, r\}$. Actually, we show that $R$ generates all the vertices in $C_{i}$.
By contradiction, suppose that there is a vertex $z \notin I_{h}[R]$. Let $i \leq r$ such that $z \in C_{i}$. Because $C_{i}$ contains one vertex in $R$ and is connected, we can choose $z$ and $w \in C_{i} \cap I_{h}[R]$ linked by a crossing edge. We will show that $z \in I_{h}[R]$ (a contradiction), hence, w.l.o.g., we may assume that $z \in A$. If $i=r$, then $v_{1} z w$ is a shortest $\left(v_{1}, w\right)$-path and $z \in I_{h}[R]$.
Otherwise, recall that $N\left(v_{r}\right) \cap A \cap C_{r} \neq \emptyset$ and, for any $i<r, N\left(v_{i}\right) \cap B \cap C_{i} \neq \emptyset$ because $v_{i}$ is not simplicial for any $i \leq r$. Let $x \in N\left(v_{r}\right) \cap A \cap C_{r}$ and $y_{i} \in N\left(v_{i}\right) \cap B \cap C_{i}$. Note that $x \in I_{h}[R]$ because $v_{1} x v_{r}$ is a shortest $\left(v_{r}, v_{1}\right)$-path, and $y_{i} \in I_{h}[R]$ because $v_{i} y_{i} v_{r}$ is a shortest $\left(v_{r}, v_{i}\right)$-path. Hence, since $x z y_{i}$ is a shortest $\left(x, y_{i}\right)$-path, we have $z \in I_{h}[R]$.

As $|R|=r$, we conclude by Claim 5 that $h n(G)=|S|+r$.
2. If $r=1$, then $h n(G) \leq|S|+4$, and any minimum convex hull contains at most 4 vertices not in $S$.
Again, $S$ is included in any hull set of $G$ by Lemma 1, and no vertices in $U$ belong to some hull set by Lemma 2. In this case, when $H$ has just one connected component $C_{1}=C$, one vertex of $C$ may not suffice to generate this component, as in the previous case. However, we prove that at most 4 vertices in $C$ are needed.
(a) If $S_{A} \neq \emptyset$ and $S_{B} \neq \emptyset$ (and thus $U \neq \emptyset$ because Claim 4 applies otherwise), then $h n(G)=|S|+1$.
By Claim 5, we know that $h n(G) \geq|S|+1$. Let $v$ be an arbitrary vertex of $C$. We claim that $S \cup\{v\}$ is a minimum hull set of $G$. By contradiction, let $z \notin I_{h}[S \cup\{v\}]$. Since $C$ is a connected component of $H$, we may choose $z$ such that there is $w \in$ $N(z) \cap C \cap I_{h}[S \cup\{v\}]$. Moreover, we may assume w.l.o.g. that $z \in A$, and thus $w \in B$. In that case, since $S_{A} \neq \emptyset$, there is $v_{A} \in S_{A}$ and as $v_{A} w \notin E(G)$ (indeed, any vertex in $N\left(v_{A}\right) \cap B$ must be universal because $v_{A}$ is simplicial, which is not the case since $w$ is not universal because it belongs to $C$ ), $z$ is generated by $v_{A}$ and $w$.
(b) If $S_{A} \neq \emptyset$ and $S_{B}=\emptyset$, then $h n(G) \leq|S|+2$.

Let $v_{A} \in A \cap C$ be such that $\left|N\left(v_{A}\right) \cap B \cap C\right|$ is maximum. Since $v_{A}$ is not universal in $G$, there exists $x \in B$ such that $v_{A} x \notin E(G)$. Note that $x \in C$ since $x$ is not universal and $S_{B}=\emptyset$. Let $R=\left\{v_{A}, x\right\}$. Observe that $N\left(v_{A}\right) \cap B \cap C \subseteq I_{h}[R \cup S]$ since $v_{A} x \notin E$.
By contradiction, assume $V(G) \backslash I_{h}[R \cup S] \neq \emptyset$. Let $z \in V(G) \backslash I_{h}[R \cup S]$. First, suppose that $z \in A$. Since $C$ is connected in $H$, we may assume that $z$ has a neighbor $w \in I_{h}[R \cup$ $S] \cap B \cap C$. As $S_{A} \neq \emptyset$, there is $v \in S_{A}$ and as $v w \notin E(G)$ (because otherwise $w$ would be universal in $G$ and not in $C$ ), $z$ is generated by $v$ and $w$. Now suppose that $z \in B$, and now it has a neighbor $w \in I_{h}[R \cup S] \cap A \cap C$. Observe that $I_{h}[R \cup S] \cap B \subseteq N(w)$, otherwise $z$ would be in $I_{h}[R \cup S]$. However, since $N\left(v_{A}\right) \cap B \cap C \subset\left(N\left(v_{A}\right) \cap B \cap\right.$ $C) \cup\{x\} \subseteq I_{h}[R \cup S] \cap B$, we get that $N\left(v_{A}\right) \cap B \cap C \subset N(w) \cap B \cap C$, contradicting the maximality of $\left|N\left(v_{A}\right) \cap B \cap C\right|$.
(c) If $S_{A}=\emptyset$ and $S_{B}=\emptyset$, then $\operatorname{hn}(G) \leq 4$.

Let $v_{A} \in A \cap C$ be such that $\left|N\left(v_{A}\right) \cap B \cap C\right|$ is maximum and $v_{B} \in B \cap C$ be such that $\left|N\left(v_{B}\right) \cap A \cap C\right|$ is maximum. Since $v_{A}$ is not universal in $G$ and $S_{B}=\emptyset$, there exists $y \in C \cap B \backslash N\left(v_{a}\right)$, and similarly there exists $x \in C \cap A \backslash N\left(v_{B}\right)$. Let $R=\left\{v_{A}, v_{B}, x, y\right\}$. Observe that $N\left(v_{A}\right) \cap B \subseteq I_{h}[R]$ and $N\left(v_{B}\right) \cap A \subseteq I_{h}[R]$, since $v_{A} y \notin E$ and $v_{B} x \notin E$.
By contradiction, assume $V(G) \backslash I_{h}[R] \neq \emptyset$. Let $z \in V(G) \backslash I_{h}[R]$. First, suppose that $z \in A$. As in the previous case, since $C$ is connected in $H$, we may assume that $z$ has a neighbor $w \in I_{h}[R] \cap B \cap C$. Observe that $I_{h}[R] \cap A \cap C \subseteq N(w)$, otherwise $z$ would be in $I_{h}[R]$. However, since $N\left(v_{B}\right) \cap A \cap C \subset\left(N\left(v_{B}\right) \cap A \cap C\right) \cup\{x\} \subseteq I_{h}[R] \cap A \cap C$, we get that $N\left(v_{B}\right) \cap A \cap C \subset N(w) \cap A \cap C$, contradicting the maximality of $\left|N\left(v_{B}\right) \cap A \cap C\right|$. Whenever $z \in B$, one can use the same arguments to reach a contradiction on the maximality of $\left|N\left(v_{A}\right) \cap B \cap C\right|$.
Since $|S|+1 \leq h n(G) \leq|S|+4, S$ is included in any hull set of $G$ and no vertices in $U$ belong to some hull set, there exist a subset $R$ of at most 4 vertices in $C$ such that $S \cup R$ is a minimum hull set of $G$. There are $O\left(|V|^{4}\right)$ subsets to be tested and, for each one, its convex hull can be computed in $O(|V||E|)$ time [1]. This leads to the announced result.

## 5. Graphs with few $P_{4}$ 's

A graph $G=(V, E)$ is a $(q, q-4)$-graph, for a fixed $q \geq 4$, if for any $S \subseteq V,|S| \leq q$, then $S$ induces at most $q-4$ paths on 4 vertices [18]. Observe that cographs and $P_{4}$-sparse graphs are the $(q, q-4)$-graphs for $q=4$ and $q=5$, respectively. The hull number of a cograph can be computed in polynomial time [1]. This result is improved in [2] to the class of $P_{4}$-sparse graphs. In this section, we generalize these results by proving that for any fixed $q \geq 4$, computing the hull number of a $(q, q-4)$-graph can be done in polynomial time. Our algorithm runs in time $O\left(2^{q} n^{2}\right)$ and is therefore a Fixed Parameter Tractable for any graph $G$, where the number of induced $P_{4}$ 's of $G$ is the parameter.

### 5.1. Definitions and brief description of the algorithm

The algorithm that we present in this section uses the canonical decomposition of $(q, q-4)$ graphs, called Primeval Decomposition. For a survey on Primeval Decomposition, the reader is referred to [19]. In order to present this decomposition of $(q, q-4)$-graphs, we need the following definitions.

Let $G_{1}$ and $G_{2}$ be two graphs. $G_{1} \cup G_{2}$ denotes the disjoint union of $G_{1}$ and $G_{2} . G_{1} \oplus G_{2}$ denotes the join of $G_{1}$ and $G_{2}$, i.e., the graph obtained from $G_{1} \cup G_{2}$ by adding an edge between any two vertices $v \in V\left(G_{1}\right)$ and $w \in V\left(G_{2}\right)$. A spider $G=(S, K, R, E)$ is a graph with vertex set $V=S \cup K \cup R$ and edge set $E$ such that

1. $(S, K, R)$ is a partition of $V$ and $R$ may be empty;
2. the subgraph $G[K \cup R]$ induced by $K$ and $R$ is the join $K \oplus R$, and $K$ separates $S$ and $R$, i.e., any path from a vertex in $S$ to a vertex in $R$ contains a vertex in $K$;
3. $S$ is a stable set, $K$ is a clique, $|S|=|K| \geq 2$, and there exists a bijection $f: S \rightarrow K$ such that, either $N(s) \cap K=K-\{f(s)\}$ for all vertices $s \in S$, or $N(s) \cap K=\{f(s)\}$ for all vertices $s \in S$. In the latter case or if $|S|=|K|=2, G$ is called thin, otherwise $G$ is thick.

A graph $G=(S, K, R, E)$ is a pseudo-spider if it satisfies only the first two properties of a spider. A graph $G=(S, K, R, E)$ is a $q$-pseudo-spider if it is a pseudo-spider and, moreover, $|S \cup K| \leq q$. Note that $q$-pseudo-spiders and spiders are pseudo-spiders.

We now describe the decomposition of ( $q, q-4$ )-graphs.
Theorem 4 ([18]). Let $q \geq 0$ and let $G$ be a $(q, q-4)$-graph. Then, one of the following holds:

1. $G$ is a single vertex, or
2. $G=G_{1} \cup G_{2}$ is the disjoint union of two ( $q, q-4$ )-graphs $G_{1}$ and $G_{2}$, or
3. $G=G_{1} \oplus G_{2}$ is the join of two $(q, q-4)$-graphs $G_{1}$ and $G_{2}$, or
4. $G$ is a spider $(S, K, R, E)$ where $G[R]$ is a $(q, q-4)$-graph if $R \neq \emptyset$, or
5. $G$ is a $q$-pseudo-spider $\left(H_{2}, H_{1}, R, E\right)$ where $G[R]$ is a $(q, q-4)$-graph if $R \neq \emptyset$.

Theorem 4 leads to a tree-like structure $T(G)$ (the primeval tree) which represents the Primeval Decomposition of a $(q, q-4)$-graph $G . T(G)$ is a rooted binary tree where any vertex $v$ corresponds to an induced $(q, q-4)$-subgraph $G_{v}$ of $G$ and the root corresponds to $G$ itself. Moreover, the vertices of subgraphs corresponding to the leaves of $T(G)$ form a partition of $V(G)$, i.e., $\left\{V\left(G_{\ell}\right)\right\}_{\ell \text { leaf of } T(G)}$ is a partition of $V(G)$.

For any leaf $\ell$ of $T(G), G_{\ell}$ is either a spider $(S, K, \emptyset, E)$, or has at most $q$ vertices. Moreover, any internal vertex $v$ has its label following one of the four cases in Theorem 4 corresponds to $G_{v}$. More precisely, let $v$ be an internal vertex of $T(G)$ and let $u$ and $w$ be its two children. $v$ is a parallel node if $G_{v}=G_{u} \cup G_{w} . v$ is a series node if $G_{v}=G_{u} \oplus G_{w} . v$ is a spider node if $u$ is a leaf with $G_{u}$ is a spider $(S, K, \emptyset, F)$ and $G_{v}$ is the spider $(S, K, R, E)$ where $G_{v}[R]=G_{w}$ and $G_{v}[S \cup K]=G_{u}$. Finally, $v$ is a small node if $u$ is a leaf with $\left|V\left(G_{u}\right)\right| \leq q$ and $G_{v}$ is the $q$-pseudo-spider $(S, K, R, E)$ where $G_{v}[R]=G_{w}$ and $G_{v}[S \cup K]=G_{u}$.

This tree can be obtained in linear-time [19].
We compute $h n(G)$ by a post-order traversal in $T(G)$. More precisely, given $v \in V(T(G))$, let $H_{v}$ be an optimal hull set of $G_{v}$ and let $H_{v}^{*}$ be an optimal hull set of $G_{v}^{*}$, the graph obtained by adding a universal vertex to $G_{v}$. We show in the next subsection that we can compute $\left(H_{\ell}, H_{\ell}^{*}\right)$ for any leaf $\ell$ of $T(G)$ in time $O\left(2^{q} n\right)$. Moreover, for any internal vertex $v$ of $T(G)$, we show that we can compute $\left(H_{v}, H_{v}^{*}\right)$ in time $O\left(2^{q} n\right)$, using the information that was computed for the children and grand children of $v$ in $T(G)$.

Theorem 5. Let $q \geq 0$ and let $G$ be a n-node ( $q, q-4$ )-graph. An optimal hull set of $G$ can be computed in time $O\left(2^{q} n^{2}\right)$.

Before going into the details of the algorithm in next subsection, we prove some useful lemmas.

Lemma 8 ( [2]). Let $G=(S, K, R, E)$ be a pseudo-spider with $R$ neither empty nor a clique. Then any minimum hull set of $G$ contains a minimum hull set of the subgraph $G[K \cup R]$.

Proof. Let $H$ be a minimum hull set of $G$. Let $H_{S}=H \cap S$ and $H_{R}=H \backslash H_{S}$. We prove that $H_{R}$ is a minimum hull set of $G[K \cup R]$.

Let $H^{\prime}$ be any minimum hull set of $G[K \cup R]$. Note that $H^{\prime} \subseteq R$ because $K$ is a set of universal vertices in $G[K \cup R]$ and by Lemma 2. Moreover, By Lemma 3, because $G[K \cup R]$ is an isometric subgraph of $G$, the convex hull of $H^{\prime}$ in $G$ contains $G[K \cup R]$. Hence, $H_{S} \cup H^{\prime}$ is a hull set of $G$ and $h n(G) \leq\left|H_{S}\right|+h n(G[K \cup R])$.

Now it remains to prove that $H_{R}$ is a hull set of $G[K \cup R]$. Clearly, if $H_{R}$ generate all vertices of $R$ in $G[K \cup R]$ then $H_{R}$ is a hull set of $G[K \cup R]$ since there are at least two non adjacent vertices in $R$ and any vertex in $K$ is adjacent to all vertices in $R$. For purpose of contradiction, assume $H_{R}$ does not generate $R$ in $G[K \cup R]$. This means that there is a vertex $v \in R$, that is generated in $G$ by a vertex in $S \cup K$, i.e., $v \in R$ is an internal vertex of a shortest path between $s \in S \cup K$ and some other vertex, which is not possible, since we have all the edges between $K$ and $R$. Hence, $h n(G[K \cup R]) \leq\left|H_{R}\right|$.

Therefore, $\left|H_{S}\right|+\left|H_{R}\right|=h n(G) \leq\left|H_{S}\right|+h n(G[K \cup R]) \leq\left|H_{S}\right|+\left|H_{R}\right|$. So, $h n(G[K \cup R])=$ $\left|H_{R}\right|$, i.e., $H_{R}$ is a minimum hull set of $G[K \cup R]$ contained in $H$.

The next lemma is straightforward by the use of isometry.
Lemma 9. Let $G$ be a graph which is not complete and that has a universal vertex. Let $H$ be obtained from $G$ by adding some new universal vertices. A set is a minimum hull set of $G$ if, and only if, it is a minimum hull set of $H$.

### 5.2. Dynamic programming and correctness

In this section, we detail the algorithm presented in the previous section and we prove its correctness. Let $v \in V(T(G))$, which may therefore be either a leaf, a parallel node, a series node, a spider node or a small node. For each of these five cases, we describe how to compute $\left(H_{v}, H_{v}^{*}\right)$, in time $O\left(2^{q} n\right)$.

Let us first consider the case when $v$ is a leaf of $T(G)$.
If $G_{v}$ is a singleton $\{w\}$, then $H_{v}=V\left(G_{v}\right)=\{w\}$ and $H_{v}^{*}=V\left(G_{v}^{*}\right)$. If $G_{v}$ is a spider $(S, K, \emptyset, E)$ then $H_{v}=S$ since $S$ is a set of simplicial vertices (so it has to be included in any hull set by Lemma 1) and it is sufficient to generate $G_{v}$. One may easily check that if $G_{v}$ is a thick spider, $S$ is also a minimum hull set of $G_{v}^{*}$, i.e., $S=H_{v}^{*}$. However, in case $G_{v}$ is a thin spider, $S$ does not suffice to generate $G_{v}^{*}$ and in this case it is easy to see that this is done by taking any extra vertex $k \in K$, in which case we have $H_{v}^{*}=S \cup\{k\}$. Finally, if $G_{v}$ has at most $q$ vertices, $H_{v}$ and $H_{v}^{*}$ can be computed in time $O\left(2^{q}\right)$ by an exhaustive search.

Now, let $v$ be an internal node of $T(G)$ with children $u$ and $w$.
If $v$ is a parallel node, then $G_{v}=G_{u} \cup G_{w}$. Then, $\left(H_{v}, H_{v}^{*}\right)$ can be computed in time $O(1)$ from $\left(H_{u}, H_{u}^{*}\right)$ and $\left(H_{w}, H_{w}^{*}\right)$ thanks to Lemma 10.

Lemma 10 ([1]). Let $G_{v}=G_{u} \cup G_{w}$. Then $\left(H_{v}, H_{v}^{*}\right)=\left(H_{u} \cup H_{w}, H_{u}^{*} \cup H_{w}^{*}\right)$.
Proof. The fact that $H_{u} \cup H_{w}$ is an optimal hull set for $G_{v}$ is trivial. The second part comes from the fact that $H_{u}^{*}$ (resp., $H_{w}^{*}$ ) is an isometric subgraph of $H_{v}^{*}$ and from Lemma 3.

Now, we consider the case when $v$ is a series node.
Lemma 11. If $G_{v}=G_{u} \oplus G_{w}$, then $\left(H_{v}, H_{v}^{*}\right)$ can be computed from the sets $\left(H_{x}, H_{x}^{*}\right)$ of the children or grand children $x$ of $v$ in $T(G)$, in time $O\left(2^{q} n\right)$.

Proof. If $G_{u}$ and $G_{w}$ are both complete, then $G_{v}$ is a clique and $\left(H_{v}, H_{v}^{*}\right)=\left(V\left(G_{v}\right), V\left(G_{v}^{*}\right)\right)$.
If $G_{u}$ and $G_{w}$ are both not complete, let $x, y$ be any two non adjacent vertices in $G_{u}$. Then, we claim that $H_{v}=H_{v}^{*}=\{x, y\}$. Indeed, in $G_{v}, x$ and $y$ generate all vertices in $V\left(G_{w}\right)$ (resp., of $G_{w}^{*}$ ). In particular, two non adjacent vertices $z, r \in V\left(G_{w}\right)$ are generated. Symmetrically, $z, r$ generate all vertices in $V\left(G_{u}\right)$ (resp., in $V\left(G_{u}^{*}\right)$ ).

Without loss of generality, we suppose now that $G_{u}$ is a complete graph and that $G_{w}$ is a non-complete $(q, q-4)$-graph. First, observe that no vertex of $G_{u}$ belongs to any minimum hull set of $G_{v}$, since they are universal (Lemma 2). Note also that, by Lemma 9 and since $G_{v}$ is not a clique and has universal vertices, we can make $H_{v}=H_{v}^{*}$. Hence, in what follows, we consider only the computation of $H_{v}$. Let us consider all possible cases for $w$ in $T(G)$.

- $w$ is a series node. $G_{w}$ is the join of two graphs. We claim that $H_{v}=H_{w}$.

In this case, $G_{w}$ is an isometric subgraph of $G_{v}$. Thus, by Lemma 3, any minimum hull set of $G_{w}$ generates all vertices of $V\left(G_{w}\right)$ in $G_{v}$. Finally, since $G_{w}$ has two non-adjacent vertices they generate all vertices of $G_{u}$ in $G_{v}$.

- $w$ is a parallel node. $G_{w}$ is the disjoint union of two graphs. Let $x$ and $y$ be the children of $w$ in $T(G)$. Then $G_{w}=G_{x} \cup G_{y}$. Let $X=H_{x}^{*}$ if $G_{x}$ is not a clique and $X=V\left(G_{x}\right)$, otherwise, let $Y=H_{y}^{*}$ if $G_{y}$ is not a clique and $Y=V\left(G_{y}\right)$, otherwise. We claim that $H_{v}=X \cup Y$.
Clearly, if $G_{x}$ (resp., $G_{y}$ ) is a clique, all its vertices are simplicial in $G_{v}$ and then must be contained in any hull set by Lemma 1 . Moreover, recall that, by Lemma 2, no vertex of $G_{u}$ belongs to any minimum hull set of $G$.
Now, let $z \in\{x, y\}$ such that $G_{z}$ is not complete. It remains to show that it is necessary and sufficient to also include any minimum hull set $H_{z}^{*}$ of $G_{z}^{*}$, in any minimum hull set of $G$.
The necessity can be easily proved by using Lemma 8 to every $G_{z}$ that is not a complete graph.
The sufficiency follows again from the fact that $G_{u}$ is generated by two non adjacent vertices of $G_{w}$ and since, in all cases, $X \cup Y$ contains at least one vertex in $G_{x}$ and one vertex in $G_{y}$, all vertices in $G_{u}$ will be generated.
- $w$ is a spider node and $G_{w}$ is a thin spider $\left(S, K, \emptyset, E^{\prime}\right)$. Then, $H_{v}=S \cup\{k\}=G_{w}^{*}$ where $k$ is any vertex in $K$.
All vertices in $S$ are simplicial in $G_{v}$, hence any hull set of $G_{v}$ must contain $S$ by Lemma 1. Now, in $G_{v}$, the vertices in $S$ are at distance two and no shortest path between two vertices in $S$ passes through a vertex in $K$, since there is a join to a complete graph. Therefore, $S$ is not a hull set of $G_{v}$. However, since $|S| \geq 2$, it is easy to check that adding any vertex $k \in K$ to $S$ is sufficient to generate all vertices in $G_{v}$. So $S \cup\{k\}$ is a minimum hull set of $G_{v}$.
Note that, in that way, $H_{v}=S \cup\{k\}=G_{w}^{*}$
- $w$ is a spider node and $G_{w}$ is a spider $\left(S, K, R, E^{\prime}\right)$ that is either thick or $R \neq \emptyset$ and $R$ induces a $(q, q-4)$-graph. Then, $H_{v}=H_{w}$.
If $R=\emptyset$, then $G_{w}$ is thick. In this case, it is easy to check that the only minimum hull set of $G_{w}$ is $S$ (because it consists of simplicial vertices) and it is also a minimum hull set for $G_{v}$. Hence, $H_{v}=H_{w}=S$.
If $R \neq \emptyset$, then by Lemma 1 any minimum hull set of $G_{w}$ contains $S$. Moreover, by Lemma 8 any minimum hull set of $G_{w}$ contains a minimum hull set of $K \cup R$ which is composed by vertices of $R$.

By the same lemmas, a minimum hull set of $G_{w}$ is a minimum hull set of $G_{v}$ since, by Lemma 2, no vertex of $G_{u}$ belongs to any minimum hull set of $G_{v}$ and $G_{u}$ is generated by non-adjacent vertices of $G_{w}$.

- $w$ is a small node. $G_{w}$ is a $q$-pseudo-spider $\left(H_{2}, H_{1}, R, E^{\prime}\right)$ and $R$ induces a $(q, q-4)$-graph.

If $R=\emptyset, G_{v}$ is the join of a clique $G_{u}$ with a graph $G_{w}$ that has at most $q$ vertices. No vertex of $G_{u}$ belongs to any minimum hull set of $G_{v}$, since they are universal. Thus, $H_{v}$ can be computed in time $O\left(2^{q}\right)$ by testing all the possible subsets of vertices of $G_{w}$.
Similarly, if $R$ is a clique, all vertices in $R$ are simplicial in $G_{v}$ so they must belong to any hull set of $G_{v}$. Moreover, no vertices in $G_{u}$ belong to any minimum hull set of $G_{v}$. So $H_{v}$ can be computed in time $O\left(2^{q}\right)$ by testing all the possible subsets of vertices of $H_{1} \cup H_{2}$ and adding $R$ to them.
In case $R \neq \emptyset$ nor a clique, two cases must be considered. By definition of the decomposition, there exists a child $r$ of $w$ in $T(G)$ such that $V\left(G_{r}\right)=R$.

- If $G\left[H_{1}\right]$ is a clique, then, $G_{v}=\left(H_{2}, H_{1} \cup V\left(G_{u}\right), R, E\right)$ is a pseudo-spider that satisfies the conditions in Lemma 8. Hence, any minimum hull set of $G_{v}$ contains a minimum hull set of $P=G\left[H_{1} \cup V\left(G_{u}\right) \cup R\right]$. Let $Z$ be a minimum hull set of $G_{v}$ and let $Z^{\prime}=$ $Z \cap H_{2}$. By Lemma 8, we have $\left|Z^{\prime}\right| \leq h n\left(G_{v}\right)-h n(P)$.
By Lemma 9, $H_{r}^{*}$ is a minimum hull set of $G\left[H_{1} \cup V\left(G_{u}\right) \cup R\right]$. Now, $G\left[H_{1} \cup V\left(G_{u}\right) \cup\right.$ $R]$ is an isometric subgraph of $G_{v}$. Hence, by Lemma 3, $H_{r}^{*}$ generates all vertices of $G\left[H_{1} \cup V\left(G_{u}\right) \cup R\right]$ in $G_{v}$. Therefore, $H_{r}^{*} \cup Z^{\prime}$ will generate all vertices of $G_{v}$. Since $\left|H_{r}^{*}\right|=h n(P)$, we get that $\left|H_{r}^{*} \cup Z^{\prime}\right| \leq h n\left(G_{v}\right)$ and then $H_{r}^{*} \cup Z^{\prime}$ is a minimum hull set of $G_{v}$.
So, we have shown that there exists a minimum hull set for $G_{v}$ that can be obtained from $H_{r}^{*}$ by adding some vertices in $H_{1} \cup H_{2}$. Since $\left|H_{1} \cup H_{2}\right| \leq q$, such a subset of $H_{1} \cup H_{2}$ can be found in time $O\left(2^{q}\right)$.
- In case $G\left[H_{1}\right]$ is not a clique, let $x$ and $y$ be two non adjacent vertices of $H_{1}$. We claim in this case that there exists a minimum hull set of $G_{v}$ containing at most one vertex of $R$. Let $S$ be a minimum hull set of $G_{v}$ containing at least two vertices in $R$. Observe that $S^{\prime}=(S \backslash R) \cup\{x, y\}$ is also a hull set of $G_{v}$ since $x$ and $y$ are sufficient to generate all vertices in $R$. Consequently, $\left|S^{\prime}\right| \leq|S|$ and $S^{\prime}$ is minimum.
Since no hull set of $G_{v}$ contains a vertex in $V\left(G_{u}\right)$, there always exists a minimum hull set of $G_{v}$ that consists of only vertices in $H_{1} \cup H_{2}$ plus at most one vertex in $R$. Therefore an exhaustive search can be performed in time $\mathrm{O}\left(n 2^{q}\right)$.

Now, we consider the case when $v$ is a spider node or a small node. That is $G_{v}=(S, K, R, E)$. If $R \neq \emptyset$, let $r$ be the child of $v$ such that $V\left(G_{r}\right)=R$.

Lemma 12. Let $G_{v}=(S, K, R, E)$ be a spider such that $R$ induces a ( $q, q-4$ )-graph.
Then, $H_{v}=H_{v}^{*}=S \cup H_{r}^{*}$ if $R \neq \emptyset$ and $R$ is not a clique, and $H_{v}=H_{v}^{*}=S \cup R$, otherwise.
Proof. Since all the vertices in $S$ are simplicial vertices in $G_{v}$ and in $G_{v}^{*}$, we apply Lemma 1 to conclude that they are all contained in any hull set of $G_{v}$ (resp., of $G_{v}^{*}$ ).

By the structure of a spider, every vertex of $K$ (and the universal vertex in $G_{v}^{*}$ ) belongs to a shortest path between two vertices in $S$ and are therefore generated by them in any minimum hull set of $G_{v}$ (resp., of $G_{v}^{*}$ ). Consequently, if $R=\emptyset, S$ is a minimum hull set of $G_{v}$ (resp., of $G_{v}^{*}$ ). If $R$ is a clique, $S \cup R$ is the set of simplicial vertices of $G_{v}$ (resp., of $G_{v}^{*}$ ) and also a minimum hull set of $G_{v}$ (resp., of $G_{v}^{*}$ ).

Finally, if $R \neq \emptyset$ and $R$ is not a clique, then $G_{v}$ is a pseudo-spider satisfying the conditions of Lemma 8. Similarly, $G_{v}^{*}$ is a pseudo-spider (by including the universal vertex in $K$ ). Then, by Lemma 8, any hull set of $G_{v}$ (resp., of $G_{v}^{*}$ ) contains a minimum hull set of $G[K \cup R]$ (resp., of $G_{v}^{*} \backslash S$. Moreover, any hull set contains all vertices in $S$ since they are simplicial. Hence, $h n\left(G_{v}\right)=h n\left(G_{v}^{*}\right)=|S|+h n(G[K \cup R])$ (recall that, by Lemma 9, hn $(G[K \cup R])=h n\left(G_{v}^{*} \backslash S\right)$ ). Finally, since $G[K \cup R]$ ) is an isometric subgraph of $G_{v}$, then $H_{r}^{*}$ (which is a minimum hull set of $G[K \cup R]$ by Lemma 9) generates $G[K \cup R]$ in $G_{v}$ (resp., in $G_{v}^{*}$ ).

Hence, $S \cup H_{r}^{*}$ is a hull set of $G_{v}$ and $G_{v}^{*}$. Moreover, it has size $|S|+h n(G[K \cup R])$, so it is optimal.

Lemma 13. Let $G_{v}=\left(H_{2}, H_{1}, R, E\right)$ be a q-pseudo-spider such that $R$ is a $(q, q-4)$-graph. Then, $H_{v}$ and $H_{v}^{*}$ can be computed in time $O\left(2^{q} n\right)$.

Proof. All the arguments to prove this lemma are in the proof of Lemma 11. Moreover, the following arguments hold both for $G_{v}$ and $G_{v}^{*}$ : they allow computation of both $H_{v}$ and $H_{v}^{*}$.

If $R=\emptyset, G_{v}$ has at most $q$ vertices, for a fixed positive integer $q$. Thus, its hull number can be computed in $O\left(2^{q}\right)$-time.

Otherwise, if $H_{1}$ is a clique, by Lemma 8 , any minimum hull set of $G_{v}$ contains a minimum hull set of $G\left[H_{1} \cup R\right]$. Moreover, by the same arguments as in Lemma 11, we can show that there is an optimal hull set for $G_{v}$ that can be obtained from $H_{r}^{*}$ (minimum hull set of $G\left[H_{1} \cup R\right]$ ) and some vertices in $\mathrm{H}_{2}$.

If $H_{1}$ is not a clique, two non-adjacent vertices of $H_{1}$ can generate $R$. Thus, we conclude that there exists a minimum hull set of $G_{v}$ containing at most one vertex of $R$. Then, a minimum hull set of $G_{v}$ can be found in $O\left(2^{q} n\right)$-time, where $n=\left|V\left(G_{v}\right)\right|$.

## 6. Hull Number via 2-connected components

In this section, we introduce the generalized hull number of a graph. Let $G=(V, E)$ be a graph and $S \subseteq V$. The generalized hull number, denoted by $h n(G, S)$, is the minimum size of a set $U \subseteq V \backslash S$ such that $U \cup S$ is a hull set for $G$. We prove that to compute the hull number of a graph, it is sufficient to compute the generalized hull number of its 2-connected components (or blocks). This extends a result in [5].

Theorem 6. Let $G$ be a graph and $G_{1}, \ldots, G_{n}$ be its 2 -connected components. For any $i \leq n$, let $S_{i} \subseteq V\left(G_{i}\right)$ be the set of cut-vertices of $G$ in $G_{i}$. Then,

$$
h n(G)=\sum_{i \leq n} h n\left(G_{i}, S_{i}\right) .
$$

Proof. Clearly, the result holds if $n=1$, so we assume $n>1$.
A block $G_{i}$ is called a leaf-block if $\left|S_{i}\right|=1$. Note that, for any leaf-block $G_{i}, G\left[V \backslash\left(V\left(G_{i}\right) \backslash\right.\right.$ $\left.\left.S_{i}\right)\right]$ is convex, so by Lemma 4, any hull set of $G$ contains at least one vertex in $V\left(G_{i}\right) \backslash S_{i}$. Moreover, for any minimum hull set $S$ of $G, S \cap\left(\cup_{i \leq n} S_{i}\right)=\emptyset$. To prove this fact, it is sufficient to observe that, for any cut-vertex $v$, there exist two vertices $u$ and $v$ in disjoint leaf-blocks such that $v$ in a shortest $(u, v)$-path.
Claim 7. Let $S$ be a hull set of $G$. Then $S^{\prime}=\left(S \cap V\left(G_{i}\right)\right) \cup S_{i}$ is a hull set of $G_{i}$.
Proof. For purpose of contradiction, assume that $I_{h}\left[S^{\prime}\right]=V\left(G_{i}\right) \backslash X$ for some $X \neq \emptyset$. Then, there is $v \in X \cap I[a, b]$ for some $a \in V(G) \backslash V\left(G_{i}\right)$ and $b \in V(G) \backslash X$. Then, there is a shortest $(a, b)$ path $P$ containing $v$. Hence, there is $u \in S_{i}$ such that $u$ is on the subpath of $P$ between $a$ and $v$. Moreover, let $w=b$ if $b \in G_{i}$, and else let $w$ be a vertex of $S_{i}$ on the subpath of $P$ between $v$ and $b$. Hence, $v \in I[u, w] \subseteq I_{h}\left[S^{\prime}\right]$, a contradiction.

Let $X$ be any minimum hull set of $G$. Since, $X \cap\left(\cup_{i \leq n} S_{i}\right)=\emptyset$, hence we can partition $X=$ $\cup_{i \leq n} X_{i}$ such that $X_{i} \subseteq V\left(G_{i}\right) \backslash S_{i}$ and $X_{i} \cap X_{j}=\emptyset$ for any $i \neq j$. Moreover, by Claim 7, $X_{i} \cup S_{i}$ is a hull set of $G_{i}$, i.e., $\left|X_{i}\right| \geq h n\left(G_{i}, S_{i}\right)$. Hence, $h n(G)=|X|=\sum_{i \leq n}\left|X_{i}\right| \geq \sum_{i \leq n} h n\left(G_{i}, S_{i}\right)$.

It remains to prove the reverse inequality. For any $i \leq n$, let $X_{i} \subseteq V\left(\overline{G_{i}}\right) \backslash S_{i}$ such that $X_{i} \cup S_{i}$ is a hull set of $G_{i}$ and $\left|X_{i}\right|=\operatorname{hn}\left(G_{i}, S_{i}\right)$. We prove that $S=\cup_{i \leq n} X_{i}$ is a hull set for $G$. Indeed, for any $v \in S_{i}$, there are two leaf-blocks $G_{1}, G_{2}$ such that $v$ is on a shortest path between $G_{1}$ and $G_{2}$ or $\{v\}=V\left(G_{1}\right) \cap V\left(G_{2}\right)$. So, there exist $x \in X_{1}$ and $y \in X_{2}$ such that $v$ is on a shortest $(x, y)$-path, i.e., $v \in I[x, y] \subseteq I_{h}[S]$. Hence, $\cup_{i \leq n} S_{i} \subseteq I_{h}[S]$ and therefore, $V=\cup_{i \leq n} I_{h}\left[X_{i} \cup S_{i}\right] \subseteq$ $I_{h}\left[\cup_{i \leq n}\left(X_{i} \cup S_{i}\right)\right] \subseteq I_{h}\left[\cup_{i \leq n}\left(X_{i}\right)\right]=I_{h}[S]$.

A cactus $G$ is a graph in which every pair of cycles have at most one common vertex. This definition implies that each block of $G$ is either a cycle or an edge. By using the previous result, one may easily prove that:

Corollary 2 ([2]). In the class of cactus graphs, the hull number can be computed in linear time.

## 7. Bounds

In this section, we use the same techniques as presented in [5, 1] to prove new bounds on the hull number of several graph classes. These techniques mainly rely on a greedy algorithm for computing a hull set of a graph and that consists of the following: given a connected graph $G=(V, E)$ and its set $S$ of simplicial vertices, we start with $H=S$ or $H=\{v\}$ ( $v$ is any vertex of $V)$ if $S=\emptyset$, and $C_{0}=I_{h}[H]$. Then, at each step $i \geq 1$, if $C_{i-1} \subset V$, the algorithm greedily chooses a subset $X_{i} \subseteq V \backslash C_{i-1}$, add $X_{i}$ to $H$ and set $C_{i}=I_{h}[H]$. Finally, if $C_{i}=V$, the algorithm returns $H$ which is a hull set of $G$.

Claim 8. If for every $i \geq 1,\left|C_{i} \backslash\left(C_{i-1} \cup X_{i}\right)\right| \geq c \cdot\left|X_{i}\right|$, for some constant $c>0$, then $|H| \leq$ $\max \{1,|S|\}+\left\lceil\frac{|V|-\max \{1,|S|\}}{1+c}\right\rceil$.

In the following, we keep the notation used to describe the algorithm.

Claim 9. Let $G$ be a connected graph. Then, before each step $i \geq 1$ of the algorithm, for any $v \in V \backslash C_{i-1}, N(v) \cap C_{i-1}$ induces a clique. Moreover, any connected components induced by $V \backslash C_{i-1}$ has at least 2 vertices.

Proof. Let $v \in V \backslash C_{i-1}$ and assume $v$ has two neighbors $u$ and $w$ in $C_{i-1}$ that are not adjacent. Then, $v \in I[u, w] \subseteq C_{i-1}$ because $C_{i-1}$ is convex, a contradiction. Note that, at any step $i \geq 1$ of the algorithm, $V \backslash C_{i-1}$ contains no simplicial vertex. By previous remark, if $v$ has only neighbors in $C_{i-1}$, then $v$ is simplicial, a contradiction.

Claim 10. If $G$ is a connected $C_{3}$-free graph, then, at every step $i \geq 1$ of the algorithm, a vertex in $V \backslash C_{i-1}$ has at most one neighbor in $C_{i-1}$.

Proof. Assume that $v \in V \backslash C_{i-1}$ has two neighbors $u, w \in C_{i-1} .\{u, w\} \notin E$ because $G$ is trianglefree. This contradicts Claim 9.

Lemma 14. For any $C_{3}$-free connected graph $G$ and at step $i \geq 1$ of the algorithm, either $C_{i-1}=$ $V$ or there exists $X_{i} \subset V \backslash C_{i-1}$ such that $\left|C_{i} \backslash\left(C_{i-1} \cup X_{i}\right)\right| \geq\left|X_{i}\right|$.

Proof. If there is $v \in V \backslash C_{i-1}$ at distance at least 2 from $C_{i-1}$, let $X_{i}=\{v\}$ and the result clearly holds. Otherwise, let $v$ be any vertex in $V \backslash C_{i-1}$. By Claim 9, $v$ has a neighbor $u$ in $V \backslash C_{i-1}$. Moreover, because no vertices of $V \backslash C_{i-1}$ are at distance at least 2 from $C_{i-1}, v$ and $u$ have some neighbors in $C_{i-1}$. Finally, $u$ and $v$ have no common neighbors because $G$ is triangle-free. Hence, by taking $X_{i}=\{v\}$, we have $u \in C_{i}$ and the result holds.

Recall that the girth of a graph is the length of its smallest cycle.
Lemma 15. Let $G$ connected with girth at least 6 . Before any step $i \geq 1$ of the algorithm when $C_{i-1} \neq V$, there exists $X_{i} \subset V \backslash C_{i-1}$ such that $\left|C_{i} \backslash\left(C_{i-1} \cup X_{i}\right)\right| \geq 2\left|X_{i}\right|$.

Proof. If there is $v \in V \backslash C_{i-1}$ at distance at least 3 from $C_{i-1}$, let $X_{i}=\{v\}$ and the result clearly holds. Otherwise, let $v$ be a vertex in $V \backslash C_{i-1}$ at distance two from any vertex of $C_{i-1}$. Let $w \in V \backslash C_{i-1}$ be a neighbor of $v$ that has a neighbor $z \in C_{i-1}$. Since $v$ is not simplicial, $v$ has another neighbor $u \neq w$ in $V \backslash C_{i-1}$. If $u$ is at distance two from $C_{i-1}$, let $y \in V \backslash C_{i-1}$ be a neighbour of $u$ that has a neighbor $x \in C_{i-1}$. In this case, since the girth of $G$ is at least six, $z \neq x$ and, there is a shortest $(v, z)$-path containing $w$ and a shortest $(v, x)$-path containing $u$ and $y$. Consequently, by setting $X_{i}=\{v\}$ we obtain the desired result. The same happens in case $u$ has a neighbor $x \in C_{i-1}$. One may use again the hypothesis that the girth of $G$ is at least six to conclude that, by setting $X_{i}=\{v\}$ we obtain that $w, u \in C_{i}$.

Finally, we claim that no vertex remains in $V \backslash C_{i-1}$. By contradiction, suppose that it is the case and that there are in $V \backslash C_{i-1}$ and all these vertices have a neighbor in $C_{i-1}$. Let $v$ be a vertex in $V \backslash C_{i-1}$ that has a neighbor $z$ in $C_{i-1}$. Again, $v$ has a neighbor $u \in V \backslash C_{i-1}$, since it is not simplicial. The vertex $u$ must have a neighbor $x$ in $C_{i-1}$. Observe that $x$ and $z$ are at distance 3, since the girth of $G$ is at least six. Consequently, $v$ and $u$ are in a shortest $(x, z)$-path should not be in $V \backslash C_{i-1}$, that is a contradiction.

Lemma 16. Let $G$ be a connected graph. Before any step $i \geq 1$ of the algorithm when $C_{i-1} \neq V$, there exist $X_{i} \subset V \backslash C_{i-1}$ such that $\left|C_{i} \backslash\left(C_{i-1} \cup X_{i}\right)\right| \geq 2\left|X_{i}\right| / 3$.

Moreover, if $G$ is $k$-regular $(k \geq 1)$, there exist $X_{i} \subset V \backslash C_{i-1}$ such that $\left|C_{i} \backslash\left(C_{i-1} \cup X_{i}\right)\right| \geq\left|X_{i}\right|$.
Proof. By Claim 9, all connected component of $V \backslash C_{i-1}$ contains at least one edge.

- If there is $v \in V \backslash C_{i-1}$ at distance at least 2 from $C_{i-1}$, let $X_{i}=\{v\}$ and $\left|C_{i} \backslash\left(C_{i-1} \cup X_{i}\right)\right| \geq$ $\left|X_{i}\right|$.
- Now, assume all vertices in $V \backslash C_{i-1}$ are adjacent to some vertex in $C_{i-1}$. If there are two adjacent vertices $u$ and $v$ in $V \backslash C_{i-1}$ such that there is $z \in C_{i-1} \cap N(u) \backslash N(v)$, then let $X_{i}=\{v\}$. Therefore, $u \in C_{i}$ and $\left|C_{i} \backslash\left(C_{i-1} \cup X_{i}\right)\right| \geq\left|X_{i}\right|$. So, the result holds.
- Finally, assume that for any two adjacent vertices $u$ and $v$ in $V \backslash C_{i-1}, N(u) \cap C_{i-1}=$ $N(v) \cap C_{i-1} \neq \emptyset$.
We first prove that this case actually cannot occur if $G$ is $k$-regular. Let $v \in V \backslash C_{i-1}$. By Claim $9, K=N(v) \cap C_{i-1}$ induces a clique. Moreover, for any $u \in N(v) \backslash C_{i-1}, N(u) \cap$ $C_{i-1}=K$. Note that $k=|K|+\left|N(v) \backslash C_{i-1}\right|$. Let $w \in K$. Then, $A=(K \cup N(v) \cup\{v\}) \backslash\{w\} \subseteq$ $N(w)$ and since $|A|=k$, we get that $A=N(w)$. Moreover, $N[u]$ cannot induce a clique since $V \backslash C_{i-1}$ contains no simplicial vertices, $i \geq 1$. Hence, there are $x, y \in N(v) \backslash C_{i-1}$ such that $\{x, y\} \notin E$. Because $G$ is $k$-regular, there is $z \in N(x) \backslash\left(N(v) \cup C_{i-1}\right)$. However, $N(z) \cap C_{i-1}=N(x) \cap C_{i-1}=K$. Hence, $z \in N(w) \backslash A$, a contradiction.
Now, assume that $G$ is a general graph. Let $v$ be a vertex of minimum degree in $V \backslash C_{i-1}$. Recall that, by Claim 9, $N(v) \cap C_{i-1}$ induces a clique. Because any neighbor $u \in V \backslash C_{i-1}$ of $v$ has the same neighborhood as $v$ in $C_{i-1}$ and because $v$ is not simplicial, then there must be $u, w \in N(v) \backslash C_{i-1}$ such that $\{u, w\} \notin E$. Now, by minimality of the degree of $v$, there exists $y \in N(u) \backslash\left(N(v) \cup C_{i-1}\right) \neq \emptyset$. Similarly, there exists $z \in N(w) \backslash\left(N(v) \cup C_{i-1}\right) \neq \emptyset$. Let us set $X_{i}=\{v, z, y\}$. Hence, $u, w \in C_{i} \backslash\left(C_{i-1} \cup X_{i}\right)$ and the result holds.

Theorem 7. Let $G$ be a connected n-node graph with s simplicial vertices. All bounds below are tight:

- $h n(G) \leq \max \{1, s\}+\left\lceil\frac{3(n-\max \{1, s\})}{5}\right\rceil ;$
- If $G$ is $C_{3}$-free or $k$-regular $(k \geq 1)$, then $h n(G) \leq \max \{1, s\}+\left\lceil\frac{n-\max \{1, s\}}{2}\right\rceil$;
- If $G$ has girth $\geq 6$, then $\operatorname{hn}(G) \leq \max \{1, s\}+\left\lceil\frac{1(n-\max \{1, s\})}{3}\right\rceil$.

Proof. The first statement follows from Claim 8 and first statement in Lemma 16. The second statement follows from Claim 8 and Lemma 14 (the case where $G$ is $C_{3}$-free) and the second part of Lemma 16 (the case of regular graphs). The last statement follows from Claim 8 and Lemma 15.

All bounds are reached in the case of complete graphs. In case with no simplicial vertices: the first bound is reached by the graph obtained by taking several disjoint $C_{5}$ and adding a universal vertex, the second bound is obtained for a $C_{5}$, and the third one is reached by a $C_{7}$.

The first statement of the previous theorem improves another result in [5]:
Corollary 3. If $G$ is a graph with no simplicial vertex, then:

$$
\limsup _{|V(G)| \rightarrow \infty} \frac{h n(G)}{|V(G)|}=\frac{3}{5} .
$$

It it important to remark that the second statement of Theorem 7 is closely related to a bound of Everett and Seidman proved in Theorem 9 of [5]. However, the graphs they consider do not have simplicial vertices and, consequently, they do not have vertices of degree one, which is not a constraint for our result.

## 8. Conclusions

In this paper, we simplified the reduction of Dourado et al. [1] to answer a question they asked about the complexity of computing the hull number of bipartite graphs. We presented polynomial-time algorithms for computing the hull number of cobipartite graphs, ( $q, q-4$ )graphs and cactus graphs. Finally, we presented upper bounds for general graphs and two particular graph classes.

The result in Section 5 provides an FPT algorithm where the parameter is the number of induced $P_{4}$ 's in the input graph. It would be nice to know about the paramerized complexity of Hull Number when the parameter is the size of the hull set.

Another question of Dourado et al. [1], concerning to the complexity of this problem for interval graphs and chordal graphs, remains open. Up to the best of our knowledge, determining the complexity of the HULL NUMBER problem on planar graphs is also an open problem.

## References

[1] M. C. Dourado, J. G. Gimbel, J. Kratochvíl, F. Protti, J. L. Szwarcfiter, On the computation of the hull number of a graph, Discrete Mathematics 309 (18) (2009) 5668 - 5674, combinatorics 2006, A Meeting in Celebration of Pavol Hell's 60th Birthday (May 1-5, 2006). doi:10.1016/j.disc.2008.04.020.
[2] J. Araujo, V. Campos, F. Giroire, L. Sampaio, R. Soares, On the hull number of some graph classes, in: Proceedings of the European Conference on Combinatorics, Graph Theory and Applications, EuroComb'11, Budapest, Hungary, 2011.
[3] R. T. Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970.
[4] M. Farber, R. E. Jamison, Convexity in graphs and hypergraphs, SIAM J. Algebraic Discrete Methods 7 (1986) 433-444. doi:10.1137/0607049.
[5] M. G. Everett, S. B. Seidman, The hull number of a graph, Discrete Mathematics 57 (3) (1985) 217 - 223. doi:10.1016/0012-365X(85)90174-8.
[6] M. C. Dourado, F. Protti, D. Rautenbach, J. L. Szwarcfiter, On the hull number of trianglefree graphs, SIAM J. Discret. Math. 23 (2010) 2163-2172. doi:10.1137/090751797.
[7] G. B. Cagaanan, S. R. Canoy, Jr., On the hull sets and hull number of the cartesian product of graphs, Discrete Mathematics 287 (1-3) (2004) 141 - 144. doi:10.1016/j.disc.2004.06.014.
[8] J. Cáceres, C. Hernando, M. Mora, I. Pelayo, M. Puertas, On the geodetic and the hull numbers in strong product graphs, Computers \& Mathematics with Applications 60 (11) (2010) 3020 - 3031. doi:10.1016/j.camwa.2010.10.001.
[9] C. Hernando, T. Jiang, M. Mora, I. M. Pelayo, C. Seara, On the steiner, geodetic and hull numbers of graphs, Discrete Mathematics 293 (1-3) (2005) 139 - 154, 19th British Combinatorial Conference. doi:10.1016/j.disc.2004.08.039.
[10] G. Chartrand, J. F. Fink, P. Zhang, The hull number of an oriented graph, International Journal of Mathematics and Mathematical Sciences 2003 (36) (2003) 2265-2275. doi:10.1155/S0161171203210577.
[11] A. Farrugia, Orientable convexity, geodetic and hull numbers in graphs, Discrete Appl. Math. 148 (2005) 256-262. doi:10.1016/j.dam.2005.03.002.
[12] G. Chartrand, F. Harary, P. Zhang, On the geodetic number of a graph, Networks 39 (1) (2002) 1-6. doi:10.1002/net. 10007.
[13] G. Chartrand, C. E. Wall, P. Zhang, The convexity number of a graph, Graphs and Combinatorics 18 (2002) 209-217. doi:10.1007/s003730200014.
[14] M. C. Dourado, F. Protti, J. L. Szwarcfiter, Complexity results related to monophonic convexity, Discrete Applied Mathematics 158 (12) (2010) 1268 - 1274, traces from LAGOS'07 IV Latin American Algorithms, Graphs, and Optimization Symposium Puerto Varas - 2007. doi:10.1016/j.dam.2009.11.016.
[15] M. Changat, J. Mathew, On triangle path convexity in graphs, Discrete Mathematics 206 (13) (1999) 91 - 95. doi:10.1016/S0012-365X(98)00394-X.
[16] M. Changat, H. M. Mulder, G. Sierksma, Convexities related to path properties on graphs, Discrete Mathematics 290 (2-3) (2005) 117 - 131. doi:10.1016/j.disc.2003.07.014.
[17] J. A. Bondy, U. S. R. Murty, Graph Theory, Graduate Texts in Mathematics, Springer, 2008.
[18] L. Babel, S. Olariu, On the isomorphism of graphs with few p4s, in: Proceedings of the 21st International Workshop on Graph-Theoretic Concepts in Computer Science, WG '95, Springer-Verlag, London, UK, 1995, pp. 24-36.
[19] L. Babel, S. Olariu, On the p-connectedness of graphs - a survey, Discrete Applied Mathematics 95 (1-3) (1999) 11 - 33. doi:10.1016/S0166-218X(99)00062-1.


[^0]:    *2 Research supported by the INRIA Equipe Associée EWIN.
    *Corresponding author
    Email addresses: julio.araujo@inria.fr(J. Araujo), campos@lia.ufc.br (V. Campos), frederic.giroire@inria.fr (F. Giroire), nicolas.nisse@inria.fr (N. Nisse),
    leonardo.sampaio_rocha@inria.fr (L. Sampaio), ronan.pardo_soares@inria.fr (R. Soares)
    ${ }^{1}$ Partially supported by ANR Blanc AGAPE.
    ${ }^{2}$ Partially supported by CAPES/Brazil.

