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Abstract. The notion of differential privacy has emerged in the area of statistical
databases as a measure of protection of the participants’ sensitive information,
which can be compromised by selected queries. Differential privacy is usually
achieved by using mechanisms that add random noise to the query answer. Thus,
privacy is obtained at the cost of reducing the accuracy, and therefore the utility,
of the answer. Since the utility depends on the user’s side information, commonly
modelled as a prior distribution, a natural goal is to design mechanisms that are
optimal for every prior. However, it has been shown that such mechanisms do not
exist for any query other than (essentially) counting queries ([1]).
Given the above negative result, in this paper we consider the problem of iden-
tifying a restricted class of priors for which an optimal mechanism does exist.
Given an arbitrary query and a privacy parameter, we geometrically characterise
a special region of priors as a convex polytope in the priors space. We then derive
upper bounds for utility as well as for min-entropy leakage for the priors in this
region. Finally we define what we call the tight-constraints mechanism and we
discuss the conditions for its existence. This mechanism reaches the bounds for
all the priors of the region, and thus it is optimal on the whole region.

1 Introduction

Statistical databases are commonly used to provide aggregate information about the
individuals of a certain population, to attain a social benefit. In general, certain data of
the participants in the database may be confidential, and we should not allow queries
that can reveal them. On the other hand we would like to allow global queries, like,
for instance, the average salary of the inhabitants of a certain region, the percentage
of individuals having a certain disease, or the cities with the highest rates of crime.
This kind of information can be extremely useful for e.g. financial planning, medical
research, and anti-crime measures.

Unfortunately, even though these kinds of queries do not refer directly to the indi-
vidual data, they still represent a major threat to the privacy of the participants in the
databases. To illustrate the problem, consider a database whose records contain per-
sonal data, among which the salary, regarded as confidential. Suppose we are allowed
to query the number of participants and their average salary. Then, by querying the
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database before and after the insertion of a new record “Bob”, we can easily infer, by
an easy calculation, the exact salary of Bob.

A successful approach to solve the above problem is to report to the user an approx-
imate answer instead of the exact one. The approximate answer is produced by adding
controlled random noise to the exact answer. The overall procedure, representing the
sanitized query, is a (probabilistic) mechanism K which takes as input the database v
and reports to the user an output o in some domain O, according to some probabilis-
tic distribution. Intuitively, the uncertainty introduced at the level of the global answer
induces uncertainty about the value of the individual data in the database, thus mak-
ing it difficult for an attacker to guess such value. However it is crucial to know ex-
actly what kind of protection is achieved this way. Differential privacy, introduced by
Dwork ([2–5]), is a formalization of the privacy property that can be guaranteed by
such mechanism. It is a quantitative notion, in the sense that it depends on a parameter
ε representing the provided level of privacy.

Following common lines (e.g. [6–8]), in this paper we assume that the mechanism
K is oblivious with respect to the given query f . Namely, its output depends only on the
exact query result and not on the underlying database. Furthermore, we consider only
the case in which the domains of the answers (exact and reported) are finite. Under these
assumptions, the mechanism K is determined by an underlying stochastic noise matrix
X whose generic element xio is the conditional probability of reporting the answer o
when the exact query answer is i.

Besides guaranteeing differential privacy, a mechanism should of course provide an
answer which is still “useful” enough to the user asking the query. This second goal
is measured in terms of utility, which represents the average gain that a rational user
obtains from the reported answer. More precisely, on the basis of the reported answer o
the user can make a guess k (remapping) about the exact hidden query result i. His gain
g(i, k) is established by a given function g. The utility is then defined as the expected
gain under the best possible remapping. While the gain function can take various forms,
in this paper we restrict our analysis to the binary gain function, which evaluates to 1
when the user’s guess is the same as the query result (k = i) and evaluates to 0 otherwise.

The utility of a mechanism depends on the side-information which the user may
have about the database. This knowledge induces a probability distribution, called ‘prior’,
over the possible query results. Suppose for example that a user “Alice” knows that all
people in the database have a salary of at least 20K e. Thus Alice expects the av-
erage of the salaries to be at least 20K e. This is reflected on Alice’s prior over the
average-salary query results: the total probability mass is distributed on the range of
values ≥ 20K, while it is 0 on lower values. Given this prior, a mechanism X producing
only outputs ≥ 20K is intuitively more useful to Alice than another one generating also
values < 20K, which are less informative for Alice.

The optimal mechanism for a given prior and level of privacy ε is defined as the
mechanism which maximises the utility function, while satisfying ε-differential pri-
vacy. Naturally, we do not want to change the mechanism depending on the user, so
we would like to devise mechanisms which are universally optimal, i.e. optimal for any
prior. A famous result by Gosh et al. [6] states that this is possible for the so-called
counting queries, which are queries concerned with questions of the kind “how many
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records in the database have the property P?” (for some P). In [6] it was proved that
the truncated geometric mechanism is optimal, for this type of queries, for all priors. Of
course the question immediately arises whether we can obtain a similar result for other
queries as well. Unfortunately Brenner and Nissim answered this question negatively,
by showing that for any query other than (essentially) counting queries a universally
optimal mechanism does not exist [1]. However, one can still hope that, also for other
queries, by restricting the class of users (i.e. the domain of priors), one could find mech-
anisms that are optimal for all the users of the class. This is exactly the objective of the
present paper: given a query, we aim at identifying a mechanism, and a class of users,
for whom that same mechanism provides ε-differential privacy and maximal utility at
the same time.

Given an arbitrary query and a privacy level ε > 0, we call ε-regular the priors, for
which, the probabilities of two adjacent answers (i.e. answers obtained from databases
that differ for only one record) are not very different (their ratio is bounded by eε). At
the same time, they may assign significantly different probabilities to “distant” answers.
As an example of such prior, consider a researcher “Alice” in a medical school who is
interested in the incidence of a certain disease in a statistical medical database contain-
ing 1000 records. (Each record represents a person and contains a field saying whether
or not the person is infected.) Assume that Alice’s side knowledge lets her to expect
that the percentage of infected people is likely to be, say, between 1% and 2%, while it
is highly unlikely to be higher than 5%. Also, assume that Alice does not have “sharp”
enough information to assign significantly different probabilities to adjacent answers,
e.g. 1.5% (15 people affected) and 1.6% (16 people affected). It is precisely this kind
of users that we target in this paper: we will see that, under certain conditions, we can
design a mechanism which maximises the utility for all of them.

A related issue that we consider in this paper is the amount of information leaked
by a mechanism, from the point of view of the so-called quantitative information flow
framework. There have been various proposal for quantifying the information flow; we
consider here the information-theoretic approach, in which the system (in this case the
mechanism) is regarded as a noisy channel, and the leakage is defined as the difference
between the a priori entropy of the input (the secret – in this case the database entries),
and the a posteriori one, after revealing the output (in this case the reported answer).
Depending on the notion of entropy adopted one can model different kinds of adver-
saries [9]. In particular, Shannon entropy (used, for instance, in [10–13]) is suitable for
adversaries who can probe the secret repeatedly, while Rényi min-entropy (used, for
instance, in [14, 15]) is suitable for one-try attacks. In both cases, the main difference
with differential privacy is that the information-theoretic approaches measure the ex-
pected threat to confidentiality (i.e. the average amount of leakage, where each leak is
weighted by its probability to occur), while differential privacy considers catastrophic
any disclosure of confidential information, no matter how unlikely it is.

Computing and bounding the information leakage has been pursued in several pa-
pers, we mention for instance [16, 17]. Recently, researchers have investigated the rela-
tion between differential privacy and information leakage [18–20, 8], and in particular
it has been proved in [20] that differential privacy induces a bound on the min-entropy
leakage, which is met by a certain mechanism for the uniform prior (for which min-
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entropy leakage is always maximum). In this paper, we extend the above result so to
provide a more accurate bound for any fixed ε-regular prior distribution. More pre-
cisely, we provide a bound to the leakage specific to the prior and that can be met, under
a certain condition, by a suitable mechanism. It is worth noting that this mechanism is
defined similarly to the one that is optimal for the ε-regular priors. In fact, min-entropy
leakage and utility are strongly related: the main difference is what we regard as the
input of the channel. For the former is the database, for the latter the exact answer to
the query. Correspondingly, min-entropy leakage measures the correlation between the
reported answer and the database entries, while utility measures the correlation between
the reported answer and the exact answer.

Contribution

– We identify, for an arbitrary query and a privacy parameter ε, the class of the ε-
regular prior distributions on the exact answers. The interest of this class is that for
each prior in it we are able to provide a specific upper bound to the utility of any ε-
differentially-private mechanism. We characterise this class as a geometric region,
and we study its properties.

– We describe an ε-differentially-private mechanism, called “tight-constraints mech-
anism”, which meets those upper bounds for every ε-regular prior, and is therefore
universally optimal in this region. We provide necessary and sufficient conditions
for the existence of such mechanism, and an effective method to test the conditions
and to construct the mechanism.

– Switching view, and considering the correlation between the databases and the re-
ported answers (instead than between the exact and reported answers) we recast
the above definitions and results in terms of quantitative information flow. The out-
come is that we are able to improve the upper bounds for the min-entropy leakage
of an ε-differentially-private mechanism, for all the ε-regular prior distributions on
the databases. A construction similar to the one in previous point yields the tight-
constraints mechanism which reaches those upper bounds.

Plan of the paper In the next section we recall the basic definitions of differential pri-
vacy and utility. Section 3 introduces the notion of ε-regular prior, investigates the prop-
erties of these priors, and gives a geometric characterisation of their region. Section 4
shows that for all ε-regular priors on the exact answers (resp. databases), ε-differential
privacy induces an upper bound on the utility (resp. on the min-entropy leakage). Sec-
tion 5 identifies a mechanism which reaches the above bounds for every ε-regular prior,
and that is therefore the universally optimal mechanism (resp. the maximally leaking
mechanism) in the region. Section 6 illustrates our methodology and results using the
example of the sum queries. Section 7 concludes and proposes some directions for fu-
ture research.

For reason of space we have omitted several proofs from the body of the paper. The
interested reader can find them in the appendix.
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2 Preliminaries

2.1 Differential privacy

The notion of ε-differential privacy, introduced by Dwork in [2], imposes constraints
on data reporting mechanisms so that the user is unable to distinguish, from an output,
between two databases differing only for one record. This indistinguishability property
represents a protection for the individual corresponding to that record. In the following,
the mechanism is represented as a probabilistic function K from the set of possible
databases V to the set of possible reported outputs O. The relation of ‘differing only
for one record’ for two databases v and v′ is represented by the adjacency relation and
written as v ∼ v′.

Definition 1 (Differential privacy [2]). A probabilistic mechanism K from V to O
satisfies ε-differential privacy if for all pairs v, v′ ∈ V, with v ∼ v′, and all S ⊆ O, it
holds that

P(K(v) ∈ S ) ≤ eε P(K(v′) ∈ S ).

Note that the indistinguishability property is independent from the a priori knowledge
the user may have about the database.

Consider a query f : V → R f , where R f is the set of the query results. Then
a mechanism K is said to be oblivious if for every database v ∈ V, the output of the
mechanism,K(v), depends only on f (v), the result of applying the query to the database
v, regardless of v itself. More formally,

Definition 2 ([1]). Let f : V → R f be a query. A mechanism K : V → O is oblivious
if there exists a randomised function M : R f → O such that, for all v ∈ V, and all
S ⊆ O, it holds that

P(K(v) ∈ S ) = P(M( f (v)) ∈ S ).

According to the above definition, any oblivious mechanismK can be seen as a cascade
of two functions: the deterministic query f and a randomised functionM. The role of
M is to add random noise to the exact query result f (v) and produce a ‘noisy’ output
o ∈ O to the user. The privacy guarantees are therefore provided by the function M
which we implement by a stochastic matrix X = (xio), called the noise matrix. The rows
of X are indexed by the elements of R f and the columns are indexed by the elements of
O. With this representation xio is the probability of giving the output o when the exact
query result is i. In this paper, we consider only oblivious mechanisms and therefore our
results concern the design of the noise matrix X. Similarly, the query function f and the
mechanism can be represented as matrices and hence it holds by Def. 2 that K = f X.

Given a query f , The adjacency relation on databasesV induces another adjacency
relation on the set of query results R f as follows.

Definition 3 (Adjacent query results). Given a query function f with a range R f , two
different results i, h ∈ R f are said to be ‘adjacent’, and written as i ∼ f h, if and only if
there exists two databases v, v′ such that f (v) = i and f (v′) = h, and v ∼ v′.
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Fig. 1. Examples for the graph structures of different queries

Informally, i, h ∈ R f are adjacent if they discriminate between two adjacent databases.
Using the introduced notion of adjacency between query results, a graph structure can
be used to model these results along with their adjacency relationship. More precisely,
the set of nodes in this graph represents the set of query results R f , while edges repre-
sent the adjacency relationship among them. It is worth noting that this graph structure
of queries have been used also in [8, 1] to analyse the differentially private mechanisms.
Figure 1 shows examples of the graph structures of different queries. In these exam-
ples count(v, p) refers to a counting query which returns the number of records in the
database v which satisfy a certain property p. Other queries in the figure are expressed
using the count function.

Let K be an oblivious mechanism for which X is the underlying noise matrix. It
is intuitive to see that satisfying the indistinguishability between adjacent databases
(i.e. satisfying differential privacy) corresponds to the satisfying indistinguishability
(by means of X) between adjacent query results. Formally,

Lemma 1. Given a noise matrix X, An oblivious mechanism K satisfies ε-differential
privacy if and only if for all query results i, h where i ∼ f h and all outputs o ∈ O, it
holds that xio ≤ eε xho.

Note that Lemma 1 provides an equivalent characterisation for differential privacy in
terms of adjacent query results rather than adjacent databases.

With the graph structure of a query, the ‘distance’ between two query results i, h,
denoted by d(i, h) is defined as the shortest graph distance between i and h. Using this
distance measure, differential privacy constraints can be further lifted from conditions
on pairs of adjacent query results (Lemma 1) to a general condition on any pair of query
results according to the following proposition.

Proposition 1. Given a noise matrix X, the oblivious mechanismK satisfies ε-differential
privacy if and only if for all query results i, h and all outputs o ∈ O, it holds that
xio ≤ eε d(i,h) xho.

That is, the ratio between the probability of reporting an answer o given that the query
result is r and the probability of reporting the same output o given that the query result
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is h does not exceed eε d(i,h). We call the noise matrix that satisfies this condition ε-
differentially private. Note that, while Lemma 1 describes differential privacy in terms
of only adjacent query results, the equivalent characterisation given by Proposition 1
specifies the privacy constraints imposed on any pair of results (whether or not they are
adjacent to each other). This feature abstracts our analysis to arbitrary pairs of graph
nodes rather than reasoning about only adjacent ones.

2.2 Utility model

For an oblivious mechanism K , the objective of the underlying noise matrix X is to
guarantee the differential privacy of the database, while providing the user with ‘useful’
information about the true query result. That is to satisfy a trade-off between the privacy
and utility. For quantifying the utility of K we follow the model adopted in [6]. Given
a query f , let i ∈ R f be the result of executing f on some database. After processing
i by the noise matrix X, let o be the reported output to the user. In practice, the user
may use the output o, to ‘guess’ the value of the real query result. Therefore she may
apply a remap ( or guess) function which maps the mechanism output o to a guess
k ∈ R f for the exact query answer. The remap function (or simply ‘remap’) can be
described as a stochastic matrix R, where its entry rok is the probability of guessing k
when the observed mechanism output is o. With this representation, it can be easily seen
that the probabilities of the user’s guesses given individual query results are described
by the matrix product X R. We say here that X is remapped to X R by the remap R.
Note that this remapping procedure models the post-processing done by the user for the
mechanism output o. Now, with the user’s guessed value k, a real-valued gain function
g : (R f × R f )→ R quantifies how informative k is compared to the real result i.

The utility of a given mechanism to the user is described as the expected value
of the gain function g. The evaluation of this expected value depends on the a priori
probability distribution π over the real query results, which models the side knowledge
of the user about the database. The utility of the mechanism depends therefore on the
definition of the gain function g, the mechanism’s underlying noise matrix X, the user’s
remap R, and also the probability distribution π over the real query results.

One choice for the gain function is the binary gain defined as gb(i, j) = 1 iff i = j and
0 otherwise. The binary gain function formalises the requirement of a user to guess the
exact query result using the mechanism output. In the current work we restrict our anal-
ysis to this gain function. An important feature of this function, is that it is applicable
to the ranges of various queries including numerical and non-numerical one. Moreover,
it will be shown that this gain function is strongly connected to the information theo-
retic notions of conditional entropy and information leakage. Hence, our results about
the utility of private mechanism imply corresponding results regarding quantifying in-
formation leaked by these mechanisms. These results go inline with a recent trend of
research aiming at quantifying information leaked by security protocols, and privacy
mechanisms specifically (see e.g. [16, 17, 8, 18]). We leave considering other gain func-
tions to future work.

Now, for formulating the utility we represent the a priori probability distribution
(called the ‘prior’) over the real query results by a row vector π, indexed by R f , where
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πi is the probability that the query in hand yields the result i. The prior is therefore
relative to the user and depends on her knowledge. With a generic gain function g, the
utility of a mechanism for a prior π using the remap R is denoted by U(X,π,R), and
defined as follows.

U(X,π,R) = E
[
g(i, k)

]
=

∑
i,k πi (X R)ik g(i, k), (1)

where X is the noise matrix of the given mechanism. In our case, where the binary gain
function gb is used, the utility reduces to a convex combination of the diagonal elements
of X R as follows.

U(X,π,R) =
∑

i πi (X R)ii. (2)

Accordingly, for a given prior π, an oblivious ε-differentially private mechanism, with a
noise matrix X, is said to be optimal if and only if there is a remap R such that the above
function is maximised over all ε-differentially private mechanisms and all remaps 1. As
exemplified in the introduction, the optimality of a mechanism depends, in general, on
the prior (user); that is a mechanism can be optimal for a prior while it is not for another
one. It has been proved by [1] that for arbitrary queries (except the counting ones), there
is no such a mechanism that is optimal for all priors simultaneously. Nevertheless, we
identify in the following section a region of priors, where it is possible to find a single
mechanism which is optimal to all of them.

3 ε-Regular priors

In this section we describe a region of priors, called ‘ε-regular’. These priors are deter-
mined by the given query f and privacy parameter ε. In our way to specify these priors,
we first represent the ε-differential privacy constraints in a matrix form. By Proposition
1, observe that each ε-differential privacy constraint imposed on a noise matrix X can
be written as xio/xho ≥ e−εd(i,h). Since the lower bound e−εd(i,h) depends only on i, h,
all constraints can be described altogether by a square matrix Φ formed by such lower
bounds. We refer to this matrix as the privacy-constraints matrix. Note that the rows,
and also columns of Φ are indexed by the elements of R f , the set of query results.

Definition 4 (privacy-constraints matrix). The privacy-constraints matrixΦ of a query
f with a range R f , and a privacy parameter ε > 0 is a square matrix, indexed by
R f × R f , where φih = e−ε d(i,h) for all i, h ∈ R f .

Note thatΦ is symmetric (φih = φhi) due to the symmetry of the distance function d(i, h).
Observe that when ε → ∞, i.e. exclude privacy at all,Φ converges to the identity matrix
where each diagonal entry is 1 and other entries are zeros. In terms of the privacy-
constraints matrix of a query and ε, we define now the ε-regular priors as follows (note
that we use y ≥ 0 to denote ∀i : yi ≥ 0).

Definition 5 (ε-regular prior). For a given query f and a privacy parameter ε > 0, a
prior π is called ε-regular iff there exists a row vector y ≥ 0 such that π = yΦ.

1 Note that there may exist many optimal mechanism for a given prior.
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In the following we describe the common properties of these priors and also give a
geometric characterisation for their region comparing it to the whole prior space. As
the first observation, note that, as privacy is excluded (ε → ∞), this region converges
to the entire prior space. This is because Φ approaches the identity matrix where the
vector y exists for each prior.

An important property of any ε-regular prior is that the ratio between any two of
its entries πi, π j is always bound as follows, depending on ε and the distance d(i, j).
Because of this property, such a prior is called ε-regular.

Proposition 2. Consider a query f and ε > 0. Then for any ε-regular prior π, it holds
for all i, j ∈ R f : πi

/
π j ≤ eε d(i, j).

While the above property restricts the ratio between probabilities of adjacent query re-
sults, this restriction, in practice, holds for a large class of users who have no sharp
information suggesting discrimination between adjacent results. This class is exempli-
fied in the introduction. Note that the above property is not equivalent to Definition 5.
Namely, it is not true that all priors having such a property are ε-regular.

A consequence of the above proposition is that for any ε-regular prior π, the prob-
ability πi associated with any query result i is restricted by upper and lower bounds as
follows.

Proposition 3. Consider a query f and ε > 0. Then for any ε-regular prior π, it holds
for all i ∈ R f that

1
/∑

j∈R f
eε d(i, j) ≤ πi ≤ 1

/∑
j∈R f

e−ε d(i, j).

One implication is that any ε-regular prior must have full support, that is πi > 0 for all
i ∈ R f .

In the following we go further and describe the region of ε-regular priors as a region
of points in the prior space, where each point represents a member in this region. For
doing so, we identify by the following definition a set of priors which describe the
‘corner points’ or vertices of the region.

Definition 6 (corner priors). Given a query f and a privacy parameter ε > 0, then for
each query result i ∈ R f , a corresponding corner prior, denoted by ci, is defined as

ci
j =

φi j∑
k∈R f

φik
∀ j ∈ R f .

Note that the above definition is sound, i.e. ci is a probability distribution. By the above
definition, for a given query with the domain R f of results, the region of ε-regular priors
has |R f | corner priors. Each one corresponds to a query result i ∈ R f . Note that each
corner prior ci is maximally biased (relative to the region) to the query result i; that is the
entry ci

i meets its maximum value given in Proposition 3. It can be seen that each corner
prior is ε-regular. Namely for any corner ci, define the vector y as yi = 1/

∑
k∈R f

φik and
y j = 0 for all j , i; thus it holds that ci = yΦ.

The region of the ε-regular priors can be characterised in terms of the corner priors.
More precisely, this region consists of all priors that can be composed as a convex
combination of the corner priors.
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Fig. 2. Regions of ε-regular priors for queries described in Example 1

Proposition 4 (convexity). For a given a query f and privacy parameter ε > 0, a prior
π is ε-regular iff there exist real numbers γi ≥ 0, i ∈ R f such that

π =
∑

i∈R f
γi ci.

It is easy to see that it must hold that
∑

i∈R f
γi = 1 for any ε-regular prior. This is

obtained by summing the components of the π as follows.∑
j∈R f

π j =
∑

i γi
∑

j ci
j and

∑
j π j = 1, ∀π.

From Proposition 4 and the above observation, the region of ε-regular priors is a convex
set, where each point (prior) in this region is a convex combination of the corner priors.
This region is therefore geometrically regarded as a convex polytope in the prior space.
Since the corner points always exists, this region is never empty.

For a prior π in this region, the coefficients γi model the ‘proximity’ of π to each
corner prior ci. Observe that 0 ≤ γi ≤ 1, and γi = 1 iff π = ci. We demonstrate this
geometric interpretation using the following examples.

Example 1. Priors having 3 entries can be represented as points in the 3-dimensional
euclidean space. These priors correspond to queries whose graph structures contain 3
nodes. These nodes can be arranged in either a sequence or a cycle, corresponding to
queries f1 and f2 respectively shown in Figure 1, with n = 2 in both cases. Figure 2
shows - for each of these queries - the region of ε-regular priors. The corner priors of
each region are represented by points c1, c2, c3. For each query in Fig. 2, we depict the
regions for e−ε = 0.5 and e−ε = 0.2. Note that the level of privacy set by ε imposes a
restriction on the region of ε-regular priors. With e−ε = 0.2 (less privacy), this region
is larger than the one with e−ε = 0.5. In fact, as e−ε → 0 (i.e. no privacy), the region
of ε-regular priors converges to the entire region of priors defined by the corner points
{(0, 0, 1), (0, 1, 0), (0, 0, 1)}.



A differentially private mechanism of optimal utility for a region of priors 11

(1,0,0)

(0,1,0)

(0,0,1)

(.6,.1,.1)

(.1,.6,.1)

(.1,.1,.6)

(.4,.2,.2)

(.2,.4,.2)

(.2,.2,.4)

e−ε = 0.5
e−ε = 0.2
e−ε = 0

Fig. 3. Regions of ε-regular priors for the query described in Example 2

Example 2. Let v be database containing at most one record. Consider a bundle of two
counting queries f3 = (count(v, p1), count(v, p2)) which counts the records satisfying
properties p1 and p2 respectively in the database v. The graph structure of this query is
depicted in Figure 1 (with n = 1). Note that in this case the adjacency graph (and also
the set R f of query results) consists of 4 nodes: {(0, 0), (1, 0), (0, 1), (1, 1)}. Any prior
π corresponds therefore to a point in a 4-dimensional space. However, since the 4th
component of the prior is redundant (

∑
i πi = 1), each prior is defined by its ‘projection’

onto the 3- dimensional subspace. Given this observation, Figure 3 shows the projection
of the ε-regular prior region for different values of e−ε . It is again seen that the region is
getting larger as the level of privacy e−ε decreases, and coincides with the full space of
priors when e−ε → 0 (i.e. when no privacy is provided).

4 Upper bounds for utility and min-mutual information

In this section, we further describe the ε-regular priors in terms of the utility that can
be achieved for these priors by ε-differentially private mechanisms. We also describe
the amount of information that can be conveyed by these mechanisms to users with
such priors. More precisely, we identify for any ε-regular prior π upper bounds for the
utility and min-mutual information, considering all ε-differentially private mechanisms
and all possible remaps. These bounds are indeed induced by the privacy constraints
parameterised by ε and the query f as stated by Proposition 1. They also depend on the
given prior π.

4.1 Utility

Given a query f and a privacy parameter ε > 0, let π be a prior on the set R f of the query
results. For any noise matrix X satisfying ε-differential privacy (as in Proposition 1), and
a remap R, we derive in the following a linear algebraic expression for U(X,π,R), the
utility of X for π using the remap R. Such an expression will play the main role in the
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subsequent results. We start by observing that the matrix product of the noise matrix
X and the remap R describes an ε-differentially private noise matrix X R : R f → R f .
Hence the entries of X R satisfy (by Proposition 1) the following subset of constraints.

e−ε d(i,k) (X R)kk ≤ (X R)ik

for all i, k ∈ R f . Using Definition 4 of the privacy-constraints matrix Φ, and taking into
account that

∑
k∈R f

(X R)ik = 1 for all i (as both X and R are stochastic), we imply the
following inequalities. ∑

k∈R f
φik (X R)kk ≤ 1, ∀i ∈ R f .

The inequality operators can be replaced by equalities while introducing slack variables
0 ≤ si ≤ 1 for all i ∈ R f . The above inequalities can therefore be written as follows.∑

k∈R f
φik (X R)kk + si = 1, ∀i ∈ R f .

Let the slack variables si form a column vector s indexed by R f . Let also 1 denote
another column vector of the same size having all entries equal to 1. Using these vectors
and the privacy-constraints matrix Φ (for the given query and ε), the above equations
can be rewritten in the following matrix form.

Φ diag(X R) + s = 1, (3)

where diag(X R) is the column vector consisting of the diagonal entries of X R. Now,
for any noise matrix X : R f → O and a remap R : O → R f satisfying Eq. (3), and for a
prior π, we want to refine the generic expression (2) of the utility by taking Eq. (3) into
account. We start by rewriting Eq. (2) in the following matrix form.

U(X,π,R) = π diag(X R). (4)

Now, let y be a row vector such that

π = yΦ. (5)

Note that, the above matrix equation is in fact a system of |R f | linear equations. The
kth equation in this system is formed by the kth column of Φ, and the kth entry of π as
follows.

yΦk = πk ∀k ∈ R f .

Solving this system of equations for the row vector y has the following possible out-
comes: If the matrix Φ is invertible, then, for any prior π, Eq. (5) has exactly one solu-
tion. If Φ is not invertible (i.e. it contains linearly dependent columns), then there are
either 0 or an infinite number of solutions, depending on the prior π: If the entries of
π respect the linear dependence relation then are infinitely many solutions. Otherwise,
the equations are ‘inconsistent’, in which case there are no solutions.

Since the matricesΦ have a precise format, one may wonder whether it could be that
they are all invertible or all non invertible. In fact, this is not the case: In Appendix B
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we show an example of a matrix Φ that, for certain values of ε is invertible, while for
others is non invertible.

Whether Φ is invertible or not, we consider here only the priors where the matrix
equation (5) has at least one solution y. Note that, by definition, all the ε-regular priors
have this property, but there can be others for which the solution y has some negative
components. In some of the results below (in particular in Lemma 2) we consider this
larger class of priors, for the sake of generality.

Multiplying Equation (3) by y yields

yΦ diag(X R) + y s = y 1. (6)

Substituting Equations (5) and (4) in the above equation consecutively provides the
required expression for the utility and therefore proves the following lemma.

Lemma 2. For a given query f and a privacy parameter ε > 0, let π be any prior.
Then for every row vector y satisfying π = yΦ, the utility of any ε-differentially private
mechanism with a noise matrix X for the prior π using a remap R is given by

U(X,π,R) = y 1 − y s, (7)

for a vector s satisfying 0 ≤ si ≤ 1 for all i ∈ R f .

Lemma 2 expresses the utility function for any ε-private noise matrix X for a prior π
with a remap R as a function of the vector y and the slack vector s. Although the ma-
trix X and the remap R do not explicitly appear on the right hand side of Equation (7),
the utility still depends on them indirectly through the vector s. Namely, according to
Equation (3), the choice of X and R determines the slack vector s. The utility function
depends also on the prior π, because the choice of π determines the set of vectors sat-
isfying Eq. (5). Substituting any of these vectors y in Eq. (7) yields the same value for
U(X,π,R).

By Definition 5, of ε-regular priors, the above lemma specifies the utility for any
of them. Therefore, we use Lemma 2, and obtain an upper bound for the utility of ε-
differentially private mechanisms for ε-regular priors.

Theorem 1 (utility upper bound). For a given query f and a privacy parameter ε > 0,
let π be an ε-regular prior and X be an ε-differentially private noise matrix. Then for
all row vectors y ≥ 0 satisfying yΦ = π, it holds for any remap R that

U(X,π,R) ≤
∑

i∈R f
yi, (8)

where the equality holds iff Φ diag(X R) = 1.

The above result can be also seen from the geometric perspective. As shown by Propo-
sition 4, each member in the region of ε-regular priors is described as a convex combi-
nation of the corner priors. That is there are coefficients γi ≥ 0 for i ∈ R which form this
combination. It can be shown (as in the proof of Proposition 4) that γi = yi

(∑
k∈R f

φik

)
.

Hence, the upper bound given by Theorem 1 can be written as follows using the coeffi-
cients γi.

U(X,π,R) ≤
∑
i∈R f

γi∑
k∈R f

φik
.
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Inspecting the above result for corner priors, recall that for a corner ci, γ j is 1 for j = i
and is 0 otherwise; thus, the utility upper bound for ci is therefore 1/

∑
k φik. Moreover,

the upper bound for each ε-regular prior π can be regarded (according to the above
equation) as a convex combination of the upper bounds for the corner priors. That is,
from the geometric perspective, the utility upper bound for π linearly depends on its
proximity to the corner priors.

4.2 Min-mutual information

In this section, we employ an information-theoretic notion, namely mutual information,
to quantify the amount of information conveyed by a noise matrix X as an information
theoretic channel. We use this notion in two distinct ways: first, mutual information is
used to measure the information conveyed about the result of a specific query, similarly
to the use of “utility” in the previous section. Mutual information and utility (under the
binary gain function) are closely related, which allows us to transfer the bound obtained
in the previous section to the information-theoretic setting.

Second, we use mutual information to quantify the information about the database
that is revealed by a mechanism, a concept known in the area of quantitative informa-
tion flow as “information leakage”. This allows us to obtain bounds on the informa-
tion leaked by any mechanism, even non-oblivious ones, independently from the actual
query. For arbitrary priors, we obtain in a more natural way the bound conjectured in
[18] and proven in [8]. Moreover, if we restrict to specific (ε-regular) priors, then we
are able to provide more accurate bounds.

Following recent works in the are of quantitative information flow ([14–17, 8, 18]),
we adopt Rényi’s min-entropy ([21]) as our measure of uncertainly. The min-entropy
H∞(π) of a prior π, defined asH∞(π) = − log2 maxi πi, measures the user’s uncertainty
about the query result. Then, the corresponding notion of conditional min-entropy, de-
fined as H∞(X,π) = − log2

∑
o maxi πi xio, measures the uncertainty about the query

result after observing the output of the noise matrix X. Finally, subtracting the latter
from the former brings us to the notion of min-mutual information:

L(X,π) = H∞(π) −H∞(X,π)

which measures the amount of information about the query result conveyed by the
noise matrix. In the area of quantitative information flow this quantity is known as
min-entropy leakage; the reader is referred to [14] for more details about this notion.

Min-mutual information is closely related to the notion of utility under the binary
gain function and using an optimal remap. A remap R̂ is optimal for X,π if it gives the
best utility among all possible remaps for this noise matrix and prior. The following
result from [8] connects min-mutual information and utility:

Proposition 5. Given a noise matrix X and a prior π, let R̂ be an optimal remap for
π, X. Then, it holds

L(X,π) = log2
U(X,π, R̂)

maxi πi

This connection allows us to transfer the upper-bound given by Theorem 1 to min-
mutual information.
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Proposition 6 (min-mutual information upper bound). Let f be a query, let ε > 0,
let π be an ε-regular prior and let X be the noise matrix of any ε-differentially private
mechanism. Then for all row vectors y ≥ 0 satisfying yΦ = π, it holds that:

L(X,π) ≤ log2

∑
i∈R f

yi

maxi πi
(9)

The above bound holds only for ε-regular priors. However, it is well-known ([15])
that min-mutual information is maximised by the uniform prior u, i.e.L(X,π) ≤ L(X,u)
for all X,π. Thus, in cases when u is ε-regular, we can extend the above bound to any
prior.

Corollary 1. Let f be a query, let ε > 0 such that the uniform prior u is ε-regular, and
let X be the noise matrix of any ε-differentially private mechanism. Then for all row
vectors y ≥ 0 satisfying yΦ = u, and for all priors π, it holds that:

L(X,π) ≤ log2(|R f |
∑

i∈R f
yi)

4.3 Quantifying the leakage about the database

In the previous section we considered the information about the query result conveyed
by an oblivious mechanism. This information was measured by the min-mutual infor-
mation L(X,π), where X is noise matrix, mapping query results R f to outputs.

We now turn our attention to quantifying the information about the database that
is conveyed by the complete mechanism K (even in the case of non-oblivious mecha-
nisms). Intuitively, we wish to minimise this information to protect the privacy of the
users, contrary to the utility which we aim at maximising. Quantifying this information
can be done in a way very similar to the previous section. The only difference is that we
use a stochastic matrix Y that models the mechanism K , mapping databases V = Vu

to outputs (recall that u is the number of individuals in the database and V the set of
possible values for each individual). Moreover, the underlying graph ∼ is the Hamming
graph, induced by the adjacency relation on databases, and ε-regularity concerns priors
π on databases.

In this case, L(Y,π) measures the information about the database conveyed by the
mechanism, which we refer to as “min-entropy leakage”, and the bounds from the pre-
vious section can be directly applied. However, since we now work on a specific graph
(V,∼), we can obtain a closed expression for the bound of Corollary 1. We start by
observing that due to the symmetry of the graph, the uniform prior u is ε-regular for all
ε > 0. More precisely, we can show that the vector y, defined as

yi =

(
eε

|V |(|V | − 1 + eε)

)u

i ∈ V

satisfies yΦ = u and y ≥ 0. Thus, applying Corollary 1 we get the following result.

Theorem 2 (min-entropy leakage upper bound). Let V = Vu be a set of databases,
let ε > 0, and let Y be an ε-differentially private mechanism. Then for all priors π, it
holds that:

L(Y,π) ≤ u log2
|V | eε

|V | − 1 + eε
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Fig. 4. Leakage bounds for various values of ε

This bound determines the maximum amount of information that any differentially
privacy mechanism can leak about the database (independently from the underlying
query). The bound was first conjectured in [18] and independently proven in [8]; our
technique gives an alternative an arguably more intuitive proof of this result.

Note that the above bound holds for all priors. If we restrict to a specific ε-regular
prior π, then we can get better results by using the bound of Proposition 6 which de-
pends on the actual prior. This is demonstrated in the following example.

Example 3. Consider a database of 5 individuals, each having one of 4 possible values,
i.e.V = Vu with V = {1, 2, 3, 4} and u = 5. Assume that each individual selects a value
independently from the others, but not all values are equally probable; in particular
the probabilities of values 1, 2, 3, 4 are 0.3, 0.27, 0.23, 0.2 respectively. Let π be the
corresponding prior on V that models this information. We have numerically verified
that for all 0.48 ≤ ε ≤ 1 (with step 0.01) π is ε-regular. Thus we can apply Proposition 6
to get an upper bound of L(Y,π) for this prior.

The resulting bound, together with the general bound for all priors from Theorem 2,
are shown in Figure 4. We see that restricting to a specific prior provides a significantly
better bound for all values of ε. For instance, for ε = 0.5 we get that L(Y,π) ≤ 1.2 for
this π, while L(Y,π) ≤ 2.5 for all priors π.

Note that, in general, the above bounds for the utility and the min-mutual infor-
mation are not tight. For a given query and a privacy parameter ε, there may be no
noise matrix X that meets these bounds. Nevertheless, they provide ultimate limits, in-
duced by the privacy constraints, for all ε-differential private mechanisms and ε-regular
priors. Note also that these bounds are simultaneously tight if the common condition
Φ diag(X R) = 1 is satisfied (note that this condition is independent of the underlying
prior). From this point we investigate the mechanisms that, whenever exist, they satisfy
such a condition and are therefore optimal for the entire class of ε-regular priors.
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5 Tight-constraints mechanisms

In this section, we introduce the notion of tight-constraints mechanism. We start by
giving the definition of these mechanisms for a given query f and privacy parameter
ε > 0. Then we describe their properties in terms of privacy guarantees and optimality
for ε-regular priors.

Definition 7 (A tight-constraints mechanism). For a given query f with range R f ,
and a given privacy parameter ε > 0, an oblivious mechanism with a noise matrix X :
R f → R f is called a tight-constraints mechanism iff it satisfies the following conditions
for all i, k ∈ R f .

e−ε d(i,k) xkk = xik. (10)

It is important to note that, in general, there may exist zero, one or more tight-constraints
mechanisms for a given query f and a privacy parameter ε > 0. The above definition
enforces |R f | (|R f | − 1) linearly independent equations, referred to as the ‘tight con-
straints’. Additionally it must also hold that

∑
k∈R f

xik = 1 for all i ∈ R f . Thus we
have, in total, |R f | |R f | equations. If these equations are linearly independent, then they
solve to unique values. If these values are non-negative, then they determine a unique
tight-constraints mechanism. On the other hand, if these equations are not linearly in-
dependent, then there may be multiple solutions with non-negative entries, in which
case we have multiple tight-constraints mechanisms for the given query and privacy
parameter ε.

5.1 Properties

It has been seen from Definition 7, that the choice of a query f and a value ε > 0
correspond to a set of tight-constraints mechanisms. The first important feature of these
mechanisms is that they satisfy ε-differential privacy as confirmed by the following
proposition.

Proposition 7 (differential privacy). For a given query f and a privacy parameter
ε > 0, every tight-constraints mechanism is ε-differentially private.

Thanks to the above fact, we can give a further useful characterisation of the tight-
constraints mechanisms in comparison to other ε-differentially private mechanisms.
More precisely, the following proposition identifies a linear algebraic condition that
is satisfied only by the tight-constraints mechanisms for given f , ε:

Lemma 3 (diagonal characterisation). Let f be a query and let ε > 0. Then for any
oblivious ε-differentially private mechanism K with a noise matrix X : R f → R f , the
following equation holds iff K is a tight-constraints mechanism.

Φ diag(X) = 1. (11)

Observe that the above proposition provides a way to check the existence of, and also
compute, the tight-constraints mechanisms for given f , ε. Since Condition (11) is satis-
fied only by these mechanisms, then there is at least one tight-constraints mechanism if
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there is a vector z, with non-negative entries, that satisfies the equation Φ z = 1. In this
case the noise matrix X̂ of a tight-constraints mechanism is obtained by setting its di-
agonal to z, and evaluating the non-diagonal entries from the diagonal using Equations
(10).

Now we turn our attention to the region of ε-regular priors and we identify the
oblivious mechanisms which are optimal wrt both utility and min-mutual information
in this region. It turns out that the set of these optimal mechanisms consists exactly of
all the mechanisms that can be mapped to a tight-constraints mechanism using a remap
R.

Theorem 3 (Optimality). Let f be a query and let ε > 0 such that at least one tight-
constraints mechanism exists. Then any oblivious mechanism K : V → O is optimal
(wrt both utility and min-mutual information) for every ε-regular prior π iff there is a
remap R : O → R f such that K R is a tight-constraints mechanism for f , ε.

Proof. If there exists a tight-constraints mechanism for given f , ε, then its noise matrix
X̂ must satisfy Eq (11). This implies that the upper-bound in Theorem 1 is reachable by
X̂ and the identity remap. Thus that upper-bound, in this case, is tight. By Theorem 1,
a mechanism K with a noise matrix X meets such an upper bound for the utility (and
therefore is optimal) iff it satisfies the condition Φ diag(X R) = 1, with some remap R.
Since any mechanism with noise matrix X R is ε-differentially private, then by Lemma
3, this condition is satisfied iff X R is the noise matrix of a tight-constraints mechanism
(for f , ε). That is iff f X R = K R is a tight-constraints mechanism. Using the relation,
given by Proposition 5, between utility and min-mutual information, the same argument
holds for the latter. ut

Note that tight-constrains mechanisms are themselves optimal as they are mapped
to themselves by the identity remap.

As a consequence of the above general result, we consider the special case of the
uniform prior, denoted by u, where all exact query results in R f are equally likely. Note
that this prior corresponds to users having unbiased knowledge about the query results,
i.e. they assume that all the exact results R f are yielded, by executing the query, with
the same probability. Firstly, the following lemma proves an equivalence between the
existence of at least one tight-constraints mechanism on one hand and the uniform prior
u being ε-regular on the other hand.

Lemma 4. For a given query f and privacy parameter ε > 0, there exists at least one
tight-constraints mechanism iff the uniform prior u is ε-regular.

It is worth noticing that in general the region of ε-regular priors may or may not include
the uniform prior. However, as shown earlier in Section 3, this region is enlarged and
converges to the entire prior space as less privacy is imposed (that is as ε increases). This
means that for the values of ε above certain threshold ε∗, depending on the query, the
region of ε-regular priors accommodates the uniform prior u, and therefore (by Lemma
4), there is at least one tight-constraints mechanism. This provides a design criteria to
select a setting for ε such that we have an optimal mechanism for the whole region.

Using Lemma 4, we can describe the optimal mechanisms for the uniform prior as
a corollary of Theorem 3.



A differentially private mechanism of optimal utility for a region of priors 19

0 1 2 3 4 vu

(a) Sum query

(0,u) (1,u) (2,u) (u,u)

(0,2) (1,2) (2,2) (u,2)

(0,1) (1,1) (2,1) (u,1)

(0,0) (1,0) (2,0) (u,0)

(b) 2-count query

Fig. 5. Adjacency graphs

Corollary 2. Let f be a query and let ε > 0 such that there exists at least one tight-
constrains mechanism. Then a mechanism K : V → O is optimal for the uniform prior
iff K R is a tight-constraints mechanism for some remap R : O → R f .

In fact when we consider arbitrary queries, we find that our specification for the
tight-constraints mechanisms covers other well known differentially-private mecha-
nisms. In particular, when we consider a counting query, we find that a tight-constraints
mechanism for this query is exactly the truncated-geometric mechanism, which is shown
by [6] to be optimal for every prior. Furthermore, we are able to show that this mecha-
nism, as a tight-constraints one, exists for the selected query with any ε > 0.

Another class of queries, studied in [8] are the ones whose graph structures are
either vertex-transitive or distance-regular. The authors in [8] were able to construct a
mechanism which is optimal for the uniform prior for any ε > 0. In the context of our
results, when we consider a query f in this class, it is easy to show that such an optimal
mechanism is in fact a tight-constraints mechanism for f . We can also show that this
tight-constraints mechanism exists for all ε > 0.

6 Case-study: sum and 2-count queries

In this section we show the usefulness of the tight-constraints mechanism by apply-
ing it to two particular families of queries, namely sum and 2-count queries. For each
family, we evaluate the tight-constraint mechanism on databases consisting of u indi-
viduals each having an integer value between 0 and v, and we compare its utility to the
geometric mechanism.

It is well-known that no universally optimal mechanism exists for these families; in
particular, the geometric mechanism, known to be optimal for a single counting query,
is not guaranteed to be optimal for sum or multiple counting queries. On the other hand,
as discussed in the previous section, tight-constraints mechanisms, whenever they exist,
are guaranteed to be optimal within the region of ε-regular priors.

The comparison is made as follows: for each query, we numerically compute the
smallest ε (using a step of 0.01) for which a tight-constraints mechanism exists (i.e.
for which the uniform prior u is ε-regular, see Lemma 4). Then we compute the utility
(using an optimal remap) of both the tight constraints and the geometric mechanisms,
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Fig. 6. Utility for various values of ε

for a range of ε starting from the minimum one (note that the tight constraint mechanism
exists for any ε greater than the minumum one).

Sum query Let f be the query returning the sum of the value for all individuals, thus it
has range R f = {0, . . . , vu}. By modifying the value of a single individual, the outcome
of the query can be altered by at most v (when changing the value from 0 to v), thus
two elements i, j ∈ R f are adjacent iff |i − j| ≤ v. The induced graph structure on R f is
shown in Figure 5(a) (for the case v = 3).

For our case-study we numerically evaluate this query for u = 150, v = 5 and for the
uniform prior. We found that the minumum ε for which a tight-constraints mechanism
exists (and is in fact unique since Φ is invertible) is 0.8. Figure 6(a) shows the utility of
the tight-constraint mechanism, as well as that of the geometric mechanism, for values
of ε between 0.8 and 1.3, the uniform prior and using and optimal remap. We see that
the tight-constraint mechanism provides significantly higher utility than the geometric
mechanism in this case.

2-count query Consider now the query f consisting of 2 counting queries (i.e. reporting
the number of users satisfying properties p1 and p2), thus it has range R f = {0, . . . , u} ×
{0, . . . , u}. By modifying the value of a single individual, the outcome of each counting
query can be altered by at most 1, thus two anwers (i1, i2), ( j1, j2) ∈ R f are adjacent iff
|i1− j1| ≤ 1 and |i2− j2| ≤ 1. The induced graph structure on R f is shown in Figure 5(b).

We evaluate this query for u = 30 and for the uniform prior. We found that the
minumum ε for which a tight-constraints mechanism exists is 0.9. Figure 6(b) shows
the utility of the tight-constraint mechanism, as well as that of the geometric mecha-
nism (applied independently to each counting query), for values of ε between 0.9 and
1.3 and the uniform prior. Similarly to the sum query, we see that the tight-constraint
mechanism provides significantly higher utility than the geometric mechanism in this
case.
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7 Conclusion and future work

In this paper we have continued the line of research initiated by [6, 1] about the exis-
tence of universally-optimal differentially-private mechanisms. While the positive re-
sult of [6] (for counting queries) and the negative one of [1] (for essentially all other
queries) answer the question completely, the latter sets a rather dissatisfactory scenario
for differential privacy and the typical mechanisms used in the community, since count-
ing queries are just one of the (infinitely many) kinds of queries one can be interested
in. In practice the result of [1] says that for any query other than counting queries one
cannot devise a mechanism that gives the best trade-off between privacy and utility for
all users. Hence one has to choose: either design a different mechanism for every user,
or be content with a mechanism that, depending on the user, can be far from providing
the best utility. We have then considered the question whether, for a generic query, the
optimality is punctual or can actually be achieved with the same mechanism for a class
of users. Fortunately the answer is positive: we have identified a class of priors, called
ε-regular, and a mechanism which is optimal for all the priors in this class. We have also
provided a complete and effectively checkable characterisation of the conditions under
which such mechanism exists, and an effective method to construct it. As a side result,
we have improved on the existing bounds for the min-entropy leakage induced by dif-
ferential privacy. More precisely, we have been able to give specific and tight bounds
for each ε-regular prior, in general smaller than the bound existing in literature for the
worst-case leakage (achieved by the uniform prior [20]).

So far we have been studying only the case of utility for binary gain functions. In
the future we aim at lifting this limitation, i.e. we would like to consider also other
kinds of gain. Furthermore, we intend to study how the utility decreases when we use
a tight-constraints mechanism outside the class of ε-regular priors. In particular, we
aim at identifying a class of priors, larger than the ε-regular ones, for which the tight-
constraints mechanism is close to be optimal.

The definition of tight-constrains mechanism is related to the connectivity condition
of the column graphs introduced by Kifer and Lin [22, 23]. They show that this property
implies maximality w.r.t. the postprocessing preorder. As pointed out by an anonymous
reviewer, we can probably exploit this result to strengthen our results in Section 5, in
particular Theorem 3.

The negative result of [1] is stated in terms of the graph induced by ∼ f : a universally
optimal mechanism can exist only if such graph is a line. This is the case of counting
queries, but not only: any composition of a counting query with a function that preserves
the graph structure would induce the same kind of graph, and it’s for this reason that the
authors of [1] write “essentially counting queries”. As pointed out by an anonymous
reviewer, we can use the techniques of our paper to prove that a universally optimal
mechanism exists if and only if the query is derivable from a counting query by a
bijection, thus making the result of [1] more precise, and extending the result of [6].

Acknowledgement We would like to thank the anonymous reviewers for their invaluable
recommendations for improving the paper, and their suggestion for future work.
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Appendix

A Proofs

Proof of Lemma 1:

Proof. Assuming K is oblivious, then by Definition 1, the ε- differential privacy of K
is written as follows.∑

r∈R f
P(r | v) · P(S | r)∑

r∈R f
P(r | v′) · P(S | r)

≤ eε ∀S ⊆ O,∀v, v′ ∈ V such that v ∼ v′. (12)

Since the query f is deterministic, P(r | v) = 1 if r = f (v), and is 0 otherwise. Therefore,
Condition (12) is written as follows.

P(S | f (v))
P(S | f (v′))

≤ eε ∀S ⊆ O,∀v, v′ ∈ V such that v ∼ v′. (13)

Now we express the above condition in terms of adjacent query results instead of adja-
cent databases. For any pair of query results i, h such that i ∼ f h, there exists (by Def.
3) a pair of databases v, v′ such that f (v) = i, f (v′) = h, and v ∼ v′. Applying Condition
(13) to v, v′, we get P(S | i)/P(S | h) ≤ eε . Repeating the same argument for all pairs of
adjacent query results we get

P(S | i)
P(S | h)

≤ eε ∀S ⊆ O,∀i, h ∈ R f such that i ∼ f h. (14)

We also imply Condition (13) from (14) as follows. For any pair of adjacent databases
v, v′, if f (v) , f (v′) then f (v) ∼ f f (v′) (because v ∼ v′), and hence applying Condition
(14) with i = f (v), h = f (v′) yields that P(S | f (v))/P(S | f (v′)) ≤ eε . If otherwise
f (v) = f (v′) then this ratio is 1 which is strictly less than eε . Repeating the same argu-
ment for all pairs of adjacent databases we get Condition (13). It holds therefore that
(13) is equivalent to (14). It remains to show that (14) is equivalent to

P(o | i)
P(o | h)

≤ eε ∀o ∈ O,∀i, h ∈ R f such that i ∼ f h. (15)

For all o ∈ O, applying (14) to the subsets S = {o} , we easily get (15). Now we
consider the other direction of implication. Note that it holds for any subset S ⊆ O and
query result i that P(S | i) =

∑
o∈S P(o | i). If (15) holds. Then it holds for any subset

S and any adjacent query results i, h that P(S | i) ≤ eε
∑

o∈S P(o | h) = eε P(S | h),
and hence (14) is implied by quantifying over all possible subsets and adjacent query
results. ut

Proof of Proposition 1:

Proof. Using the characterisation of ε-differential privacy given by Lemma 1, it is
enough to prove the following equivalence for all outputs o ∈ O.

xio ≤ eε · xho ∀i, h ∈ R f , i ∼ f h ⇔ xio ≤ eε d(i,h) · xho ∀i, h ∈ R f .
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The direction ‘⇐’ is proved by restricting the right statement to pairs i, h having distance
d(i, h) = 1. The other implication ‘⇒’ is proved by induction on the distance between
graph nodes: For all i, h where d(i, h) = 1, it holds that

xio ≤ eε d(i,h) · xho ∀o. (16)

Now we set our hypothesis that Inequality (16) holds for all i, h where d(i, h) = d, and
then prove that the hypothesis holds for distance d + 1. For any node u at distance d + 1
from i, there is an adjacent node h (to u) such that d(i, h) = d. Then we have

xio ≤ eε d · xho and xho ≤ eε xuo.

Thus, we obtain
xio ≤ eε (d+1) · xuo

That is, the hypothesis (16) holds for all pairs i, u having distance d(i, u) = d + 1. ut

Proof of Proposition 2:

Proof. By Definition 5, the ratio πi/π j is given by

πi
/
π j =

∑
k ykφki∑
k ykφk j

(17)

where
φk j =

(
e−ε

)d(k, j)
≥

(
e−ε

)d(k,i)+d(i, j)
=

(
e−ε

)d(i, j)
· φki

The above inequality is implied by the triangle inequality, d(k, j) ≤ d(k, i) + d(i, j) and
the fact that e−ε < 1. Since yk ≥ 0 for all k, it holds that∑

k

ykφk j ≥
(
e−ε

)d(i, j)
·
∑

k

ykφki

Substituting the above inequality in Eq. (17) completes the proof. ut

Proof of Proposition 3:

Proof. By Proposition 2, it holds for any pair of entries πi, π j that

π j ≤ eε d(i, j) · πi and e−ε d(i, j) · πi ≤ π j.

Summing the above inequalities over j, we get∑
j

π j ≤ πi ·
∑

j

eε d(i, j) and πi

∑
j

e−ε d(i, j) ≤
∑

j

π j.

Since
∑

j π j = 1, the above inequalities imply the upper and lower bounds for πi. ut

Proof of Proposition 4:
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Proof. By Definition 5, a prior π is ε-differentially informative if and only if there exists
vector y such that π = yΦ and yi ≥ 0 for all i ∈ R f ; that is if and only if there are reals
yi ≥ 0 for all i ∈ R f , such that π can be written as a linear combination Φ’s rows as
follows.

π =
∑
i∈R f

yi Φi,

where Φi is the row of Φ corresponding to the query result i. By Definition 6, observe
that each row Φi is equal to

(∑
k∈R f

φik

)
ci. Now substitute this expression in the above

equation for π, and let γi = yi

(∑
k∈R f

φik

)
. Note that γi ≥ 0 if and only if yi ≥ 0 for all

i ∈ R f . Thus we conclude that the condition given by the proposition is equivalent to
the condition given by Def. 5. ut

Proof of Theorem 1:
Proof. Since π is ε-regular, then it holds π = yΦ for a vector y where yi ≥ 0 for all
i ∈ R f . Applying Lemma 2 and noting that si ≥ 0 for all i ∈ R f , we observe that y s ≥ 0
and hence the utility is upper-bounded by y 1 =

∑
i∈R f

yi. Note also that this bound is
met if and only if all entries of the slack vector s in Eq. (7) are 0, because yi ≥ 0 for all
entries i. By Eq. (3), the condition s = 0 is equivalent to Φ · diag(X · R) = 1. ut

Proof of Proposition 6:
Proof. By Proposition 5, the leakage L(X,π) is monotonically increasing with the util-
ityU(X,π, R̂). By Theorem 1, this utility is upper-bounded by

∑
i∈R f

yi substituting this
upper bound in Proposition 5 yields the inequality (9) where the equality holds if and
only if it also holds in Theorem 1 for X and R̂. That is if and only if Φ diag(X R̂) = 1.
This condition is equivalent to the condition of equality in Proposition 6, because if a
remap R satisfies this latter condition then it must be optimal as the utility with R (by
Theorem 1) is globally maximum, that is no other remap can achieve higher utility. ut

Proof of Proposition 7:
Proof. For the noise matrix X̂ of a tight-constraints mechanism, we want to show (ac-
cording to Proposition 1) that for every pair of query results i, h and every output o, it
holds that

x̂io ≤ eε d(i,h) · x̂ho. (18)

By Definition 7 it holds for every pair of nodes i, h and every output o, that

x̂ho = e−ε d(h,o) · x̂oo and x̂io = e−ε d(i,o) · x̂oo. (19)

If x̂oo = 0 then x̂ho = x̂io = 0. In this case, Condition (18) is satisfied. On the other hand,
if x̂oo , 0, then both x̂ho and x̂io are non-zero, and it follows from Equations (19) that,
for every inputs i and h, and every output o,

x̂ho
/
x̂io = e−ε (d(h,o)−d(i,o)).

By the triangle inequality, it holds that d(h, o) − d(i, o) ≤ d(i, h). Knowing also that
e−ε < 1, it follows from the above inequality that

x̂ho
/
x̂io ≥ e−ε d(i,h).

The above inequality implies Condition (18) of differential privacy. ut
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Proof of Lemma 3:

Proof. If a mechanism K is a tight-constraints mechanism, then it holds for its noise
matrix X, by Def. 7 that xik = e−ε d(i,k) xkk for all i, k ∈ R f . It also holds that

∑
k∈R f

xik = 1
for all i ∈ R f . Combining these equations yields∑

k∈R f

e−ε d(i,k) xkk = 1, ∀i ∈ R f .

Using the privacy-constraints matrix Φ, the above equations can be written in the ma-
trix form (11). Now let X be the noise matrix of any ε-differentially private mechanism
K . We prove that if X satisfies Equation (11) then K must be a tight-constraints mech-
anism. Note that if X satisfies Equation (11), then there must be a tight-constraints
mechanism X̂ having the same diagonal as X. Suppose for a contradiction that X devi-
ates from X̂ in the values of non-diagonal entries. Deviating the mechanism X̂, which
satisfies Eqs. (10), to another mechanism X while keeping the same diagonal requires
increasing at least one non-diagonal entry xik to preserve the differential privacy condi-
tion xik ≥ e−ε d(i,k) xkk. This increment of xik has to be deducted from one or more entries
in the same row i. Let xi j be any of these decremented entries. To preserve the privacy
condition xi j ≥ e−ε d(i, j)x j j we have to decrease the diagonal entry x j j. The change of x j j

contradicts that the diagonals of X and X̂ are the same. ut

Proof of Lemma 4:

Proof. By Lemma 3, if there is at least a tight-constraints mechanism, then Eq. (11)
must hold for this mechanism’s noise matrix X̂. Taking the transpose of both sides in
this equation, and noting that Φt = Φ (because Φ is symmetric), then we imply that

(diag(X̂))t ·Φ = 1t.

Scaling the above equation by 1/|R f | yields the row vector u, the uniform prior, on the
right hand side. Thus if a tight-constraints mechanism, with noise matrix X̂, exists then

(1/|R f |) (diag(X̂))t ·Φ = u.

which means (By Def. 5) that u is ε-regular, because the row vector (diag(X̂))t has only
non-negative entries. For the opposite implication, assume that u is ε-regular. Then by
definition there is a row vector y with non-negative entries such that yΦ = u. Taking
the transpose of both sides, and multiplying by |R f |, yields that Eq. (11) is satisfied for
the noise matrix X, whose diagonal is given by diag(X) = |R f | · yt (non-negative). Thus
there exists a tight-constraints mechanism whose noise matrix is X. ut

B On the invertibility of the privacy-constraints matrix

In this section we show that the matrix Φ introduced in Definition 4 can be both invert-
ible or not invertible.

Assume that the set of query results R f , and its adjacency relation, are given by the
graph represented in Fig. 7, which is obtained by the Hamming graph 23 by adding an
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v0

v4

v7 v6

v5

v3

v1

v2

Fig. 7. The set of query results R f and its adjacency relation

arc between each pair of nodes at distance 3 (thus in the resulting graph the maximal
distance is 2).

Consider the matrix Φ defined by φih = αd(vi,vh), where α = e−ε . It is easy to see
that if α = 1/3, then the matrix is not invertible. In fact, if we denote by ci the row
corresponding to the node vi, we have

c0 + c2 + c4 + c6 = c1 + c3 + c5 + c7

This can be easily proved by observing that for each position of the vectorial sum one
side of the equation is 1 + 3α2 while the other is 4α.

On the other hand, there are values of α for which Φ is invertible. For instance for
α ≤ 1/7 it is possible to show that the columns are linearly independent. Intuitively, this
is because the elements which are not in the diagonal are too small to sum up to the
diagonal. Note also that as α approaches 0 the matrix Φ approaches the identity matrix.


