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91762 Palaiseau Cedex, France
cLaboratoire Vibrations Acoustique (LVA), INSA de Lyon, 25bis avenue Jean Capelle, 69621 Villeurbanne Cedex,

France

Abstract

Numerical computation of Nonlinear Normal Modes (NNMs) for conservative vibratory sys-

tems is addressed, with the aim of deriving accurate reduced-order models up to large ampli-

tudes. A numerical method is developed, based on the center manifold approach for NNMs,

which uses an interpretation of the equations as a transport problem, coupled to a periodicity

condition for ensuring manifold’s continuity. Systematic comparisons are drawn with other

numerical methods, and especially with continuation of periodic orbits, taken as reference so-

lutions. Three different mechanical systems, displaying peculiar characteristics allowing for a

general view of the performance of the methods for vibratory systems, are selected. Numerical

results show that invariant manifolds encounter folding points at large amplitude, generically

(but not only) due to internal resonances. These folding points involve an intrinsic limitation to

reduced-order models based on the center manifold and on the idea of a functional relationship

between slave and master coordinates. Below that amplitude limit, numerical methods are able

to produce reduced-order models allowing for a precise prediction of the backbone curve.

Keywords: nonlinear normal modes, numerical computation, nonlinear vibrations,

reduced-order models, invariant manifold

1. Introduction

Since their first introduction in the 1960’s in Rosenberg’s work [1, 2], Nonlinear Normal

Modes (NNMs) have been widely used in nonlinear vibration theory, with the purpose of iden-

tification [3, 4, 5, 6, 7], model order reduction [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18], or

understanding of new phenomena such as targeted energy transfer [19, 20, 21, 22, 23]. They

have been first introduced for conservative systems and thus defined in the framework provided

by Lyapunov’s theorem [24], i.e. a family of periodic orbits, that persist in the vicinity of fixed

points with the presence of nonlinearity. This definition has been used by Rosenberg and other

subsequent investigators who retained this framework [25, 26, 27, 28]. However, a more gen-

eral definition has emerged since the work by Shaw and Pierre [29], who used the framework
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provided by the center manifold theorem [30] in order to define a NNM as an invariant mani-

fold in phase space, tangent at origin to the corresponding eigenmode. This definition allows to

handle the cases of damped and gyroscopic systems. On the other hand, it restricts the NNMs

to be located in the vicinity of the eigenmodes of the system (through the tangency constraint at

origin), while Rosenberg’s definition allows defining as NNMs all the periodic orbits existing

in phase space. A third alternative definition is given by using the framework provided by the

theorems by Poincaré and Poincaré-Dulac [31, 32], the so-called theory of normal forms, and al-

lows expressing the NNMs of conservative [33, 13] as well as damped mechanical systems [34].

The retained definition gives rise to different classes of methods for the computation of

NNMs. Most of the existing methods derive from analytical calculations, as a legacy of history

since the very first developments have been realized at a time when computers were not as pow-

erful as today. However, since the last decade, more and more numerical methods have been

established in order to extend the amplitude limitations encountered by asymptotic methods.

Roughly speaking, Rosenberg’s definition leads naturally to continuation methods for periodic

orbits, while using the center manifold theorem leads to consider a Partial Differential Equation

(PDE) in phase space for constructing the NNM, that can be solved by one of the numerous

method provided by applied mathematics (finite difference, Galerkin projection, ...). For nor-

mal form, the proof of Poincaré’s theorem brings the key for constructing NNMs that is solely

computable by asymptotic developments.

More precisely, for those who use the definition of NNMs as a family of periodic orbits,

numerous analytical methods have been proposed based on the use of the synchronicity of the

motion [2, 26, 35], the extremum points of the energies [27] or the fact that those orbits are

geodesics of selected subspaces [36]. A special class of methods derives from the idea of using

a non-smooth temporal transformation (NSTT), proposed by Pilipchuk [37, 38]. This approach

transforms the problem of finding periodic orbits to a two-points nonlinear boundary value

problem (NLBVP) where the period plays the role of a nonlinear eigenvalue. The NLBVP can

be solved either analytically by regular perturbation series [39], or numerically with the help

of shooting technique [40]. Concerning numerical methods, a first approach by Slater was to

use shooting methods for periodic orbits [41]. The natural extension was to use the powerful

methods proposed in the framework of continuation techniques [42] for numerically computing

the family of periodic orbits and thus the NNMs, with no amplitude limitations [43, 44]. Con-

tinuation of periodic orbits has now been recognized as the most efficient method for conser-

vative systems, since they are able to easily handle the presence of turning points, internal res-

onances, to compute the stability domains and to deal with numerous other difficulties that are

specific to nonlinear systems. Moreover, their implementation is now well documented within

numerous standard methods for steps continuation and adaptation (arclength, pseudo-arclength,

asymptotic-numerical method). Finally, standard codes such as AUTO [45], MANLAB [46, 47]

or MATCONT [48] can now be routinely used for the purpose of practical computations.

The center manifold theorem gives a constructive method relying on the definition of slave

and master coordinates that are linked through an unknown function, which is solution of a

PDE expressing the geometry of the invariant manifold in phase space [30, 29]. Solutions of

this PDE has first been sought through asymptotic developments [8, 49, 3]. Then, numeri-

cal methods have been proposed, relying on Galerkin expansions on orthogonal polynomials

[11, 50] or functions with compact supports mimicking finite elements [5, 51, 52, 53]. Finally,
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finite differences coupled to a marching scheme for the amplitude, playing the role of time, has

been proposed by Noreland et al [18]. Although they do not use formally the center manifold

theorem, their amplitude-phase representation gives rise to equations that share common points

with the former method.

From the literature review, it appears that for conservative systems, continuation methods

are the most efficient and versatile numerical method to get a complete picture of the NNMs of

a system. The most recent obtained results show the ability of these methods to handle complex

systems with a large number of degrees of freedom [54], or complicated dynamics with numer-

ous solution branches [40]. However, continuation methods are restricted by construction to

conservative systems, and the presence of a light damping has already been assessed as having

an influence on the performance of reduced-order models based on NNMs [34].

The objective of this paper is twofold. First to define a numerical method for computing the

NNMs of a nonlinear mechanical system. As applications to damped systems are targeted, the

invariant manifold approach is selected. A new interpretation of the PDE defining the NNM

in terms of a transport equation is proposed, leading to a numerical method based on finite

differences and optimization of a periodicity criterion on the unknown initial condition. This

paper is restricted to conservative systems in order to compare our results to those obtained with

continuation methods, taken as reference solutions. However, direct extensions of this work will

consider the case of damped systems. The second objective is to use the computed NNMs in

the context of reduced-order models (ROMs). For conservative systems, ROMs’ performance

will be judged on their ability to predict correctly the backbone curve of the selected NNMs.

The validity limits of NNM-based ROMs will be properly studied for three different systems by

carefully inspecting the behaviour of the invariant manifold at large amplitudes. We will show

that generically, invariant manifolds observe foldings due to internal resonances. These folding

points introduce a fundamental limitation to NNM-based ROMs constructed with the invariant

manifold approach (whatever the selected numerical method is), as the initial assumption of a

functional relationship between slave and master coordinates breaks down.

The paper is organized as follows. First, the numerical method is presented in section 2, and

its performance is assessed on a two degrees-of-freedom (dof) system with cubic nonlinearity,

already selected by Pesheck et al. Section 3 is devoted to reduced-order models construction,

from the numerical computation obtained in section 2. The ability of the ROM to capture the

backbone curve of the first example is discussed, then a second two dofs example with quadratic

and cubic nonlinearities is also studied. Finally the whole procedure is applied to a continuous

system in section 4: a linear beam resting on an elastic nonlinear foundation. Conclusions are

drawn in section 5.

2. Numerical computation for NNMs

Geometric nonlinearity is considered in this paper, so that the starting point of the study is

an assembly of N oscillator equations displaying quadratic and cubic nonlinear coupling terms,

that are generic to describe thin structures vibrating at large amplitudes. Semi-discrete equations

are also taken into account, which means that we assume that space discretization has already

been realized if one deals with a continuous structure. In the conservative case, model equations

thus reads:
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∀ k = 1, ...,N : η̈k + ω
2
kηk = fk(η), (1)

where fk(η) =

N
∑

i=1

N
∑

j≥i

gk
i jηiη j +

N
∑

i=1

N
∑

j≥i

N
∑

l≥ j

hk
i jlηiη jηl merges the quadratic and cubic nonlinear-

ities. Note that no linear coupling terms are assumed in (1), which means that the linear mode

basis has been retained for space discretization, so that ηk is the modal displacement of the kth

mode. Furthermore, it is assumed that fk depends on η and not on η̇, as it is usual for thin

structures with geometric nonlinearities. This assumption has been selected for convenience of

the presentation and is not restrictive for the forthcoming developments.

2.1. Invariant manifold equations

The general methodology provided by the center manifold theorem [30, 55] is applied to

derive the invariant manifold equations defining the NNMs, as proposed in [29]. Let p be the

label of the master coordinate that defines the NNM under study. As second-order problem

(in time) are at hand in vibration theory, it is usual to set (1) into its first-order formulation by

using the displacement ηk and the velocity ξk = η̇k. Thus a pair of master coordinates (ηp, ξp)

is given and the first assumption is to define a functional relationship between all the pairs of

slave coordinates (ηk, ξk), k , p and the master one.

As a conservative problem is here considered, which means that regular solutions will be

closed periodic orbits, it appears natural to use polar coordinates instead of a cartesian rectan-

gular grid, as proposed in [50]. Hence the master coordinates are transformed to:

ηp = a cos φ, (2a)

ξp = −aωp sin φ. (2b)

The slave coordinates, for all k , p, are then sought as functions of (a, φ) via functional

relationships:

ηk = Pk(a, φ), (3a)

ξk = Qk(a, φ), (3b)

where (Pk,Qk) are the unknowns to be found. Differentiating (3) with respect to time leads to

the following equations:

η̇k = ȧ ∂aPk + φ̇ ∂φPk = Qk, (4a)

ξ̇k = ȧ ∂aQk + φ̇ ∂φQk = fk − ω2
kPk. (4b)

This set of equations can be rewritten in a simplified manner as:

V · ∇Pk = Qk, (5a)

V · ∇Qk = fk − ω2
kPk, (5b)

i.e. like a transport equation with nonlinear source terms, where the velocity vector V = (ȧ, φ̇)

is simply given by the flow of the master coordinate. Finally, the pth equation in (1) allows to

express the dynamics of the master mode:

ȧ = −
fp sin φ

ωp

, (6a)

φ̇ = ωp −
fp cos φ

aωp

. (6b)

4



Note that division by a in (6b) is not a problem because fp vanishes when a → 0, and

behaves at least like a2 from its definition together with the tangency condition imposed by the

NNMs, so that φ̇ remains bounded when a→ 0.

Substituting for (6) in (4) leads to eliminate the time variable. The resulting 2(N − 2) PDEs

are then purely geometrical: they define the geometry of the invariant manifold (the pth NNM)

in phase space. The next subsections deal with the numerical method proposed to solve these

equations, based on their transport problem structure.

Figure 1 shows the flow of the master mode for the two dofs problem presented in sec-

tion 2.6. The figure has been obtained once the numerical computation of the manifold is

realized, with the methodology described below. When a −→ 0, the nonlinearities are negligi-

ble and closed orbits are circles so that in the retained polar coordinates a regular velocity field

is at hand. For increasing values of a, nonlinearities distord the closed orbits, thus giving rise to

an oscillating part of the flow when φ varies.
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Figure 1: Flow of the master coordinates on the invariant manifold for the two dof problem with cubic nonlinearities

shown in section 2.6.

2.2. The periodic problem to solve

To simplify the presentation, we consider that the initial problem has two dofs, that the

master mode is the first one, and the second is the slave, thus p = 1 and k = 2. Noting simply P

and Q the unknowns P2 and Q2 we wish to determine, we have to solve the transport problem:

~V .~∇P − Q = 0,
~V .~∇Q + ω2

2
P = f2,

(7)

with the velocity:

~V =



































Vφ

Va



































=































ω1 −
f1 cos φ

aω1

−
f1 sin φ

ω1

.































.

Note that f1 and f2 are nonlinear functions of η1 = a cos φ and η2 = P(a, φ).
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A usual way to solve this transport problem is to follow the characteristics of the flow. For

small a-values, Vφ ≃ ω1 and Va ≃ 0: the characteristics are the lines a = cst oriented from

φ = 0 to φ = 2π. Therefore the problem reduces to a transport only along the φ direction

and the solution has just to be specified at φ = 0 to be obtained everywhere. For increasing

a-values the situation becomes more complicated and the characteristics are no longer straight

lines. However, we have found in practice that Vφ > 0 everywhere and thus the characteristics

still connect φ = 0 to φ = 2π (see Figure 1). Due to this general behaviour of the shape of the

characteristics, we have chosen to treat the problem as a transport problem along the φ direction:

solving the problem in the rectangle (a, φ) ∈ R =]0, A[×]0, 2π[ where A > 0 is fixed, we impose

the solution at φ = 0, where the flux enters. Moreover, the solution must be periodic (continuity

of the manifold), which is not the case for an arbitrary initial condition. An iterative procedure

is then used to determine the initial condition such that a periodicity constraint is fulfilled. Let

us point out that our approach is different from previous ones as [50, 18] where the other choice

was retained: differential equations in the variable a were solved while azimuthal decomposition

on einφ functions were used for the angle variable.

To close the problem, boundary conditions where the flux enters in the domain, have to

be specified. At φ = 0, trial functions will be given. At a = A, and for φ values such that

Va(A, φ) < 0, the practical solution retained for the computation consists in extrapolating the

manifold, assuming regularity. This point will be further detailed in section 2.5.

To summarize, for any A > 0 values, the transport problem we propose to solve for a ∈]0, A[

and φ ∈]0, 2π[ is:

The transport problem with periodicity constraint: for P0(a) and Q0(a)

given functions, find P(a, φ) and Q(a, φ), solutions of (7), such that P(a, 0) =

P0(a), Q(a, 0) = Q0(a) and P(a, 2π) = P0(a), Q(a, 2π) = Q0(a), and assum-

ing regularity at the boundary a = A where Va(A, φ) < 0.

This problem is approximated by a minimization problem:

The minimization problem: Find P0(a) and Q0(a) such that the cost func-

tional:

J(P0,Q0) =
1

2

∫ A

0

(

[P(a, 2π) − P0(a)]2 + [Q(a, 2π) − Q0(a)]2
)

da, (8)

is minimum where P(a, φ) and Q(a, φ) are the solutions of the transport prob-

lem (7) for the initial conditions P0(a) and Q0(a).

To solve this minimization problem, we consider it as an iterative procedure where the new

initial conditions at step n + 1 are deduced from the initial conditions at step n by following the

direction of the gradient of J, which corresponds to the relationship:

(

Pn+1
0

Qn+1
0

)

=

(

Pn
0

Qn
0

)

− θn ~∇J(Pn
0,Q

n
0) (9)

where θn > 0 is a parameter that has to be suitably chosen in the numerical process and ~∇J is

the gradient of the functional J(P0,Q0). The task now is to determine this functional gradient,

which is realized by using the method of the adjoint state [56].
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2.3. Gradient determination

Two steps are necessary in order to derive the adjoint problem: first a linearization of the

transport problem (7) with respect to small perturbation in the initial conditions, then taking the

adjoint state of this linearized problem. For the sake of brevity, only the final result is given

here. More details and complete demonstration can be found in Appendix A. The transport

problem may be written as ∂φP , FP, ∂φQ , FQ, with:

FP =
Q

ω1

+
f1

ω2
1

(

sin φ ∂aP +
cos φ

a
∂φP

)

, (10a)

FQ = −
ω2

2
P

ω1

+
f1

ω2
1

(

sin φ ∂aQ +
cos φ

a
∂φQ

)

+
f2

ω1

. (10b)

Introducing the following functions so as to simplify the resulting equations:

α1 =
sin φ

ω2
1

∂aP ∂P f1 +
cos φ

aω2
1

∂φP ∂P f1, (11a)

α2 =
f1 sin φ

ω2
1

, α3 =
f1 cos φ

aω2
1

, (11b)

the adjoint problem is expressed as: for p̃2π(a) and q̃2π(a) given functions, find p̃(a, φ) and

q̃(a, φ) solutions of:

−∂φ
(

p̃

q̃

)

=

[

β1 − ∂a(β2(.)) β3∂PFQ

β3∂QFP −∂a(β2(.))

] (

p̃

q̃

)

(12)

with β1 =
α1

1 − α3

, β2 =
α2

1 − α3

and β3 =
1

1 − α3

. The end conditions p̃2π(a) and q̃2π(a) will be

specified in the next paragraph. This adjoint problem has to be solved in the backward sense,

from φ = 2π to 0. Consequently, at a = A, the boundary condition has to be specified where

the flux of the direct problem goes out (in a dual manner of the direct problem). In practical

implementation, the same assumption of regularity and extrapolation will be used also for the

adjoint problem.

As shown in Appendix A, the expression of the functional gradient can be easily determined

from ad-hoc properties of the adjoint state, and reads:

~∇J(P0,Q0) =

[

p̃(a, 0) − p̃2π(a)

q̃(a, 0) − q̃2π(a)

]

, (13)

where the appropriate end condition (or initial condition with reverse time) for the adjoint prob-

lem has to be selected as:
p̃2π(a) = P(a, 2π) − P0(a),

q̃2π(a) = Q(a, 2π) − Q0(a).
(14)

Therefore the numerical evaluation of the functional gradient just requires to solve the adjoint

problem from φ = 2π to 0. We can now summarize the resolution algorithm.

2.4. Algorithm

Here we describe the stages of the algorithm. We suppose that A is chosen. The step n of

the iterative minimization process is as follows:
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1. Solve the nonlinear transport problem (7) from the initial conditions Pn
0
(a) and Qn

0
(a) to

get Pn(a, φ) and Qn(a, φ) in the rectangle R.

2. Solve the adjoint problem (12) from the end conditions:

p̃n
2π(a) = Pn(a, 2π) − Pn

0(a),

q̃n
2π(a) = Qn(a, 2π) − Pn

0(a).

3. Determine ~∇J(Pn
0
,Qn

0
) thanks to the formula (A.11) and define the new initial conditions

Pn+1
0

and Qn+1
0

by:

(

Pn+1
0

Qn+1
0

)

=

(

Pn
0

Qn
0

)

− θn ~∇J(Pn
0,Q

n
0). (15)

4. Solve the nonlinear transport problem (7) and evaluate J(Pn+1
0
,Qn+1

0
) from formula (8).

5. Test if J(Pn+1
0
,Qn+1

0
) < J(Pn

0
,Qn

0
):

• If yes, go to point 6

• If no, replace θn with θn/2 until J(Pn+1
0
,Qn+1

0
) < J(Pn

0
,Qn

0
) and go to point 6

6. double the value of θn.

To initiate the iterative process, we take for P0
0
(a) and Q0

0
(a) the asymptotic solution of the

NNM, available e.g. from [13], or from the linear eigenmode solution, defined by Pk = Qk ≡ 0.

θ0 is taken as any small value, the doubling of θn at each step allowing to reach quickly non-

small values. The iterations are stopped when J becomes lower than a given tolerance value.

2.5. The Finite Difference Numerical scheme

A first-order finite difference scheme is selected to solve numerically the invariant manifold

equations (7). In particular this allows to take easily into account the non linearities of the

velocity and of the source term. Note that a Finite Element method would require to use an

iterative process to deal with the non linearities, which would add to the iterative treatment

of the periodicity we already use. A rectangular grid is introduced for computation: 0 ≤ am =

m∆a ≤ A for m ∈ [0,Na] and 0 ≤ φn = n∆φ ≤ 2π for n ∈ [0,Nφ] with Na∆a = A and Nφ∆φ = 2π.

The unknowns P(a, φ) and Q(a, φ) are interpolated by their discrete values: Pm
n = P(am, φn)

and Qm
n = Q(am, φn). The transport problem (7) is solved for increasing values of φ starting

from the initial conditions (P0(a), Q0(a)) at φ = 0 and for a ∈ [0, A]. As it is standard for

finite differences discretisation of transport equations, the choice of (a-wise) backward/forward

decentered scheme is dictated by the direction of the flow. This is done at the line n+1 according

to the sign of Va(a, φ) at the line n. Therefore we look for the sign of:

Va(am, φn) ≡ Vn,m
a = −

f
n,m
1

sin φn

ω1

,

where f
n,m
1

stands for the value of the nonlinear function f1 evaluated at the current grid point

(am, φn). Then the horizontal derivative ∂aP is approximated by

(

∂P

∂a

)

(am, φn) ≃
Pm

n − Pm−1
n

∆a
if Vn,m

a > 0,

(

∂P

∂a

)

(am, φn) ≃
Pm+1

n − Pm
n

∆a
if Vn,m

a < 0.
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In practice we find that the sign of Va does not depend on m, it is constant along the line n and

we just take care of the sign of V
n,Na
a (in a = A).

Precisely the numerical scheme is the following: supposing the nth line is known, n = 0 to

Nφ − 1, the line n + 1 is obtained thanks to the relations (given only for the P unknown):

• If V
n,Na
a > 0:

Pm
n+1
= Pm

n +
∆φ

ω1 −
f

n,m
1

cos φn

amω1

(

Qm
n +

f
n,m
1

sin φn

ω1

Pm
n − Pm−1

n

∆a

)

for m = 1 to Na,

P0
n+1
= 0 for m = 0.

(16)

• If V
n,Na
a < 0:

Pm
n+1
= Pm

n +
∆φ

ω1 −
f

n,m
1

cos φn

amω1

(

Qm
n +

f
n,m
1

sin φn

ω1

Pm+1
n − Pm

n

∆a

)

for m = Na to 0.

(17)

The scheme is similar for the Q unknown. The assumption of manifold’s regularity at the

boundary a = A where entering flux occurs (case V
n,Na
a < 0), allows now to extrapolate the

missing value appearing in the FD scheme: once we know the nth line, a value P
Na+1
n outside

the computation domain is determined by continuous extrapolation. Then the value P
Na

n+1
, which

requires the point P
Na+1
n to be computed, can be evaluated.

2.6. A system with cubic nonlinearities

In this section, we consider a system presented by Pesheck et al. [50], consisting of two

masses connected to nonlinear springs. This example is selected so as to compare our results

(referred to as the ”transport method” in the remainder of the paper) with those obtained by

Pesheck et al. in [50], using Galerkin projection on a given functional basis for solving out the

manifold equations. The equations of motion read:















m1q̈1 + k1q1 + k2(q1 − q2) = −γ1q3
1 − γ2(q1 − q2)3,

m2q̈2 + k2(q2 − q1) = −γ2(q2 − q1)3.
(18)

The parameters values have been selected as in [50]: m1 = m2 = 1, k1 = 1, k2 = 5,γ1 = 2 and

γ2 = 1, so that the eigenfrequencies are equal to ω1 = 0.689 and ω2 = 3.244. With a linear

transformation from the initial coordinates (q1, q2) to the modal coordinates (η1, η2), a problem

of the form (1) is found with:















f1(η1, η2) = −0.405η3
1 − 1.34η2

1η2 − 1.51η1η
2
2 − 0.349η3

2,

f2(η1, η2) = −0.448η3
1 − 1.51η2

1η2 − 1.05η1η
2
2 − 4.58η3

2.
(19)

Before showing the results given by the transport method for computing the NNMs, we first

exhibit reference solutions obtained by continuation, so as to have a clear picture of the global

dynamics of the system, from small to large amplitudes. Two different softwares have been used

for continuation: AUTO (Predictor-corrector method with orthogonal collocation and pseudo-

arclength continuation) [45], and MANLAB (harmonic balance methods for periodic orbits and

continuation of harmonics amplitudes with asymptotic-numerical method) [47, 46]. Figure 2
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shows the backbone curves for the two modes of the system, either represented with respect to

energy (resulting in a so-called Frequency-Energy Plot, FEP), or with respect to amplitude of

the master coordinate.

The system presents a globally hardening behaviour, as expected from the positive values of

the selected coefficients (γ1, γ2). While the second mode has a quite simple behaviour, the first

mode exhibits a loop with a loss of stability. This behaviour is typical of the presence of a 1:3

internal resonance with the second mode, which is assessed by simply plotting (either on the

FEP, or on the classical backbone curve) the backbone of the second mode where the frequency

has been divided by three. The loop appears exactly when the ratio 1:3 is fulfilled. As already

noted in [6], here a 1:3 internal resonance is observed on the nonlinear frequencies, as the linear

eigenfrequencies do not show a ratio 1:3. The loop is also depicted in Fig. 2(b), where the

amplitudes of the two modal coordinates (η1, η2) have been represented. One can observe the

sudden increase of η2, signature of the presence of the internal resonance. In that region of the

parameter space, a strong coupling between the two modes is at hand with exchange of energy.

The dynamics is thus two-dimensional and a single NNM cannot capture such a behaviour.
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Figure 2: (a): Frequency-Energy plot (FEP) of the system defined by Eqs. (18). Insert: zoom on the 1:3 internal

resonance showing the loop of the backbone curve and the emergence of an unstable regime. The 1:3 resonance is

assessed by plotting the second mode with the frequency divided by three (thin line). Unstable regions not reported

on the FEP. (b-c): backbone curves of the system, maximum amplitude of the master coordinate (η1 for mode 1 in

(b), η2 for mode 2 in (c)), versus angular frequency. In (b), η2 is also represented (thin line) to highlight the internal

resonance. Stability reported (dotted lines for unstable solutions).

As a consequence of the internal resonance, the invariant manifold shows also a folding in

phase space, as illustrated in Fig. 3. A section of the manifold at η̇1 = 0 shows that the maximum

amplitude of the master coordinate η1 for which a functional relationship of the form η2 = f (η1)

(or in polar form η2 = P2(a, φ) as expressed in Eq. (3)) is only possible as long as η1 ≤ 2.251.

Beyond this value, the center manifold method ceases to provide an operational method for

computing the NNM. Consequently, this value will be taken as a limit in amplitude for testing

our algorithm, which is consistent with the fact that a 1:3 internal resonance appears so that

single-NNM solutions do not exist anymore. It is worth mentioning that all the results shown

by Pesheck et al. in [50] are below this amplitude limit. Consequently the 1:3 internal resonance

was not highlighted, neither was the fact that this folding point appears as an intrinsic limitation

of the center manifold technique. In theory, the invariant manifold technique can be extended

to handle internal resonance by considering a higher dimensional mode, with all the master

coordinates that are implied in the internal resonance. Here for example a four-dimensional

manifold would be needed to handle the 1:3 resonance. However the theory has been derived

10



locally for small perturbations around the origin, so that its ability to unfold the manifold when

internal resonance involves nonlinear frequencies, is not properly stated and should be examined

with care. Secondly, it has been underlined for example in [53] that the multi-mode invariant

manifold is more difficult to handle numerically. For these reasons this contribution is limited

to single NNM motion.
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Figure 3: (a) First NNM (invariant manifold) in phase space (η1, η̇1, η2), just after the folding, showing how the

manifold intersects itself. (b): cross-section of the manifold at η̇1 = 0 (or equivalently, in polar coordinates, at

φ=0).

Our numerical computation algorithm is tested on the first NNM. As a consequence of the

geometry of the manifold and the presence of the folding, the computation is more and more

difficult as the value Amax retained for defining the computational domain, is close to 2.25.

The first initial condition chosen to compute the NNM is selected as the third-order asymptotic

solution, as defined in [13]. For values of Amax in the interval [0.1, 1.8], the convergence to

the exact solution is very quick, only a few iterations are needed. As Amax is increased in

the range [1.8, 2.2], the number of loops in the algorithm increases substantially so that the

computation becomes more and more time-consuming. A result is shown in Fig. 4, which

has been obtained for Amax = 2.19, and a computational domain defined by a grid of Na =

80 × Nφ = 1000 points. With these parameters the computation reaches the (user-defined)

minimum tolerance (10−10) after only a few iterations. Fig. 4 shows the invariant manifold for

the displacement η2 = P(a, φ) for qualitative comparison with the results shown by Pesheck, as

well as a cross-section for quantitative comparison, where the asymptotic (third-order) solution,

as well as the result by Pesheck, have been included. One can observe that the asymptotic

solution gives quantitative errors that are corrected by using numerical calculation. For our

transport method, some difficulties are encountered to converge to the exact solution as Amax

approaches the limit value where the vertical tangency is given, whereas the results obtained by

Pesheck are coincident with the exact solution up to a=2.2.

The difficulties encountered for reaching out convergence of the numerical method may be

better understood by looking at the flow of the master mode. As already pointed out in section

2.2 (see Fig. 1), at the boundary a = Amax, the flow can be directed inward or outward the

computational domain. Another point of view consists in plotting the family of periodic orbits

(obtained by numerical continuation), in the same polar coordinates (a, φ) used for computation,

see Fig. 5. One can observe that the trajectories of the system defines naturally the continuation

mesh, obtained by concatenating the whole family of periodic orbits. On the other hand, the

transport method is defined on a rectangular mesh in (a, φ), unable to follow the large variations

of the orbits outside the domain (for φ-values for which an outward flow was obtained). This

problem of mesh definition is common to all numerical methods used to compute NNMs on a

11
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Figure 4: (a): First NNM manifold in polar coordinate, representation of η2 = P(a, φ), for a computation realized

with Amax = 2.19. (b): cross-section of P(a, φ) for φ = 0, with comparison to the exact solution obtained by

continuation of periodic orbits (dashed blue line), solution obtained by the transport method (plain black line),

asymptotic solution (dashed-dotted black line) and solution obtained by Pesheck et al. (crosses).

given grid that do not fit perfectly the domain defined by the trajectories, which cannot be known

a priori. However this limitation seems to be particularly effective for the transport method as

the folding point is approached, because the algorithm is more sensitive to the in-flow that has

to be given at the boundary a = Amax. The assumption of extrapolation used at those points

becomes here problematic as the folding point is approached.
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Figure 5: Periodic orbits of the system, obtained by numerical continuation, and represented in polar coordinates

(a, φ).

Computation of the second NNM has also been realized with the transport method. Contrary

to the first mode, this NNM do not present any topological difficulty. Consequently, the com-

putations gives very satisfactory results up to very large amplitudes. Calculations up to Amax=4

have been realized, for which a quick convergence in a few iterations has been observed. Com-

parison with the reference solution obtained by continuation, or with the results obtained by

Pesheck et al. [50] (limited to an amplitude of 3), shows a perfect coincidence.

This first example has shown that the transport method gives satisfactory results. Difficulties

are met when topological problems such as foldings due to internal resonance are encountered.
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Two main problems have been identified. The first one is due to the folding of the manifold,

which violates the first assumption of the center manifold technique (a functional relationship

between the slave and the master coordinates). Hence this limitation is common to all the

numerical techniques used to compute the NNMs of a system that rely on the center manifold

method. The second difficulty is linked to the grid definition used in the numerical method. We

have underlined that the best grid definition should follow the trajectories of the system that are

a priori unknown. This is realized by numerical continuation, but appears to be more difficult

to implement, in particular for the transport method. The problem of the boundary condition

where in-flow is present is then a consequence of this grid definition.

The main objective of a numerical computation of NNMs in this work, is to derive efficient

reduced-order models (ROMs) based on invariant manifolds and center manifold reduction.

This is the topic of the next section, where we will underline that a perfect computation of the

NNM up to the folding point is not mandatory for obtaining accurate ROMS that are able to

predict the backbone curve with fewer degrees of freedom, up to the internal resonance.

3. Reduced-order models on two-dof examples

The aim of this section is to derive a single oscillator equation (the so-called reduced-order

model, ROM), that would account for the dynamics of the complete system, so that the original

multi-dof system can be easily replaced by a ROM with a single equation exhibiting the same

dynamical behaviour. As conservative systems are considered, the accuracy of the ROM is

judged on its ability to recover properly the backbone curve of the complete system. Whatever

the numerical method used for computing the invariant manifold (transport method, continua-

tion, ...), the framework of center manifold theorem can be used. The functional relationship

between slave and master coordinates has however to be explicited carefully, as from a numeri-

cal result, one would like to recover analytic expressions accounting for the nonlinear restoring

force onto the manifold. The first subsection explains how this step can be managed with fitting

procedures, then numerical results are given.

3.1. Methodology

The center manifold theorem provides the key for deriving the ROMs: once the NNM man-

ifold computation has been realized, one has just to replace all the slave coordinates (ηk, η̇k) by

their respective computed functional relationship with the master coordinate, i.e., (Pk(a, φ),Qk(a, φ)).

As we assumed that the nonlinear stiffness terms fk(η) only depends on the displacement (note

that this assumption is only for simplicity and is not restrictive), the ROM simply reads:

η̈p + ω
2
pηp = fp(P1(a, φ), P2(a, φ), ..., ηp = a cos φ, ..., PN(a, φ)). (20)

In order to obtain the reduced dynamics as an oscillator equation, the goal is to obtain a

right-hand side term depending only on ηp and η̇p. We note fp(a, φ) the right hand side of (20)

and ˆ̂fp(ηp, η̇p) the expression we are looking for. We have obtained numerically fp(a, φ) on a

regular grid in the polar coordinates and we need to determine ˆ̂fp(ηp, η̇p) on a regular grid in the

cartesian coordinates. Since a regular grid in the (a, φ)-plane corresponds to a non uniform grid

in the (ηp, η̇p) plane, with a larger density of points near the equilibrium point, we are lead to

proceed in two steps. The first step consists in approximating fp(a, φ) with:

f̂p(a, φ) =

K1
∑

n=0

K2
∑

k=0

gnka
ke2iπnφ, (21)
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This is achieved by performing for each a-value a Fourier expansion along the φ coordinate and

then by fitting for each n-value the coefficients gnk in the a-direction. Thanks to the determina-

tion of f̂p(a, φ) the right hand side can be easily evaluated for any (a, φ) value. The second step

consists in evaluating the right hand side on a regular grid in the (ηp, η̇p) plane. This is realized

by first selecting a cartesian domain in the form (ηp, η̇p) ∈ [0, R] × [0, Rωp] (in order to have a

single parameter R for the size of this grid). Then, thanks to the expression (21), the obtained

surface can be fitted with polynomials in the ηp and η̇p-directions, leading to:

ˆ̂fp(ηp, η̇p) =

M
∑

m=0

M−m
∑

l=0

smlη̇
l
pη

m
p . (22)

These two steps are performed using Matlab routines. Finally the ROM is expressed as:

η̈p + ω
2
pηp =

ˆ̂fp(ηp, η̇p), (23)

and can be used for deriving dynamical informations from a model containing a single oscillator-

equation.

Figure 6: Reduced-order model construction procedure by fitting to the nonlinear terms computed by the numerical

algorithm (blue) a polynomial expansion (red, ˆ̂fp(ηp, η̇p)) of a given degree defined on a given cartesian grid

(ηp, η̇p) ∈ [0, R] × [0, Rωp]. Example of section 2.6, first NNM (p=1) and R=1.2.

An illustration of the procedure used to build the ROM is given in Fig. 6, for the example of

the previous section 2.6, and the first NNM. Many parameters come into play in the proposed

methodology, however the accuracy of the final ROM appears to be particularly sensitive to:

• The choice of the polynomial order M used for expressing ˆ̂fp(ηp, η̇p).

• The choice of the maximal value R where the invariant manifold is fitted (or equivalently,

to the cartesian grid used to define and fit ˆ̂fp(ηp, η̇p)).
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Figure 7: Backbone curves for the first example, (a): first mode, (b): second mode. Comparison between the

reference solution (continuation, black line), the prediction given by the ROM computed from the transport method

with order 3 (Transport, thin blue line), the asymptotic solution (magenta dashed line) and the solution computed

by Pesheck (red crosses).

These points will be discussed on the results obtained on different examples. We have excluded

from the discussion the values K1 and K2 used in the Fourier expansion for fitting the manifold

expressed in polar coordinates, as this step appears straightforward. In the remainder, the values

K1=6 and K2=5 have been selected.

3.2. ROMs of the first example

We first report the results obtained for the two-dofs system used in section 2.6. The accuracy

of the computed ROMs will be assessed by comparing the backbone curve predicted, with the

one obtained for the complete system and shown in Fig. 2. Backbone curves are computed by

continuation, either on the full system, Eqs. (18), or on the reduced system composed of a single

oscillator equation, Eq. (23). Explicit expressions of the oscillator-equations for the different

models are given in Appendix B.

Fig. 7 shows the results obtained for the two NNMs. As already underlined, the case of the

second mode do not present difficulty. For that mode, even the third-order asymptotic NNM-

based ROM gives a very accurate prediction for very large amplitudes. However, as already

underlined by Pesheck in that case, differences are observed in the geometry of the exact man-

ifold as compared to the asymptotic one. From amplitudes of the order of 2, discrepancies are

noticeable. However they do not give rise to an incorrect prediction of the nonlinear oscillation

frequency by the ROM, as revealed by the backbone curve, but important differences are ob-

tained on the amplitude of simulated responses, between the reference and the ROM solution.

The same observation has been made with our numerical computation, but for larger amplitudes

than those proposed in [50].

The case of the first NNM is much more interesting due to the presence of the internal res-

onance. Fig. 7(a) shows that the asymptotic NNM-based ROM begins to depart from the exact

solution for an amplitude of 1.5, and then does not see the internal resonance. The prediction
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Figure 8: Influence of the parameters used to build the ROM on the backbone curves. (a): polynomial order M

for reduction, and comparison between : exact solution (continuation, black line), third-order asymptotic ROM

(magenta dashed line), numerical ROM with transport method, and M=3 (3rd order, blue solid line), M=5 (5th

order, green solid line), and M=7 (7th order, red solid line). (b): size of the fitting domain: R=0.3 (coincident with

the asymptotic solution), R=1 and 1.2.

given in [50] also stops at an amplitude of 1.5 and misses the most important part of the back-

bone curve. A ROM obtained by the transport method and the proposed methodology, shows

that a very good agreement is found up to an amplitude of 2.1, i.e. very close to the folding

point. This ROM has been computed by selecting a polynomial order of 3 (which means that

the monoms of the form η̇l
pη

m
p in Eq. (22) are such that m + l do not exceed 3), and the cartesian

grid used to fit the manifold was (η1, η̇1) ∈ [0, 1.2] × [0, 1.2 × ω1]

In fact for amplitudes larger than 2.1, the 1:3 internal resonance dominates the dynamics, so

that the ROM, by definition, is not able to catch the backbone curve. Hence the obtained result

is, in that sense, the best that could be obtained with a single-dof ROM, as we are accurate up

to the folding point where the 1:3 internal resonance appears.

The influence of the parameters used to build the ROM is illustrated in Fig. 8. The polyno-

mial order reduction M is first investigated, for a given cartesian domain (η1, η̇1) ∈ [0 1.2] ×
[0 1.2 × ω1] used to fit the surface. With M = 5 and M = 7, the backbone tends to depart from

the exact solution for a smaller amplitude than for M=3, and thus do not improve the ROM.

This behaviour highlights the fact that the surface shows essentially a cubic dependence which

is not precisely predicted by the asymptotic solution, but not improved by increasing the order

of the polynomial fit. Secondly, for M = 5 and M = 7, one observes a sudden change in be-

haviour when approaching the folding point. This is a reflection of the fact that the polynomial

fit has a validity range limited to the domain where the fit has been computed, so that when

the topological accident due to the folding appears, for amplitudes larger than those permitted

by the fitting domain, the predicted solution diverges. This behaviour appears finally consistent

with the fact that something important has happened (an internal resonance), and the proposed

ROM is not able to catch it.
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Figure 9: Schematics of the system containing quadratic and cubic nonlinearities

The influence of the fit domain size is more obvious and easy to interpret. The ROM is

fitted on rectangular domains (ηp, η̇p) ∈ [0, R] × [0, Rωp], with R = 1.2, 1 and 0.3, with M = 3.

As R decreases, the high amplitude behaviour of the ROM is less taken into account, and the

backbone tends to depart earlier from the reference curve, and come closer to the asymptotic

solution. For R-values larger than 1.2, the ROM begins to deteriorate, so that the results have

been shown here with a maximal value of R = 1.2, which has been found to give the best ROM.

However, one must keep in mind that due to the change from polar to cartesian coordinates to

build the ROM, the corner values of the cartesian grid are very close to an orbit that have its

origin (for φ = 0) for a larger value of R. For example, Fig. 6 illustrates that selecting R=1.2

allows fitting an ellipsoidal manifold where the last periodic orbit has an amplitude of 1.5 for

φ = 0. Values of R larger than 1.2 enforces to fit the manifold in the vicinity of its folding

point, which could appear for smaller values in other cut planes than φ = 0. This highlights

the fact that for building an accurate reduced-order model, there is no need to have a perfect

computation of the manifold up to the folding point.

3.3. A system with quadratic and cubic nonlinearities

A second example with quadratic and cubic nonlinearity is selected to test our algorithm.

The system, composed of a mass connected to two nonlinear springs, is represented in figure 9.

The dynamics of the system is described by :































Ẍ1 + ω
2
1X1 +

ω2
1

2
(3X2

1 + X2
2) + ω2

2X1X2 +
ω2

1
+ ω2

2

2
X1(X2

1 + X2
2) = 0,

Ẍ2 + ω
2
2X2 +

ω2
2

2
(3X2

2 + X2
1) + ω2

1X1X2 +
ω2

1
+ ω2

2

2
X2(X2

1 + X2
2) = 0,

(24)

where X1 = x1/l0 and X2 = x2/l0 have been nondimensionalized by the length l0 of the springs

at rest. The system is fully parameterized by the two eigenfrequencies (ω1, ω2). Depending on

their values, the two NNMs can display either hardening or softening behaviour, as shown in

[13]. In particular, it is emphasized that for mode 1, the system generally displays a softening

behaviour, except in a very narrow region of the parameter space. A thorough comparison

of the accuracy of the asymptotic solution as compared to numerical solutions obtained by

continuation, is also shown in [57]. This example differs from the first one because of the

presence of two fixed points at (X1, X2)=(0,0) and (1,1), as well as the presence of unstable
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Figure 10: Invariant manifolds (NNMs) of the second example, a two-springs system, computed numerically by

continuation of periodic orbits. (a): first mode, (b): second mode, (c): cut-off of the first mode comparing the

reference solution (continuation, black line) with the solution computed by the transport method (Amax=0.245, red

line).

fixed points, solutions of:















X2 = −X1 − 1,

2(ω2
1 + ω

2
2)X3

1 + 6ω2
1X2

1 + (5ω2
1 − ω2

2)X1 + ω
2
1 = 0.

(25)

Depending on the parameter values, up to three unstable fixed points can be found. When

ω1 = ω2 there is a single unstable fixed points at (X1, X2)=(-0.5,-0.5). Hence this system can be

viewed as prototypical of bistable systems, where two stable points are separated by an unstable

one. In that case, the stable and unstable manifolds of the unstable fixed points are important in

order to understand the dynamics in the vicinity of the fixed points (distribution and stability of

the periodic orbits), but this topic is beyond the scope of this paper which is restricted to NNMs.

The parameter values have been selected as: ω1 =
√

0.5 and ω2 =
√

6. The two modes

present softening behaviour. Figure 10 shows the manifolds computed by continuation. Their

topology are complex, as the first NNM presents inflexion points (see the cut of the manifold)

and the second one folds for small amplitude values. The cut on the first mode, Fig. 10(c), shows

that our computation deviates from the reference solution where the tangent is horizontal. In

fact, as one can see on the three-dimensional view of the manifold, Fig. 10(a), for this radius,

the manifold starts to fold at φ = ±π
2
.

The backbone curves for the two modes, computed by continuation, are displayed in fig-

ure 11. The first mode presents softening-type nonlinearity, with a change in curvature for an

amplitude of 0.26. Then the periodic orbits are unstable for max(η1)=0.38, just before the fold-

ing point. It is interesting to note here that the folding is not due to an internal resonance, as

in the previous example. Here the folding appears to be a consequence of the presence of un-

stable fixed points. The second mode shows also softening behaviour, and loses stability for an

amplitude of 0.3.

The methodology described in section 3.1 is applied to this example. Here the optimal

ROMs has been obtained for polynomials of order 5. The cartesian grid was defined with

R = 0.245 for the first mode, and R = 0.28 for the second one. The backbones obtained with

these ROMs are shown in Fig. 11, where they are compared to the reference and asymptotic

(third-order) solutions. For the first mode, the asymptotic approximation gives a very good

prediction until amplitudes of the order of 0.25, i.e. it misses the change in curvature already

underlined. On the other hand, the numerically-built ROM catches very well the change in the

backbone curve, but shows then a divergent behaviour, as already observed in the first example.

The backbone of the second NNM is smoother and the asymptotic computation gives sat-

isfactory results. However, the transport computation increases the accuracy of the asymptotic
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Figure 11: Backbones curves for the second example, (a): first mode, (b): second mode. Reference solution in

black, computed by continuation, compared to predictions given by asymptotic third-order ROM (blue dashed line)

and given by the numerical procedure (transport method, solid red line).

solution, and follows the reference beyond the last stable orbit. However, it is noteworthy that

the ROM cannot restitute the loss of stability.

Two other cases have been treated, respectively with ω1 =
√

1.7, ω2 =
√

6 (second case),

and ω1 = 1, ω2 =
√

3 (third case); the obtained results are summarized in figure 12, where the

first NNM for these two cases have been reported. In each case, the second NNM has not been

represented as their behaviour is more simple and completely in the line of the result obtained in

Fig. 11(b), i.e. showing an improved prediction as compared to the asymptotic solution, which

already gives a very satisfactory result. The first mode for case 2 is interesting as a change

from hardening to softening behaviour is observed on the reference solution. The asymptotic

third-order ROM reproduces this change but for a very large amplitude value so that from an

amplitude of 0.1 the solution is not reliable anymore. On the other hand, the numerically-

built ROM reproduces well the overall behaviour and departs from the reference solution in the

vicinity of the folding point. For the third case, it is also found that the numerically-built ROM

is able to reproduce perfectly the backbone curve up to the folding point.

The discussion on these two examples have shown a global methodology to derive accu-

rate ROMs from a numerical computation of invariant manifolds. Discussions on the sensitive

parameters used to derive the ROM have been conducted, showing that the domain used to fit

the polynomials might be large enough to improve the asymptotic solution, but small enough

to prevent to fit the manifold on folding points. In general, a grid substantially smaller than the

domain of existence of the functional link between slave and master coordinates, is sufficient.

Moreover, it has been shown that polynomials of low orders (5 or less) are generally accurate

enough to compute the ROM, and that increasing the order may not improve the results. Some

of the computed ROMs give backbones that diverge when approaching foldings. This is consis-

tent with the fact that unimodal solutions do not exist anymore in these areas.

19



0.8 1

0

0.1

0.2

0.3

0.4

0.5

1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

Figure 12: Backbone curves of the second example, (a): ω1 =
√

1.7, ω2 =
√

6, first NNM; (b):ω1 = 1, ω2 =
√

3,

first NNM. Comparisons between reference solution (black line, unstable solutions with dotted line), transport

method (thin red line) and asymptotic solution (dashed blue line).

We conclude with an example involving a continuous structure.

4. A continuous problem

4.1. Equations of motion

The last example is a linear Euler-Bernoulli beam, hinged at its two ends, and resting on

a nonlinear elastic foundation with quadratic and cubic distributed nonlinearities. In non-

dimensional form, the undamped transverse vibrations are governed by [14]:

∂2w

∂t2
+
∂4w

∂x4
+ α2w2 + α3w3 = 0. (26)

w(x, t) is the nondimensional transverse displacement (where the characteristic length used is

the thickness h of the beam), α2 and α3 are two parameters. The boundary conditions read:

w(x, t) = 0,
∂2w(x, t)

∂x2
= 0 for x = 0, 1. (27)

The linear analysis provides the eigenmodes as well as the eigenfrequencies:

Φn(x) =
√

2 sin(nπx), (28)

ωn = n2π2. (29)

Denoting Xp the modal co-ordinate associated to the pth linear mode, the projection yields the

following problem, ∀p = 1, ... , N:

Ẍp + ω
2
pXp +

N
∑

i, j=1

g̃
p

i j
XiX j +

N
∑

i, j,k=1

h̃
p

i jk
XiX jXk = 0 (30)
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where:

g̃
p

i j
= α2

∫ 1

0

Φi(x)Φ j(x)Φp(x) dx, h̃
p

i jk
= α3

∫ 1

0

Φi(x)Φ j(x)Φk(x)Φp(x) dx. (31)

Eq. (30) is made similar to Eq. (1) by considering the symetries of the nonlinear quadratic and

cubic terms (e.g. for j > i, g
p

i j
= g̃

p

i j
+ g̃

p

ji
and g

p

ji
= 0). For the simulation, the parameters have

been set to α2=12 and α3=0.5, so that the behaviour will be first of the softening type due to the

large positive value of α2. Then, for very large amplitudes, the cubic term will dominate and

a hardening behaviour will be recovered. These values have been chosen to have a third kind

of behaviour, after the hardening system (first example), and the softening example typical of

bi-stable systems with loss of stability. This last example will allow to test our method on a

continuous system with a change of nonlinear behaviour, from softening to hardening.
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Figure 13: Backbone curves for the first and second mode of the beam, computed by continuation for reference

solutions. (a): first mode, computed with a truncation involving four linear modes. (b): zoom on the tongue of

1:3 internal resonance between the first (X1, black line) and the third modes (X3, red line). (c): second mode

(truncation with five linear modes).

The backbone curves for the first two modes, computed by continuation, are shown in

Fig. 13. As announced, a softening behaviour is found for low amplitudes, and then turn back

to hardening. Two internal resonances are found to appear. For the first NNM, the tongue of

internal resonance involve a 1:3 relationship with the third mode. Figure 13(b) shows a zoom

on the portion where the internal resonance is activated, giving rise to a short tongue that is

sharp and difficult to detect for the continuation method, with a sudden increase of the third

coordinate X3. For the main coordinate X1, the branch of internal resonance connects the main

branch of periodic orbits at the amplitudes max(X1)=4.4 and 5.8. For the first NNM, the result

shown has been computed with four linear modes retained in the truncation, convergence has

been checked as the backbone does not vary when adding more modes. For the second mode,

a tongue of internal resonance with the fifth mode has been found for very large amplitude of

vibrations (max(X2)=20.18). The model retains in that case 5 linear modes in truncation.

4.2. Reduced-order models for mode 1 and 2

The reduction procedure presented in the previous section is now applied, for mode 1 to the

system composed of the first four linear modes, and for mode 2 to a truncation with 5 modes.
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For the first NNM, the numerical computation of the manifold’s geometry with the transport

algorithm converges easily for amplitudes up to 4.3. Then the convergence was not obtainable.

These observations are coherent with the fact that an internal resonance occurs for an amplitude

of 4.4, thus a folding point in the geometry should be present so that the convergence is not pos-

sible as the functional relationship does not exist anymore. For the second mode, computations

up to an amplitude of 19 have been realized and convergence was easily obtained.
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Figure 14: Comparison of backbone curves, reference solution (blue solid line), numerical ROM (Transport solu-

tion, red line) and asymptotic ROM (dashed black line). (a): first mode, (b): second mode.

The ROMs are built using the fitting procedure explained in section 3.1. For the first

mode, the best ROM was obtained by fitting the manifold on a domain defined by (X1, Ẋ1) ∈
[0, 2.3] × [0, 2.3ω1], and with a polynomial expansion of order three. The resulting backbone

curve is shown in Fig. 14(a). One can see that a perfect result is obtained, as the ROM is able

to recover the complete backbone curve, up to very large amplitudes. Logically, the ROM goes

over the internal resonance without detecting it as a single dof ROM is constructed. This ex-

cellent result has been found for a rather small domain used for fitting the manifold. Using

larger domain does not improve the result, as a divergence was observed when approaching the

branch of internal resonance, as observed in the two previous examples. Comparison with the

asymptotic third-order NNM shows also that an important gain in accuracy has been realized

thanks to the numerical approach.

The results for mode 2 are shown in Fig. 14(b). The best ROM has been constructed by

fitting the manifold on a domain defined by (X2, Ẋ2) ∈ [0, 9] ×[0, 9ω2], and with a polynomial

expansion of order three. The geometry of this second NNM has been found more difficult to

fit due to the presence of inflexion points in the vicinity of the origin, so that it has not been

possible to fit the manifold up to the folding point. Nevertheless, the backbone predicted by

the ROM shows a very significant improvement as compared to the asymptotic one: the change

from hardening to softening behaviour is detected by the numerical ROM, and a fair accuracy

up top a very large amplitude of vibration of 10 is observed (as the characteristic length for

nondimensionalizing the equations is the thickness h, this means that the ROM is accurate up
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to vibration amplitudes that are ten times the thickness). Moreover the computed ROM is also

able to catch the change from softening to hardening nonlinearity, a peculiar feature that was

missed by the aymptotic approach.

5. Conclusion

A numerical method for computing the NNMs of a mechanical system featuring geometric

nonlinearity has been introduced, based on the definition of the NNMs as invariant manifold of

phase space, and the center manifold theorem. An interpretation of the PDEs describing the ge-

ometry of the manifold in phase space, as a transport equation, enabled to understand interesting

peculiarities of this formulation, as well as to propose a numerical scheme involving a periodic-

ity criterion to fulfill. Convergence was obtained via optimization technique and the definition

of an adjoint problem. The main objective of the study was to provide a constructive method

for defining numerically accurate Reduced-order Models (ROMs) based on the invariant man-

ifold approach, so that a fitting procedure, allowing polynomial expressions of the computed

surfaces, has also been proposed.

The study has revealed fundamental limitations for the derivation of ROMs, based on the

center manifold idea of a functional relationship between slave and master coordinates. A first

limitation has been observed for numerical methods, due to the distorsion of the periodic orbits

at large amplitude. We have underlined that the best grid to compute numerically the NNMs

should follow the lines of the periodic orbits, so that any numerical method whose computa-

tional domain does not fit the orbits will face convergence problems at some points due to some

missing informations. Computation of reference solutions for NNMs with continuation meth-

ods has also revealed that in general, invariant manifolds display folding points, hence fixing a

limit amplitude for the definition of ROMs. Three examples with different characteristics have

been studied. The first example is a two-dofs system with cubic (hardening) nonlinearity, show-

ing for the first mode a folding point due to the presence of a 1:3 internal resonance with the

second mode. This behaviour appears to be generic, as it has already been observed in many

other systems (see e.g. [6, 58, 54]), and is also seen in the continuous system used as third

example : a linear beam resting on a nonlinear fundation. The second example, a two-dofs sys-

tem displaying quadratic and cubic nonlinearity, has been selected as it shows a different global

behaviour. Due to the presence of two stable positions, in the vicinity of which NNMs exist,

and an unstable position inbetween these, this system appears to be characteristic of bi-stable

systems. The NNMs are characterized by a softening behaviour, a loss of stability for relatively

small amplitude of vibrations, and a folding that is merely due to the presence of the unstable

fixed point and the constraints on the periodic orbits. Nonetheless, all the three cases show that

the invariant manifolds display folding points that are intrinsic limitations for the construction

of single-degree-of-freedom ROMs.

Inside the amplitude limitations due to folding points, the numerical method based on the

transport interpretation behaves very well and converge to the exact solution. Together with

the fitting procedure developed for building ROMs, we have been able to recover with very

good accuracy the backbone curve of the complete system in all the three cases, up to large

amplitudes. It is worth mentioning that the asymptotic third-order NNM-based ROMs gives

generally acceptable results, and for a very light computation procedure that is much easier to

implement and run. Even though the numerical method allows to recover with accuracy the

backbone up to (generally) the folding points, the amplitude range between these folding points

and the amplitude for which the asymptotic solution depart from the exact one, has been found
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to be somehow small, depending on the selected examples.

The next step is to extend the transport method to damped systems. For that purpose, the

general procedure outlined in section 2 could be used a priori without particular changes, as

the main features of the method do not fail when damping is added. In particular, the period-

icity condition –assessing the continuity of the manifold– still holds, in contrast with methods

using periodic orbits (continuation, shooting, ...) which disappear with damping. However,

preliminary tests reveal a very difficult convergence, which has been interpreted as a reflection

of the fact that when damping is added, in-flow is present along almost all the external bound-

ary at a = A. In that context, the simple strategy used in the conservative case, and consisting

in extrapolating points where in-flow is present, is not sufficiently robust anymore. Hence for

damped problems a better selection of an adapted grid has to be first tackled. For example, a

simple idea would be to change the polar coordinates used in Eqs. (2) for ηp = ae−ξpφ cos φ,

ξp = −aωpe−ξpφ sin φ, so that the linear damping would be accounted for in the grid defini-

tion. However this choice leads to rewrite all the equations for the direct transport and adjoint

problem.

Appendix A. Adjoint state and gradient determination

The aim of this appendix is to determine the adjoint state from the direct problem, and

then to derive the functional gradient. The transport problem we deal with is made particularly

difficult due to the fact that the velocity and the right hand side are nonlinear functions of the

unknowns. This is in contrast with usual presentations of adjoint determinations that can be

found from textbooks, see e.g. [56], where only the periodicity constraint is treated. Therefore,

to simplify the presentation, we temporarily consider that the velocity and the source term f2 are

independant of the unknown P, are known and we call them ~V0(a, φ) and f 0
2

(a, φ). This allows

to define a simpler problem:

The simplified minimization problem: Find P0(a) and Q0(a) such that the

cost functional (8) is minimum where P(a, φ) and Q(a, φ) are the solutions of

the transport problem:

Find P(a, φ) and Q(a, φ) solutions of:

~V0.~∇P − Q = 0,
~V0.~∇Q + ω2

2
P = f 0

2
,

(A.1)

with the initial conditions P(a, 0) = P0(a) and Q(a, 0) = Q0(a) and the bound-

ary conditions P(A, φ) = 0 = Q(A, φ) for all φ such that V0
a (A, φ) < 0.

Note that, also in order to simplify the presentation, we have here considered that at the

boundary a = A where in-flux occurs, the unknowns vanishes. The reader must keep in mind

that all simplifications introduced in this appendix are only given so as to obtain a progressive

introduction to the adjoint problem.

Appendix A.1. Linearized and Adjoint problems

To define the linearized problem we introduce p(a, φ) and q(a, φ) such that P(a, φ) + p(a, φ)

and Q(a, φ) + q(a, φ) are solutions of the simplified transport problem (A.1) associated to the

initial conditions P0(a) + p0(a) and Q0(a) + q0(a) for any small perturbations p0(a) and q0(a).

Introducing the following functions of (a, φ): γ1 = −V0
a/V

0
φ , γ2 = 1/V0

φ and γ3 = −ω2
2
/V0
φ ,
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the linearization process of problem (A.1) leads to the linearized transport problem for the

perturbations p and q:

The linearized problem: For p0(a) and q0(a) given functions, find

p(a, φ) and q(a, φ) solutions of:

∂φ

(

p

q

)

=

[

γ1∂a(.) γ2

γ3 γ1∂a(.)

] (

p

q

)

, (A.2)

with the initial conditions p(a, 0) = p0(a) and q(a, 0) = q0(a), and the

boundary conditions p(A, φ) = 0 = q(A, φ) where V0
a (A, φ) < 0 (or

equivalently γ1 > 0 since γ1 = −V0
a/V

0
φ).

We will now define the adjoint of this linearized problem, which is the last step to determine

the functional gradient. Let us introduce the problem:

The adjoint problem: For p̃2π(a) and q̃2π(a) given functions, find

p̃(a, φ) and q̃(a, φ) solutions of

−∂φ
(

p̃

q̃

)

=

[

−∂a(γ1(.)) γ3

γ2 −∂a(γ1(.))

] (

p̃

q̃

)

, (A.3)

with the end conditions p̃(a, 2π) = p̃2π(a) and q̃(a, 2π) = q̃2π(a) and the

boundary conditions p̃(A, φ) = 0 = q̃(A, φ) where γ1(A, φ) < 0 (V0
a > 0).

The notation ∂a(γ1(.)) is introduced where (.) refers either to p̃(a, φ) or to q̃(a, φ) depending on

the case. For instance, ∂a(γ1( p̃)) = ∂a(γ1).p̃ + γ1.∂a(p̃).

This adjoint problem has to be solved in the backward sense, from φ = 2π to 0. Therefore

contrary to the direct problem (A.2), this adjoint problem is not defined with initial conditions

and note also that at a = A the solution is imposed to be zero where the flux of the direct

problem goes out. This is the adjoint problem of the linearized problem (A.2) in the sense that

the integral:

I =

∫ A

0

∫ 2π

0

∂φ(pp̃ + qq̃)dφ da, (A.4)

is equal to zero. Indeed using the definitions of the direct problem (A.2) and of the adjoint

problem (A.3) we find:

I =

∫ 2π

0

[

γ1(pp̃ + qq̃)
]a=A

a=0 dφ. (A.5)

This term is zero, at a = 0 since γ1 = 0 and moreover at a = A: indeed p and p̃ vanish on

complementary domains, when γ1 > 0 for p and when γ1 < 0 for p̃ (the same for q and q̃).

Noting that the expression (A.4) implies that:

I =

∫ A

0

[

pp̃ + qq̃
]φ=2π

φ=0
da, (A.6)

a useful relationship is deduced from the previous result I = 0:
∫ A

0

[

p(a, 2π) p̃2π(a) + q(a, 2π)q̃2π(a)
]

da =

∫ A

0

[

p0(a) p̃(a, 0) + q0(a)q̃(a, 0)
]

da. (A.7)

This expression is the key for evaluating numerically the functional gradient. This is done in

the next paragraph.
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Appendix A.2. Gradient determination

The gradient ~∇J =

[

dP(a)

dQ(a)

]

is defined as a couple of functions a 7−→ dP(a) and a 7−→ dQ(a)

satisfying:

J(P0 + p0,Q0 + q0) ≃ J(P0,Q0) +

∫ A

0

dP(a)p0da +

∫ A

0

dQ(a)q0da + r1 (A.8)

for any small perturbations p0(a) and q0(a) of the initial conditions P0(a) and Q0(a), and where

r1 is a remainder which is at least of order two with respect to the perturbations. Secondly,

starting from the functional J(P0,Q0), as first defined in Eq. (8), we get after a linearization at

the first order another expression for ∇J:

J(P0 + p0,Q0 + q0) ≃ J(P0,Q0) +

∫ A

0

[P(a, 2π) − P0(a)]
[

p(a, 2π) − p0(a)
]

da

+

∫ A

0

[Q(a, 2π) − Q0(a)]
[

q(a, 2π) − q0(a)
]

da + r2, (A.9)

with r2 a second-order remainder. To link the two expressions of the gradient, we choose the

following end conditions for the adjoint problem:

p̃2π(a) = P(a, 2π) − P0(a),

q̃2π(a) = Q(a, 2π) − Q0(a).
(A.10)

Then incorporating (A.10) in relation (A.9), using the relationship (A.7) and comparing to def-

inition (A.8) leads to the expression of the functional gradient:

~∇J(P0,Q0) =

[

p̃(a, 0) − p̃2π(a)

q̃(a, 0) − q̃2π(a)

]

. (A.11)

Therefore the numerical evaluatuation of the functional gradient just requires to solve the

adjoint problem from φ = 2π to 0. This is the main advantage of using the adjoint state as it

gives a particularly useful way for simply estimating the gradient in an optimization problem.

This ends the full proof for deriving the adjoint problem and the functional gradient, in the

simplified problem where the flow is frozen and boundary conditions with incoming flow set to

zero. In practice, to get a better convergence in the original problem, it has been found much

more efficient to assume regularity of the manifold at a = A where in-flow occurs, so that this

choice has been retained and incorporated in the main text. Finally the complete proof for

establishing the adjoint state from the original problem is very similar to the one shown here for

the simplified problem.

Appendix B. ROMS for the first example

The different reduced-order models used in section 3.2 are here given explicitely.

• Asymptotic NNM for the first NNM:

η̈1 + ω
2
1η1 + 0.405η3

1 = 0 (B.1)
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• ROM for figure 7(a), first NNM, computed with M=3 and R = 1.2:

η̈1 + ω
2
1η1 + 0.29698η3

1 + 0.00041563η2
1 + 0.0015994η1η̇

2
1

+ 0.033312η1 + 0.00019508η̇2
1 = 0

(B.2)

• Asymptotic NNM for the second NNM:

η̈2 + ω
2
2η2 + 4.58η3

2 = 0 (B.3)

• ROM for figure 7(b), second NNM, computed with M=3 and R = 1.2:

η̈2 + ω
2
2η2 + 4.6373η3

2 + 0.00080388η2
2 + 0.0005063η2η̇

2
2 − 0.02931η2 = 0 (B.4)
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des sciences de Toulouse, Série 2,9:203–474, 1907.

28



[25] L.I. Manevitch and Yu.V. Mikhlin. On periodic solutions close to rectilinear normal vi-

bration modes. J. Appl. Math. Mech. (PMM), 36(6):1051–1058, 1972.

[26] R.H. Rand. A direct method for non-linear normal modes. International Journal of Non-

linear Mechanics, 9:363–368, 1974.

[27] M.E. King and A.F. Vakakis. Energy-based formulation for computing nonlinear normal

modes in undamped continuous systems. Journal of Vibration and Acoustics, 116:332–

340, 1994.

[28] Yu.V. Mikhlin. Normal vibrations of a general class of conservative oscillators. Non-linear

Dynamics, 11:1–15, 1996.

[29] S. W. Shaw and C. Pierre. Non-linear normal modes and invariant manifolds. Journal of

Sound and Vibration, 150(1):170–173, 1991.

[30] J. Carr. Applications of centre manifold theory. Springer-Verlag, New-York, 1981.
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