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Abstract
There is a strong need, in surgical simulations, for physically based deformable model of thin or hollow struc-
tures. The use of shell theory allows to have a well-founded formulation resulting from continuum mechanics of
thin objects. However, this formulation asks for second order spatial derivatives so requires the use of complex
elements. In this paper, we present a new way of building the interpolation: First, we use the trianular cubic Bézier
shell to allow for a good continuity inside and between the elements and second, we build a kinematic mapping
to reduce the degrees of freedom of the element from 10 control points with 3 Degrees of Freedom (= 30 DOFs)
to only 3 nodes with 6 DOFs (= 18 DOFs). This reduction allows for good computation performance. This new
shell model description is also used to map a smooth surface (for the collision detection and response) on a coarse
mechanical mesh to account for the complex contacts that take place during surgical procedures. We demonstrate
the convergence and the computational efficiency of our approach as well as its use in two different simulation
cases: the planning of surgery for congenital heart disease correction and a preliminary simulation of childbirth.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Physically based modeling.

1. Introduction

Thin objects are very frequent in our every-day life. e.g. tex-
tiles, paper, leaves etc. Such objects are also very common
in anatomical or pathological structures for example tubu-
lar structures (like blood vessels, colon . . . ), thin bag struc-
tures (Glisson capsule, aneurysms, . . . ), and also many oth-
ers (eyes, skin, . . . ). In the field of surgical simulation, we
try to reproduce or anticipate the mechanical behavior of
these structures during the surgery. Thus, it is very impor-
tant to capture accurately their physical behavior. However,
in the same time, it is also very important to maintain fast
computation rates, in order to be compatible with the tar-
geted applications (interactive simulation for education and
for planning).

This problem has been faced by the computer graphics
community but for different applications. For instance, many
related works address the problem of the simulation of cloth
using for example mass-spring models or bending models
[VMTF09, GHDS03]. However, these models are discrete
so their behavior depends on the mesh and their parameters
are not easily measurable. This is completely acceptable for

some computer graphics application, where the parameters
can be tuned manually to obtain a realistic animation. In the
case of medical simulation, more physically based modeling
is needed.

Methods based on continuum mechanics and namely the-
ory of elasticity gained on popularity in real-time simula-
tions ever since Terzopoulos [TPBF87] presented his work
on elastic deformation modeling. While the methods us-
ing finite elements and theory of elasticity are fairly pop-
ular in volumetric deformation modeling [CDA99, NFP06,
MJLW07], they are still frowned upon in the area of thin
structures. Yet, a special field of continuum mechanics has
studied the deformations of these objects, and has proposed
models based on shell theory. This theory is integrated nu-
merically using Finite Elements [Red93], but there are two
issues for obtaining interactive frame rates: (i) the continuum
equations require second spatial derivatives that can not be
handled with linear interpolation and (ii) the final system of
equations that describes the mechanics is non-linear if large
deformations are present.

The usual argument against non-linear FEM based meth-
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ods is that they are computationally too expensive. This is in-
deed true if lots of elements are used to discretize the object.
A classical strategy, is to use high-polygonal meshes for ren-
dering or collision detection and response, while maintain-
ing a reasonably low number of elements for the mechanics.
The work of Bouthors et al. [BN07] is a good application
example of this strategy for surface deformations. But this
strategy is not sufficient in our case because the problem of
performance is also greatly impacted when using elements
with interpolation based on high order polynomials. This
type of interpolation is necessary because bending contin-
uum model (based on Kirchhoff-Love theory for thin plates)
requires the computation of second spatial derivatives. On
the other hand, elements common in mechanics (e.g. Dis-
crete Kirchhoff Triangles) are based on shape functions that
are impractical for real-time simulations or don’t have ex-
plicitly defined shape functions at all. In [CDC10], Comas
et al. use a hybrid interpolation: linear interpolation is used
for in-plane deformations and cubic polynomials for bending
deformations. The element is piloted by 3 nodes on which 6
degrees of freedom are defined. From this point of view, our
work is derived from this approach but we address several
noted drawbacks: the formulation misses one rotational de-
gree of freedom, the cubic interpolation is not symmetric and
produces C0 discontinuities between elements on edges.

Bézier based shell elements in their general form have
been presented for both triangular [AAD11] and quadri-
lateral [BK06] elements. High number of simulated DOFs
makes such formulations impractical for simulations. Ubach
et al. [UO10] presented a rotation-free 3-node shell element
based on Bézier triangles where the element geometry is es-
timated from all the neighbouring elements, not just those
sharing an edge. This greatly reduces the sparsity of the
global stiffness matrix and consequently increases the com-
putation time. Also, the lack of rotational degrees of freedom
limits the application in surgical simulations.

We start by reviewing the definition of Bézir triangle.
Then the construction of initial control mesh is described and
kinematic link between control points is defined. In Section
3 the FE model is derived and the method of computing the
corotational frame is described. In Section 4 we specify how
to map a high resolution surface mesh onto the mechanical
mesh and give formulas for computing velocities of points
on the surface and for projection of forces. Section 5 presents
test of convergence, speed analysis and two created applica-
tions that use the described shell model. We conclude with
discussion of present limitations.

1.1. Contribution

Extending the work of Comas [CDC10] we have designed
a shell element that uses Bézier interpolation polynomials.
Our element solves the problems of the element presented
by Comas: (i) it uses all 6 degrees of freedom, (ii) the de-
formations are completely symmetric and (iii) the boundary

between elements is continuous. We present a two stage in-
terpolation: (i) first a kinematic link between 6 DOF nodes
of element and nodes of B ézier control mesh is defined and
(ii) interpolation function of cubic Bézier triangle is applied
to interpolate on the surface of the element. Finally from
the kinematic link we derive equations for (i) interpolating
velocity at arbitrary position on surface and for (ii) distribu-
tion of forces applied on the element surface back to 6 DOF
nodes of the element. This allows us to use smooth mapped
surface for collision detection and allows the propagation of
proper collision response back onto the mechanical mesh.

2. Element Kinematics

In this subsection we propose an element featuring interpo-
lation with high degree of flexibility while still maintaining
low number of degrees of freedom. We introduce a new way
of building the interpolation by using two stages

1. A Bézier interpolation with cubic polynomial functions
is defined on a triangle.

2. A kinematic relation between nodes (6DOFs) defined at
the vertices and the control points of the Bézier triangle.

2.1. Bézier Triangle Interpolation

In the rest of the document we define the surface over the
triangle:

(ξ1,ξ2) ∈4= {(ξ1,ξ2) | ξ1,ξ2 ≥ 0 and ξ1 +ξ2 ≤ 1} (1)

As with other Bézier or B-spline surfaces the Bézier triangle
is defined by a mesh of control points that do not necessar-
ily lie on the surface. The general n-th order Bézier triangle
requires (n+ 1)(n+ 2)/2 control points and it’s surface is
defined as:

T (ξ1,ξ2) = ∑
0≤i+ j≤n

Bn
i, j(ξ1,ξ2)Pi, j (2)

where Pi, j are the control points and Bn
i, j are the bivariate

Bernstein basis functions defined as:

Bn
i, j(ξ1,ξ2) =

(
n
i j

)
ξ

i
1ξ

j
2(1−ξ1−ξ2)

n−i− j, (3)

(
n
i j

)
=

n!
i! j!(n− i− j)!

(4)

where 0≤ i+ j ≤ n.

In our work we use cubic Bézier triangle (n = 3). Triangle
of smaller order would fail to describe all possible deforma-
tions of the element and triangles of higher order cannot be
described unambiguously with only 18 DOFs available to us
without adding further constraints on the control mesh. Cu-
bic triangle is described by 10 control points and the surface
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a) b) c)

Figure 1: Two stages of interpolation: First, from triangular with 6DOF nodes (a) a mesh of control points (b) is computed.
Then based on definition of the Bézier triangle a surface (c) is interpolated.

is explicitly defined as (see fig. 2):

T (ξ1,ξ2) = ξ
3
1 p1 +ξ

3
2 p2 +ξ

3
3 p3

+3 ξ
2
1ξ2 p4 +3 ξ

2
1ξ3 p5 +3 ξ

2
2ξ3 p6

+3 ξ1ξ
2
2 p7 +3 ξ1ξ

2
3 p8 +3 ξ2ξ

2
3 p9

+6 ξ1ξ2ξ3 p10

(5)

where ξ3 = 1− ξ1− ξ2. By naming ni the respective values
of the Bernstein basis functions linked to control point pi we
can shortly express (5) as:

T =
10

∑
i=1

nipi (6)

P1

P2

P3

P9

P6

P4

P5

P8

P7

P10

Figure 2: Cubic Bézier triangle with mesh of 10 control
points.

2.2. Initial Construction of Control Points

Since the simulated object is usually described by a triangu-
lar mesh, a procedure for construction of initial Bźier mesh
is necessary. Note that special care has to be taken to main-
tain the continuity between elements across the nodes and
edges, we partially employ the method described in [UO10]
to maintain C0 continuity. Each of the control points on the
edge is computed as the intersection of:

1. The plane perpendicular to the normal at the vertex.
2. The plane that contains the curve of triangle’s contour.

The choice is arbitrary, but necessary to maintain C0 con-
tinuity. We choose the plane defined by the edge of the

flat triangle and average of the two normals at vertices of
the edge.

3. The plane perpendicular to the edge of the flat triangle
placed at 1/3 of the edge length.

C1 continuity between elements on the edges can also be
maintained if special care is taken when computing the posi-
tion of the central point (see [UO10] or refer to the work of
Farin [Far02] for continuity conditions). For simplicity we
keep the edge boundary only C0 and we compute the central
point as a function of other 9 points:

p10 =
1
3
(

9

∑
i=4

pi−
3

∑
i=1

pi) (7)

That way if the element is not flat the central point is
slightly elevated and not in the plane of other points thus
keeping the curvature of the element.

2.3. Kinematic Between Nodes and Control Points

With 10 control points and 3 DOFs per point it is a total of
30 DOFs for element. We propose a reduction of the number
of DOFs by using 3 nodes with 6 degrees of freedom and a
kinematic link between control points. Each of the edge con-
trol points is attached to nearest corner node. See Figure 3
for the correspondence between edge points and associated
corner nodes. In the following text the index j ∈ [4;10] refers
to internal points and index i ∈ [1;3] to the associated corner
point/node if not stated otherwise.

In the initialization phase we remember the position of
edge point j in the frame of corner point i:

pi− j = R(θ0
i )

T p0
i− j (8)

where xi and θi are the position and angular position of the
node i, R(θ0

i ) is the rotation matrix for the angular position
of node i at the beginning of the simulation and p0

i− j = p0
j−

x0
i = p0

j − p0
i the attachment segment. The 0 in superscript

denotes value in rest state.

In each step of the simulation we apply the rigid transfor-
mation of frame i on control point j:

p j = xi +pi− j = pi +R(θi)pi− j (9)
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Figure 3: Internal nodes of control mesh are connected to
the corner nodes by kinematic link (shown in blue).

Similarly for the central point we apply rigid transforma-
tion of all frames of the triangle and compute the mean:

p10 =
1
3

3

∑
i=1

(xi +R(θi)pi−10) (10)

Substituting previous equations into (6) we get:

T =
10

∑
i=1

nipi =
3

∑
i=1

nixi +
9

∑
j=4

n j
(
xi +R(θi)pi− j

)
+

+
n10
3

3

∑
i=1

(xi +R(θi)pi−10)

(11)

2.4. Deflection Function

A small variation δxi of the node i position and δθi for the
rotation produces the following small variation of position
corner points δpi and edge points δp j:

δpi = δxi (12)

δp j = δxi +pi− j×δθi (13)

and variation of central point δp10:

δp10 =
1
3

3

∑
i=1

(δxi +pi−10×δθi) (14)

Thus, finally, it creates a variation of the point position on
the surface δT :

δT =
10

∑
i=1

niδpi (15)

or:

Substituting (12)-(14) into (15) one can evaluate the equa-
tion in terms of matrix multiplication:

δT = Jt
[
δxx

1, . . . ,δxz
3,δθ

x
1, . . . ,δθ

z
3
]T (16)

3. Finite Element Formulation

In the previous section we present an interpolation based on
cubic Bézier triangles and a kinematic link between the con-
trol points and the element 6DOF nodes. In this section we
show how this interpolation can be used to compute a fi-
nite element formulation of the shell equations. The model
relies on large transformation formulation: the geometrical
non-linearities are handled using a corotational formulation,
whereas, in the frame of the element, infinitesimal strain the-
ory is used.

3.1. Computation of the Strain Tensor

We define a local system of coordinates (x,y,z) in which
the axis z is oriented along the thickness of the element (the
computation of the element frame is covered in section 3.4).
Given the initial position of the triangle points in this sys-
tem of coordinate, {x0

1,y
0
1}, {x

0
2,y

0
2}, and {x0

3,y
0
3}, we can

compute a linear relation between {ξ1,ξ2,ξ3} and {x,y}: ξ1(x,y)
ξ2(x,y)
ξ3(x,y)

=

 1 1 1
x0

1 x0
2 x0

3
y0

1 y0
2 y0

3

−1 1
x
y

 (17)

Thus, we can locally compute some spatial derivatives,
along x and y on the interpolation function vector T (which
has three components (T x,T y,T z)) . The 2D tensor F of the
in-plane deformations can be computed as a 2× 2 matrix
where the line k and the column l alternatively represent x
and y:

Fkl =
∂T k

∂l
=

3

∑
i=1

∂T k

∂ξi

∂ξi

∂l
; k ∈ {x,y}, l ∈ {x,y} (18)

The term ∂T k

∂ξi
can be derived from the expression of

T (ξ1,ξ2,ξ3) in equation (11) and ∂ξi
∂l from equation (17).

The in-plane displacement gradient can be obtained with
tensor F :

∂uk

∂l
= Fkl− Ikl (19)

where I is the identity matrix (Ikl = {1 if l = k ; 0 if l 6= k}).
The displacement gradient can be linked to the degrees of
freedom of the shell using the expression of the displacement
of a point δT (15) on the shell surface:

∇u =∇(δT ) (20)

In the local frame of the element, we rely on infinitesimal
strain theory, thus the expression of the strain tensor (using
Voigt notations) is: εxx

εyy
2εyx

=


∂ux

∂x
∂uy

∂y
∂ux

∂y + ∂uy

∂x

 (21)
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For the bending formulation, the shell theory uses a mea-
sure of the out of plane-displacement uz(x,y) The strain ten-
sor is based on Kirchhoff-Love theory for thin plates: εxx

εyy
2εyx

=


−z ∂

2uz

∂x2

−z ∂
2uz

∂y2

−2z ∂
2uz

∂xy

 (22)

where z is the local coordinate along z-axis of the point for
which the strain is measured.

As the term ∂ξi
∂l provides a constant value, the second

derivatives can be computed quite easily, for instance, for
εxx:

∂
2uz

∂x2 =
3

∑
i=1

∂

∂ξi

(
3

∑
j=1

∂T z

∂ξ j

∂ξ j

∂x

)
∂ξi

∂x
=

3

∑
i=1

3

∑
j=1

∂
2T z

∂ξiξ j

∂ξ j

∂x
∂ξi

∂x
(23)

3.2. Shell Element

As previously described, the shell element’s strain is a com-
bination of two types of deformations, as shown in figure 4.
We can distribute these two deformations into two groups of
degrees of freedom at the nodes’ level.

• Elastic membrane defining deformations in plane of the
element. It encompasses deformations like stretching and
shearing. It corresponds to the in-plane displacements
ux,uy. At the nodes’ level, it corresponds to in-plane dis-
placements δxx,δxy and rotation θz.
• Bending plate defining deformation due to out of plane

bending displacement uz. It is influenced by 3 degrees of
freedom: rotation around two axes θx,θz and out of plane
displacement δxz.

Combining both elements we make use of all 6 degrees of
freedom available at each node of the element.

3.3. Stiffness Matrix

In order to compute FEM-based stiffness for the shell el-
ement, we need to compute the strain-displacement matrix
between strains and nodes’ displacements. As we have sep-
arated the formulations for the in-plane and the out of plane
displacements, we obtain two strain-displacement matrices
(of size 3×9).

 εxx
εyy

2εyx

= Jm


δxx

1
δxy

1
δθ

z
1

...

 (24)

where Jm maps the membrane in-plane displacements and

 εxx
εyy

2εyx

= Jb


δxz

1
δθ

x
1

δθ
y
1

...

 (25)

where Jb maps the bending displacements.

To compute the values in matrices Jm and Jb, we can reuse
equation (15) and apply the spatial derivatives. To illustrate,
let’s take one value of the matrix Jm (first line, fourth col-
umn), we first take the kinematics between δTx and the con-
cerned degree of freedom δxx

2 from equation (15):

δTx

δxx
2
= (n2 +n6 +n7 +

n10
3

) (26)

Then, we apply the spatial derivatives to compute the vari-
ation of εxx due to a variation of x2x:

δεxx+=

(
3

∑
i=1

(
∂n2
∂ξi

+
∂n6
∂ξi

+
∂n7
∂ξi

+
1
3

∂n10
∂ξi

)
∂ξi

∂x

)
︸ ︷︷ ︸

Jm14

δxx
2

(27)

Assuming constant thickness t of the element and inte-
grating over the volume of the element we compute the stiff-
ness matrices for the elastic membrane and bending plate
respectively:

Km =
∫∫∫

V
JT

mMJm dV (28)

Kb =
∫∫∫

V
JT

b MJb dV (29)

where M is the material matrix. To keep the system simple
we use linear Hooke’s law for isotropic materials.

Because the deflection field for the element is non-linear
(15) in position the integrals (28) and (29) have to be com-
puted using numerical integration. In our implementation we
employ 6-point Gaussian quadrature for integration over tri-
angle area.

3.4. Corotational Formulation

It is known that the Cauchy’s strain tensor (21) is not rotation
invariant [HS04, MG04] and produces ghost forces for rigid
rotations.To keep the system linear and to deal with rigid
body rotations we compute the displacements and forces in
corotational frame. At each step of the simulation we com-
pute the local frame for every element, the resulting internal
force of deformed element is then computed relative to this
frame:

Fe = RT
e (Keu) = RT

e

(
Ke(Rex−R0

ex0)
)

(30)

where R and R0 are rotation matrices of the frame for current
and rest mesh respectively.

The corotational frame is computed using following steps:

• One axis is aligned to one edge of the element:
e1 = x2−x1
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a) b) c)

Figure 4: Plate deformations: a) membrane deformations like stretching or shearing, due to in-plane displacements b) unde-
formed; c) bending deformation, due to out of plane displacements

• A normal to the plane of the element is computed:
e3 = e1× (x3−x1)
• Second axis in the plane of the element is computed:

e2 = e1× e3

Correct choice of the corotational frame is a tricky prob-
lem [FH05] and incorrect frame for the membrane element
can have adverse effects on the simulation. This choice of
the frame where we align one axis with one of the edges of
the triangle is not a perfect one and we have experienced
non-negligible difference in deformation of equilateral tri-
angle depending on whether an axis was aligned to the edge
favored by the deformation or to one of the two other edges.

A polar decomposition on the deformation gradient F =
∇u+ I can be used to extract a rotation component from the
deformation of the element [Cia94, HS04]. Because we are
only fixing the membrane element we can perform the polar
decomposition in 2D with the following formula:

R = F+ sgn(det(F))
(

F22 −F21
F12 F11

)
(31)

and subsequently normalizing the columns. We then rotate
the corotational frame in opposite direction. The deforma-
tion gradient depends on frame which means multiple iter-
ations of polar decomposition can be performed. Even sin-
gle iteration improves the final frame but more are usually
necessary (up to 20) which severely degrades the perfor-
mance. Polar decomposition tends to "overshoot" the ideal
rotation angle and each subsequent step performs a rotation
in the direction opposite to the rotation in previous step. By
properly scaling the rotation angle we are able to minimize
the amount of needed iterations down to 5. The best value
for the scaling factor depends on the simulated problem, but
we have experimentally localized the best value to be some-
where between 0.6 and 0.65. We choose to use the value
0.61.

We employ two stop conditions for the iteration process:
(i) the change in rotation angle is less than 10−6, and (ii) the
maximum number of iterations is set to 5.

If the first condition is not met in 5 iterations we still have
very good approximation of the ideal frame. In some situa-
tions the process is not able to reach the ideal frame quickly
because either the convergence for the element is too slow

or the process is oscilating around a certain configuration. In
either case performing more iterations is unnecessary.

4. Application of High Resolution Mesh

Because of the bending property of the shells relatively few
elements are necessary to simulate curved surface. To enrich
the visual experience from the simulated object it is desirable
to use more triangles in the areas with high curvature during
rendering. Besides the visual accuracy the high resolution
mesh correctly modeling the curved areas is needed for in-
teraction and correct simulation of collisions and constraints.
To handle these, we also need to know how to map the ve-
locities from the mechanical mesh onto the high resolution
mesh and how to map forces acting on the high resolution
mesh back onto the mechanical mesh. This high resolution
mesh may be obtained simply by refining the triangles of
mechanical mesh.

4.1. Surface Mesh

To project vertices onto the surface of shells we use the fact
that the geometry of is based on the formulation of cubic
Bézier triangle (5). For every vertex of the high resolution
mesh we first find the corresponding triangle on the mechan-
ical mesh that is closest to the vertex and assign barycentric
coordinates on the triangle to this vertex. After every step of
the simulation points of the control mesh are updated based
on the kinematic link described in section 2 and the high res-
olution mesh is updated using the assigned barycentric coor-
dinates and the function of the surface (5). An alternative
approach is to subdivide the Bézier triangles as necessary.

4.2. Nodal Velocities of the Surface Mesh

For contact modeling it is necessary to know the velocity
of the contact points. The values are directly available to us
for the nodes of the mechanical mesh but they can also be
computed for any point on the surface. Differentiating (6)
by time we get:

Ṫ =
10

∑
i=1

niṗi =
10

∑
i=1

nivi (32)

c© The Eurographics Association 2012.



T. Golembiovský & C. Duriez / Bézier Shell FE

For the corner control points we already have the veloc-
ities vi. For the internal control points we need to compute
them. We again make use of the kinematic link between con-
trol points and control points. For the edge points we applied
to motion of a rigid body:

v j = vi +ωi×pi− j (33)

where i is the index of the corner node the edge node is at-
tached to and ωi is the angular velocity at the node. For the
central node the formula is based on the derivate of equation
(10):

v10 =
1
3

3

∑
i=1

(vi +ωi×pi−10) (34)

Again after substitution of (33) and (34) into (32) one can
evaluate Ṫ as Ṫ = Jt

[
vx

1, . . . ,v
z
3,ω

x
1, . . . ,ω

z
3
]T .

4.3. Projection of Surface Forces

For physical interaction with the object one also requires
that the forces applied on the object’s surface are transmit-
ted back as forces and torques on the vertices of the me-
chanical mesh. The influence of force f acting on the fine
mesh is transfered using the associated barycentric coordi-
nates through the control points by the formula:

f1 = ∑
i∈{1,4,5}

nif+
n10
3

f (35)

f2 = ∑
i∈{2,6,7}

nif+
n10
3

f (36)

f3 = ∑
i∈{3,8,9}

nif+
n10
3

f (37)

Similarly we can compute the torques applied through
edge control points and the central control points:

τ1 =p1−4× (n4f)+p1−5× (n5f)+

+
1
3

p1−10× (n10f)
(38)

τ2 =p2−6× (n6f)+p2−7× (n7f)+

+
1
3

p2−10× (n10f)
(39)

τ3 =p3−8× (n8f)+p3−9× (n9f)+

+
1
3

p3−10× (n10f)
(40)

Or again as
[
fx
1, . . . , f

z
3,τ

x
1, . . . ,τ

z
3
]T

= JT
i f. Note that these

formula fulfill the physical principle of virtual power: P =
Ṫ · f = ∑

3
i=1 Vi · fi +ωi · τi

5. Validation and Results

In subsections 5.1 and 5.2 we present tests to validate the
convergence of our Bézier shell element. As a reference

we use a combination of two elements that are very well
established in the area of mechanical modeling. Our re-
sults are compared with the shell element composed of Dis-
crete Kirchoff Triangle (DKT) element [BBH80] for bend-
ing plate and optimal ANDES element [Fel03] for mem-
brane. For comparison the results for the model of O. Co-
mas [CDC10] are also presented. Implicit Euler integration
scheme was used to solve the system. This allows us to use
large time steps needed for real-time performance of at least
25 Hz. Subsection 5.3 presents evaluation of the computa-
tional complexity of our solution. Last subsections are dedi-
cated to presentation of application of our model.

5.1. Roof Test

To validate the results of the element we have performed
a modified version of a test known as Scordelis-Lo roof. It
simulates a cylindrical roof under self-weight. The geometry
is defined by 80◦ cylindrical patch of length L = 50, radius
r = 25 and thickness t = 0.25 and is discretized into mesh of
NxN vertices. The physical parameters are E = 4.32× 108

and ν= 0. The roof is loaded with uniformly distributed load
q = 90 per unit area. The curved edges are clamped at both
ends to avoid rigid body movement. This is the only dif-
ference from the original Scordelis-Lo roof test where the
edges are free to move in longitudinal direction. The Fig-
ure 5 shows the vertical displacement of midpoint on the
free edge.
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Figure 5: Convergence for modified Scordelis-Lo roof test
of DKT+ANDES element (DKT), our Bézier shell element
(BSH) and element of O. Comas (PSH) with polynomial
shape function.

5.2. Hemisphere Test

Second performed test is a hemisphere with hole subjected to
two opposing forces at the base. The geometry is described
by a hemisphere with radius r = 10 and thickness t = 0.04
with 18◦ hole at the top and the geometry is discretized into
the grid of NxN vertices per quadrant. The physical param-
eters are E = 6.825× 107 and ν = 0.3. The hemisphere
is at it’s base subjected to two opposing outwards forces
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Figure 6: Coloured plot of vertical displacement in the roof
test

and two opposing inwards forces with magnitude P = 4. To
avoid rigid body movement we have constrained two oppo-
site nodes at the top of the hemisphere. The radial displace-
ment for one point with applied load is shown in Figure 7.
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Figure 7: Convergence for test on hemisphere with 18◦ hole
for the DKT+ANDES element (DKT) and our Bézier shell
element (BSH) and element of O. Comas (PSH) with poly-
nomial shape function.

Figure 8: Coloured plot of radial displacement in the hemi-
sphere test

5.3. Computation Speed

In figure 9 we present performance of the element in terms
of frames per second. All tests were performed on machine
equipped with Dual-Core AMD Opteron Processor 2218 and
3 GB of RAM. We used a conjugate gradient solver to solve
the system. Our implementation is without optimizations
and only single CPU core was used for the simulation. The
values reported are for the raw physical simulation with (B)
and without (A) the frame fixing method described in sub-
section 3.4. We also present results including the mapping of
high-resolution mesh onto the mechanical mesh for visuali-
sation purposes or collisions.
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Figure 9: Performance in frames per seconds for different
number of elements. Shows values for element with frame
fixing (B) method described in subsection 3.4 and without
it (A), and with mesh of 3 200 (C) or 10 082 (D) triangles
mapped onto the mechanical mesh.

We can see that the frame fixing technique is really fast
and we are able to simulate up to 1 000 elements and still
maintain visual refresh rate of 25 FPS. While our implemen-
tation was only single-threaded and the mechanical mapping
wasn’t off-loaded to another CPU core we were still able to
provide good results for more than 600 elements mesh with
10k triangles.

Both DKT+ANDES and our element are purely linear
which makes their raw simulation time comparable. The hy-
brid PSH element require evaluation of coefficients of the
polynomial during simulation which makes it inferior in per-
formance.

5.4. Planning of Congenital Heart Disease Correction
Surgery

Surgical interventions in infants with congenitally mal-
formed great arteries and hearts are extremely challenging
due to the complex and heterogeneous nature of their disease
patterns. At present, cardiac surgeons rely on non-invasive
imaging for patient-specific examination and a set of pre-
operative sketches with varying approaches to the surgical
procedure. However, the most promising approach is often
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chosen during the actual open-heart surgery, when surgeons
get a more concrete idea of possible outcomes. The impor-
tant decisions have to be made in very short time and are
strongly dependent on the surgeon’s experience.

To be able to predict results of complex surgical proce-
dures a surgical simulation system can be employed. We
have developed a prototype [KGD∗12] of new surgical sim-
ulation system for preoperative planning. The element has
been used to model deformations of blood vessels and artifi-
cial patches. By performing a set of topological changes we
simulate the process of incising the vessel and suturing on
a pre-specified boundary. By iteratively adjusting the under-
laying mesh we search for the elastic equilibrium.

5.5. Simulation of Uterus Deformation During Birth

The purpose of this simulator is to reproduce the tissue de-
formations that are encountered during a delivery. The goal
is to evaluate the mechanical stresses which are applied on
the anatomical structures (like the uterus but also the liga-
ments that sustain the uterus).

The data comes from a MRI of a 8 months pregnant
woman. The trajectory of the baby-head during the birth
was predefined with gynecologists. The model is limited to
uterus deformations but will soon account for the vaginal tis-
sues deformation. The collisions response drives the defor-
mations of the uterus. Mechanically, the uterus is modeled
with 127 shells that are solved by a direct solver (LDL fac-
torization). Up to 60 instantaneous contact spots need to be
mapped on the shell elements. The simulation frame-rate is
relatively low (6 FPS) due to contact response computation.

6. Discussion and Limitations

Currently, due to the technical decisions the element has two
limitations. It is C1 continuous at corners and only C0 on the
edges. The lack of continuity may prove to be an issue for ex-
ample if curvature needs to be computed not only inside the
element but also across the corners/edges. In location with
high initial curvature more elements may be necessary to
properly model the surface.

The second limitation is the choice of rigidly attached
control points. While it greatly simplifies the formulation the
rigidity may cause issues. In case of large compression of
the element the results may be unpredictable. This is how-
ever unlikely to occur because the element will bend before
reaching such configuration. It may, however, fail to main-
tain even curvature of the surface if the element is subjected
to large stretching. We could investigate more complex kine-
matic links between nodes and control points and also more
continuous surface descriptions.

On the other hand the choices provide a good trade-
off between continuity and simplicity. Only 3× 6 DOFs =

18 DOFs are necessary while the Bézier triangle has theoret-
ically 10×3 DOFs = 30 DOFs. For complex elements with
high number of nodes the interconnection between nodes in-
creases, especially on the vertices where the size of nodes
involved depends also on number of neighbouring elements.
By keeping the element simple the sparsity of stiffness ma-
trix is not violated.

Our study relies on the assumption that the in-plane and
the bending deformation energies can be separated. For com-
plex deformation fields or material constitutive laws this as-
sumption is no more valid. However, we could keep the
same way of building the element even with more complex
mechanics. For instance the interpolation would allow for
derivation of three-dimensional non-linear strain tensors. We
will investigate this topic in our future work.

7. Conclusion

In this paper we presents new shell element with interpola-
tion functions based on Bézier triangle which is suitable for
real-time simulations. Compared to the elements commonly
used in mechanics, the interpolation is less complex and en-
sures at least a C0 continuity in the worst case. (Many shell
elements are not even C0 when the shape is not flat).

It fixes problems of the previous model [CDC10] based on
cubic polynomials, namely: element is based on all 6 DOFs,
deformations of the element are symmetric, it is C1 for the
case of initial flat shape and, on the other cases, it is C0 con-
tinuous on the edges and provides C1 continuity in corners
of the element. This is essential for good visual experience
if high-resolution mesh is mapped on the mechanical mesh.
A method of improving the corotational frame to keep the
deformation symmetric is also presented in the paper.

The formulation of Bézier triangle provides a clean way
of mapping high-resolution mesh for better visualization. We
also provide a technique of computing velocities of any point
on the surface and formula for back-projection of forces ap-
plied on the surface onto the mechanical mesh. Those are
essential components for the surgical simulators that need
accurate contact geometry modeling without an overflow of
computation. The efficiency of the approach is demonstrated
through convergence tests, computation time benchmark and
application to two different simulation cases.

In future work, we will investigate the use of more com-
plex constitutive laws and also the use of GPU for parallel
and faster compuation.
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