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ABSTRACT
The Polynomial System Solving (PoSSo) problem is a fundamental
NP-Hard problem in computer algebra. Among others, PoSSo have
applications in area such as coding theory and cryptology. Typi-
cally, the security of multivariate public-key schemes (MPKC) such
as the UOV cryptosystem of Kipnis, Shamir and Patarin is directly
related to the hardness of PoSSo over finite fields. The goal of this
paper is to further understand the influence of finite fields on the
hardness of PoSSo. To this end, we consider the so-called hybrid
approach. This is a polynomial system solving method dedicated
to finite fields proposed by Bettale, Faugère and Perret (Journal of
Mathematical Cryptography, 2009). The idea is to combine exhaus-
tive search with Gröbner bases. The efficiency of the hybrid ap-
proach is related to the choice of a trade-off between the two meth-
ods. We propose here an improved complexity analysis dedicated
to quadratic systems. Whilst the principle of the hybrid approach is
simple, its careful analysis leads to rather surprising and somehow
unexpected results. We prove that the optimal trade-off (i.e. num-
ber of variables to be fixed) allowing to minimize the complexity is
achieved by fixing a number of variables proportional to the number
of variables of the system considered, denoted n. Under some nat-
ural algebraic assumption, we show that the asymptotic complexity
of the hybrid approach is 2(3.31−3.62 log2(q)

−1)n, where q is the size
of the field (under the condition in particular that log(q)� n). This
is to date, the best complexity for solving PoSSo over finite fields
(when q > 2). We have been able to quantify the gain provided by
the hybrid approach compared to a direct Gröbner basis method.
For quadratic systems, we show (assuming a natural algebraic as-
sumption) that this gain is exponential in the number of variables.
Asymptotically, the gain is 21.49n when both n and q grow to infin-
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ity and log(q)� n.

1. INTRODUCTION
The purpose of this paper is to study the complexity of solving

the Polynomial System Solving (PoSSo) problem over finite fields.
This problem, that will be denoted by PoSSoq, is as follows:

Polynomial System Solving over Finite Fields (PoSSoq)
Let q = pk, where p is prime and k > 0.
Input: f1(x1, . . . ,xn), . . . , fm(x1, . . . ,xn) ∈ Fq[x1, . . . ,xn].
Goal: find a vector z1, . . . ,zn ∈ Fn

q such that:

f1(z1, . . . ,zn) = · · ·= fm(z1, . . . ,zn) = 0.

PoSSoq typically arises in area such as cryptography and coding
theory (but not limited to). In cryptology, the hardness of PoSSoq
is now a subject of major interest, e.g. [30, 23, 24, 16, 18, 14, 17,
25, 1, 29, 15, 34, 36, 21]. In one hand, this problem is used as a
trapdoor to design many cryptographic primitives, mostly in multi-
variate cryptography [32, 33, 37]. On the other hand, the security
of many cryptosystems reduce trough algebraic attacks [3, 23, 35]
to PoSSoq.

From a complexity-theoretical point of view, PoSSoq is NP-Hard
independently of the size q [28]. Thus, any algorithm for PoSSoq
should be exponential in the worth case. However, this does not
exclude that large family of PoSSoq instances can be solved in sub-
exponential or polynomial complexity. In addition, the exact expo-
nent occurring in algorithms of exponential complexity is often a
critical question in applications.

The general question we want to address here is how much the
restriction to finite fields influence the hardness of PoSSo ?

Hybrid Approach. In [9], we have described a rather simple
Gröbner-basis based method taking advantage of the finite field
structure: the so-called hybrid approach. The idea is to mix ex-
haustive search and Gröbner bases [11, 13, 12] computation. In
what follows, hybrid approach will always refer to the Gröbner-
basis based method described in [9]. The principle of such ap-
proach is to fix k – which is a parameter – among the n variables
of the system considered and then compute qk Gröbner bases of
smaller systems to recover the set of solutions. The efficiency of
the hybrid approach depends upon a proper choice of the trade-
off k between the number of variables to be fixed and the cost of
computing a Gröbner basis of the smaller sub-systems. At first
glance, it is even not clear that a non-trivial trade-off exists (i.e.



whether k 6= 0?). A first contribution of [9] is to show that the hy-
brid approach brings a significant improvement in practice (with
respect to a direct Gröbner basis computation). As an application,
we have shown that the parameters of many multivariate schemes
(which are directly based on the hardness of PoSSoq) must be re-
fined to achieve a cryptographic security level (i.e. > 280 opera-
tions). For instance, the hybrid approach has been used to attack
previously recommended parameters of the UOV scheme [29] (for
instance, [9][Table 4, first row] in a complexity as small as 237.75).
Remark that experiments performed in [9] suggest that the optimal
trade-off seems to be achieved for a small and constant value of k.
We show in this paper that this intuition is actually false.

We mention that [9] also laid the foundation for a theoretical
analysis of the hybrid approach. It has been shown that the hybrid
approach is beneficial (i.e. a non-trivial trade-off exists) if q is less
than 20.62ω n, where ω,2 6 ω 6 3 is the linear algebra constant.

Related Works. The complexity of solving solving binary qua-
dratic equations has been more particularly investigated in [38, 39,
7]. The authors of [38] proposed an heuristic method – based on the
so-called XL [31] algorithm – of complexity O

(
20.875n) for solv-

ing PoSSo2 (with quadratic equations). They propose to combine
exhaustive search with XL. This is the so-called FXL. As pointed in
[2] XL can be viewed as a sub-optimal version of F4 [19] (and con-
sequently, FXL is a sub-optimal version of the hybrid approach). In
addition, the exact assumptions that have to be verified by the input
systems are unclear. Also, similar results have been announced in
[39][Section 2.2], but there analysis relies on algorithmic assump-
tions (e.g., row echelon form of sparse matrices in quadratic com-
plexity) that are not known to hold currently. Under these assump-
tions, the authors show that the most favorable trade-off between
exhaustive search and row echelon form computations in the FXL
algorithm is obtained by specializing 0.45n variables (for q = 2).
Recently, [7] used an hybrid approach – and additional techniques –
to further improve the solving of quadratic binary systems. The au-
thors of [7] proposed a deterministic algorithm for solving PoSSo2
in O

(
20.841n) when m = n (i.e. same number of equations and

variables). A probabilistic variant of their algorithm (Las Vegas
type) has expected complexity O

(
20.792n). They roughly estimate

the actual threshold between their method and exhaustive search
(whose cost is 4 log2 n2n operations [10]), which is as low as 200.
Note that the complexity analysis in [7] requires an algebraic as-
sumption which is similar to [9]. Such assumption will be also
used here. From now on, we will always assume that q > 2.

The question of solving PoSSoq for a bigger q is quickly ad-
dressed in [39][Section 2.1]. More precisely, [39][Proposition 7,
p. 5] describes an implicit method for finding the optimal number
of variables to be fixed in FXL. For q = 28, the best-tradeoff in
FXL is obtained by fixing 0.049n variables (assuming ω = 2). Us-
ing a different technique, we present also here an implicit method
for finding the best-tradeoff with the hybrid approach. For exam-
ple with q = 28, we get the most favorable trade-off is obtained by
fixing 0.07n variables (assuming ω = 2.4).

The goal of this paper is to further improve the theoretical anal-
ysis initiated in [9]. In particular, we address the following issues:

• What is the explicit asymptotic value of the best trade-off ?

• What is the asymptotic complexity the hybrid approach ?

• What is the gain of the hybrid approach over a direct Gröbner
basis method ?

Organization of the Paper. After this introduction, the paper is
organized as follows. Sect. 2 recalls some results from [9] needed

for our new analysis. We also define a general framework for our
study. We emphasize that all our results are based on a rather nat-
ural algebraic assumption about the sub-systems considered during
the hybrid approach, i.e. we assume that semi-regular system re-
mains semi-regular after having specialized some variables (this is
similar to [9, 7]). This is formalized in Hypothesis 1 (Section 2.1).
In Section 2.2, we present a first new result about the hybrid ap-
proach. Surprisingly enough, we have been able to show that fixing
a number of variables k which is proportional to the initial number
of variables of the system considered yields a better trade-off than
the one in [9]. In Section 3, we provide an explicit form of the best
trade-off. We show that it is asymptotically1 equivalent to:

n
10.86ω2

(4.16 log2 (q)−3.14ω)2 ,

where ω,2 6 ω 6 3 is the linear algebra constant.
This result allows to derive an asymptotical equivalent for the

cost of the hybrid approach. Precisely, the complexity is asymptot-
ically equivalent to

2nω (1.38−0.44ω log(q)−1), when n→ ∞,q→ ∞ and log(q)� n.

Finally, we quantify in Section 4 the gain of the hybrid approach
with respect to a direct Gröbner basis computation. Once again, we
arrive to a rather unexpected result. The hybrid approach provides –
under some conditions – an exponential speed-up. More precisely,
when n→ ∞,q→ ∞ and as long as n� log(q), the gain of the
hybrid approach compared to the direct Gröbner basis approach
is asymptotically 20.62ω n. To the knowledge of the authors, this
makes the hybrid approach the method with the best asymptotical
complexity for solving PoSSoq (for q > 2).

2. PRELIMINARIES
We review in this part some useful results obtained in [9]. Through-

out the paper, we always use the following notations: q is the size
of the field, n is the number of variables, m is the number of equa-
tions and k is the trade-off (number of fixed variables in the hy-
brid approach). We will always assume that m ≥ n. We denote
by ω,2 6 ω 6 3 the linear algebra constant. We write O for the
“big O” notation. We also use the o for the “little-o” notation, i.e.
f (n) = o

(
g(n)

)
if limn→∞

f (n)
g(n) = 0. Finally, we say that f and g

are asymptotically equivalent, denoted f ∼ g, if f − g = o(g) (or
equivalently, limn→∞

f (n)
g(n) = 1 if f and g are positive real valued

functions).

2.1 Complexity of the Hybrid Approach
We recall in this part the general expression of the hybrid ap-

proach cost [9]. To do so, let CF5

(
n,m,dreg

)
be the complexity

of computing the Gröbner basis of a system of m equations in n
variables using the F5 algorithm2 [20], where dreg is the degree of
regularity of the system. Informally, the degree of regularity is the
maximum degree reached during the Gröbner basis computation.
Note that this degree depends on n,m and q. The complexity of the
hybrid approach [9] is as follows.

PROPOSITION 2.1. Let { f1, . . . , fm} ⊂ Fq[x1, . . . ,xn] be an al-
gebraic system of equations with respective degrees d1 > · · ·> dm.

1A maple code corresponding to this paper can be found at http:
//www-salsa.lip6.fr/~perret/Site/hybrid_issac.mpl.
2Note that a similar analysis could be also performed with any al-
gorithm solving PoSSoq and having a precise complexity estimates
based on the degree of regularity, e.g. [11, 13, 12, 19, 20, 27].



Let k be a non-negative integer and dmax
reg (k) (resp. Dmax(k)) be the

maximum degree of regularity (resp. maximum number of solutions
in the algebraic closure of Fq counted with multiplicities) of all the
systems:

{ f1(x1, . . . ,xn−k,v1, . . . ,vk), . . . , fm(x1, . . . ,xn−k,v1, . . . ,vk)}

for any (v1, . . . ,vk) ∈ Fk
q. The complexity of the hybrid approach is

bounded from above by:

min
06k6n

qk
(

CF5

(
n− k,m,dmax

reg (k)
)︸ ︷︷ ︸

Gröbner basis

+O((n− k)Dmax(k)ω )︸ ︷︷ ︸
change of ordering

) . (1)

This is the complexity of computing qk (DRL) Gröbner bases with
F5 of polynomial systems having m equations, n− k variables, re-
spective degrees d1 > · · ·> dm, plus the cost of performing a change
of ordering with FGLM [22].

In order to study the asymptotical behavior of the hybrid ap-
proach, we assume – as in [9] – a regularity condition about the
sub-systems arising during the hybrid approach.

HYPOTHESIS 1. Let { f1, . . . , fm} ⊂ Fq[x1, . . . ,xn] be random
algebraic equations of respective degrees d1 > · · ·> dm.
Let βmin,0 < βmin < 1 be a value that will be specified later. Then,
for any k,0 6 k 6 dβmin ne, and for each vector (v1, . . . ,vk) ∈ Fk

q,
the system:

{ f1(x1, . . . ,xn−k,v1, . . . ,vk), . . . , fm(x1, . . . ,xn−k,v1, . . . ,vk)}

is semi-regular for n large enough.

Note that systems verifying such hypothesis are in particular semi-
regular (k = 0). We refer the reader to [8, 4, 6, 5] for more infor-
mation on semi-regular systems. In practice, a randomly picked
system is semi-regular with high probability. Assuming Fröberg’s
conjecture [26], this can be proven more formally. We emphasize
that Hypothesis 1 has been experimentally verified [7] for a large
amount of random quadratic binary systems. In [9], such assump-
tion has been verified for larger q on algebraic systems coming
coming from multivariate schemes such as UOV [30]. However,
such systems are naturally under-defined. Thus, the total number
of variables to be fixed (m−n variables to have a square system plus
k variables due to the hybrid approach) is sufficiently big to assume
that the algebraic systems obtained after specialization behave as
a random system. Note also that we performed some experiments
to check this assumption for random systems of equations. We ex-
perimentally verified that Hypothesis 1 holds for random square
systems with various values of n,6 ≤ n ≤ 16, and with parameters
q,βmin as in Table 2.

One interesting feature of semi-regular systems is that their de-
gree of regularity is known in advance. Indeed, let { f1, . . . , fm} ⊂
Fq[x1, . . . ,xn] be a semi-regular system. Its regularity is given by
the index of the first non-positive coefficient of

∑
k≥0

ckzk =
∏

m
i=1(1− zdi)

(1− z)n .

In addition, asymptotical equivalents are known [8, 4, 6, 5] for the
degree of regularity. These allow to perform the analysis in [9], and
will be further used in this paper.

Note that assuming Hypothesis 1, all the sub-systems solved dur-
ing the hybrid approach have – for a fixed k – the same degree of
regularity. We denote this regularity by dreg(k) (i.e. dmax

reg (k) =
dreg(k). Furthermore, the number of solutions of an over-determined
semi-regular system of equations is always 0 or 1 (i.e. 0≤Dmax(k)≤
1 as soon as k > 0). This allows to neglect the cost of the change
ordering algorithm in the complexity.

2.2 Best Trade-Off for Quadratic Systems ?
Throughout this paper, we denote by k0 the optimal value for k,

that is, the parameter that minimizes the complexity of the hybrid
approach. The goal of this part is to have the asymptotic trend of
the best trade-off. To simplify the analysis, we focus our atten-
tion to quadratic systems. Such systems are widespread in many
applications (especially cryptography), making their study of main
interest.

To find the best trade-off, we want to minimize the complexity
of the hybrid approach. To do so, we first consider the complexity
Chyb(k) of the hybrid approach as a continuous function of k ∈ R.
When this function reaches its minimum, its derivative Chyb(k)′

with respect to k vanishes. A root k0 of Chyb(k)′ with k0,0 6 k0 6 n
gives then the best tradeoff. Finally, as Chyb(k) is a complexity,
it is always positive. It is thus equivalent to look for a root of its
logarithmic derivative Chyb(k)′

Chyb(k)
.

Let C1(n,k) = (n− k−1) ,C2(n,k) =
(

3n−k
2 −1−

√
nk
)

and

C3(n,k) =
(

n+k
2 −

√
nk
)

. The authors of [9] obtain that the best

trade-off k0 is a root of ∆(k) where

∆(k) = log(q)+ω

(
log
(
C1(n,k)

)
+

1
2C1(n,k)

)
− ω

2

(
1+
√

n/k
) (

log
(
C2(n,k)

)
+

1
2C2(n,k)

)
− ω

2

(
1−
√

n/k
) (

log
(
C3(n,k)

)
+

1
2C3(n,k)

)
. (2)

To push further the asymptotical analysis, we need to assume – a
priori – what it is the global trend of k. At first glance, it seems
(rather) natural to believe that k is going to be small and should
be then a constant. This is what was assumed in [9]. Surprisingly
enough, we will see that the best trade-off is obtained asymptoti-
cally by fixing β0 n variables, where β0 is independent of n.

To do this, we first write k = β n with 0 6 β 6 1, and we show
that β tends to a constant when n grows to infinity. By substituting
k by β n in (2), and factoring by n in each log terms we obtain that
∆(β ) =

log(q)+ω

(
log(n)+ log

(
1−β − 1

n

)
+

1
2C1(n,β n)

)
− ω

2

(
1+
√

1/β

) (
log(n)+ log

(
3−β

2
− 1

n
−
√

β

)
+

1
2C2(n,β n)

)
− ω

2

(
1−
√

1/β

) (
log(n)+ log

(
1+β

2
−
√

β

)
+

1
2C3(n,β n)

)
.

(3)

The coefficient of log(n) in this expression is:(
ω− ω

2
(
1+
√

1/β
)
− ω

2
(
1−
√

1/β
))

= 0.

We remark that C1(n,β n),C2(n,β n) and C3(n,β n) go to infinity
when n tends to infinity. As a consequence:

∆(β )∼ log(q)+ω (log(1−β ))

− ω

2

(
1+
√

1/β

) (
log
(

3−β

2
−
√

β

))
− ω

2

(
1−
√

1/β

) (
log
(

1+β

2
−
√

β

))
.

Observe that n does not appear in the asymptotic expansion of
∆(β ). Thus, a solution of ∆(β ) = 0 at infinity is unrelated to n.
As a consequence, the best (asymptotic) trade-off can be written



k0 = β0 n, where β0 is unrelated to n. This is a contradiction with
our prior assumption [9]: k0 is not a constant. To have a precise
analysis, we should look for the best asymptotic trade-off assum-
ing k = β n. This is one of the reasons motivating a new analysis.

3. COMPLEXITY OF HYBRID APPROACH
In this part, we investigate the complexity of the hybrid approach.

The goal is to have an expression of the complexity as explicit as
possible. To this end, we first derive an asymptotical equivalent of
this complexity depending of the degree of regularity. According
to Section 2.2, we have the global trend of the best trade-off. It
is of the form k = β n (with β unrelated to n). Then, we derive
an asymptotically equivalent formula for the regularity of the sub-
systems involved in the hybrid approach. Finally, we put everything
together to get an asymptotic equivalent for hybrid approach cost.

3.1 A First Asymptotic Equivalent
We recall that the complexity of F5 as stated in [8]:

CF5

(
n,dreg

)
= O

((
n+dreg

dreg

)ω)
. (4)

Remark that this complexity does not involve explicitly the number
of equations (m). But, remember the regularity depends on m. This
cost is slightly different from the one used in [9]. The reason is that
(4) is more accurate for semi-regular systems.

Using Stirling’s formula, i.e.

n!∼
√

2π n
(n

e

)n
,

we can derive a first expression for complexity of the hybrid ap-
proach. Since Chyb(k) = qk CF5

(
n− k,dreg(k)

)
, it is not difficult to

see that Chyb(k)∼

qk

 1√
2π
·
(
n− k+dreg(k)

)n−k+dreg(k)+ 1
2(

n− k
)n−k+ 1

2 dreg(k)dreg(k)+ 1
2

ω

. (5)

By abuse of language, we will always refer to (5) (asymptotic equiv-
alent) as the complexity of the hybrid approach.

3.2 Asymptotic Equivalent of the Regularity
From now on, we set m = α n (α ≥ 1 is a constant). According

to Section 2.2, the best trade-off is obtained for a k of the form β ·n.
Thus, the hybrid approach considers sub-systems having n′= n(1−
β ) variables and a number of equations m = α

1−β
(1−β )n = θ n′.

For such systems, we have an asymptotic equivalent of the degree
of regularity [8], i.e.:

dreg(n′,m)∼
(

θ − 1
2
−
√

θ (θ −1)
)

n+O
(

n1/3
)
. (6)

Note that in [9], we have used a different asymptotic expansion
of the degree of regularity. Experiments performed in [9] seem to
suggest that the optimal number of variables (i.e. trade-off) to be
fixed is a constant. As discussed in Section 2.2, this intuition is
incorrect.

Thus, assuming a trade-off of the form β ·n, we get that any sub-
system occurring in the hybrid approach has a degree of regularity
asymptotically equivalent to γ n+O

(
n1/3

)
, with:

γ =

(
α− 1−β

2
−
√

α (α +β −1)
)
. (7)

3.3 Implicit Form of the Best Trade-Off
In this part, we show that the best trade-off at infinity k0 = dβ0 ne

can be obtained by solving an implicit equation. The idea is to
derive an equivalent of the logarithmic derivative of Chyb using the
regularity (7). Let D = 1−β + γ . By combining (2) and (7), we
get that Chyb(β n)′

Chyb(β n) ∼

n log(q)+ω n
(

log(n)+ log(1−β )+
1

2n(1−β )

)
− ω n

2

(
1+
√

α

α +β −1

) (
log(n)+ log(D)+

1
2nD

)
− ω n

2

(
1−
√

α

α +β −1

) (
log(n)+ log(γ)+

1
2nγ

)
.

The terms in log(n) cancel out in this expression. Since n > 0,β0

is then a root of A(β ) = 1
n ·

Chyb(β n)′

Chyb(β n) . By ignoring constant terms at
infinity:

A(β )∼ A∞(β ), (8)

with

A∞(β ) = log(q)+ω log(1−β )

−ω

2

(
1+
√

α

α +β −1

)
log
(
D1(α,β )

)
−ω

2

(
1−
√

α

α +β −1

)
log
(
D2(α,β )

)
,

where D1(α,β ) = α + 1−β

2 −
√

α (α +β −1) and D2(α,β ) =

α− 1−β

2 −
√

α (α +β −1). This leads to the following result.

PROPOSITION 3.1. Let F = { f1, . . . , fm} ⊂ Fq[x1, . . . ,xn] be a
system of quadratic equations verifying Hypothesis 1. Let A∞ be
as defined in (8). The best trade-off for solving F with the hy-
brid approach is asymptotically to fix k0 = dβ0 ne variables, where
β0 is a root of A∞ such that β0,0 < β0 6 1. The coefficient β0 is
independent on the number of variables n.

A root β0 of A∞(β ) can be computed numerically (for instance us-
ing a computer algebra software like MAPLE). In Table 2 (Ap-
pendix), we present the best trade-off β0 obtained for various val-
ues of α and q.

3.3.1 Square Quadratic Systems
In this part, we focus on the common case m = n (i.e., α = 1,

square system). This allows to further refine Proposition 3.1. First,
we simplify A∞(β ) as defined in (8) by setting α = 1. Second,
we make the change of variable β ← 1

ν2 . Finally, by expending

B∞(ν) = A∞

(
1

ν2

)
, we get that:

B∞(ν) = log(q)+ω log(2ν +2)+ω log
(

ν−1
2ν2

)
− ω

2
(1+ν) log(3ν +1)− ω

2
(1+ν) log

(
ν−1
2ν2

)
− ω

2
(1−ν) log(ν−1)− ω

2
(1−ν) log

(
ν−1
2ν2

)
.

We observe that the terms in log
(

ν−1
2ν2

)
cancels out. Finally:

A(β )∼ B∞(β ), (9)



with B∞(ν) = log(q)+

ω

(
log(2ν +2)− 1+ν

2
log(3ν +1)− 1−ν

2
log(ν−1)

)
.

For square systems, Proposition 3.1 can be refined as follows.

PROPOSITION 3.2. Let F = { f1, . . . , fn} ⊂ Fq[x1, . . . ,xn] be a
system of quadratic equations verifying Hypothesis 1. Let B∞ be
as defined in (9). The best trade-off for solving F with the hybrid
approach is asymptotically to fix k0 =

⌈
n

ν2
0

⌉
variables, where ν0 is

a root of B∞(ν) such that ν0,0 < β0 6 1. The coefficient β0 = 1
ν2

0
is independent of n.

We show in Table 1 the value of β0 = 1
ν2

0
with respect to several

usual sizes of field q. We compare these values with the exact ratio
β0 when n = 100 and n = 200 (once the parameters are fixed, we
can compute exact value β exact

0 minimizing the complexity of the
hybrid approach). The table shows that our approximation matches
well with the expected value.

Table 1: Sample values for β0 for several field sizes with ω =
2.4. We need less variables to reach the best trade-off when the
field is bigger.

q 22 23 24 25 26 28 216

β0 0.52 0.35 0.24 0.17 0.12 0.071 0.017

β exact
0 , n = 100 0.59 0.35 0.25 0.14 0.12 0.08 0.02

β exact
0 , n = 200 0.55 0.39 0.24 0.17 0.17 0.09 0.02

Note that the the proportion of variables which needs to be fixed
tends to 0 when the size of the field increases. This is consistent
with the intuition that the exhaustive search becomes less interest-
ing for too big fields.

3.4 Complexity of the Hybrid Approach – An
Asymptotic Equivalent

We derive in this part an explicit (asymptotic) equivalent of the
hybrid approach complexity. The only element which is missing to
get this equivalent is an explicit form of the β0 discussed in Sec-
tion 3.3. Table 1 suggests that when q grows, β0 = 1

ν2
0

decreases.
This means that ν0→ ∞ when q→ ∞. This remark combined with
Proposition 3.2 leads to the following result.

PROPOSITION 3.3. Let F = { f1, . . . , fn} ⊂ Fq[x1, . . . ,xn] be a
system of quadratic equations verifying Hypothesis 1. Asymptoti-
cally, the best trade-off for solving F with the hybrid approach is
to fix k0 = dnβ0e variables, with:

β0 =

(
3ω log(3)

6 log(q)+6ω log(2)−4ω−3ω log(3)

)2
,

=
10.86ω2

(4.16 log2 (q)−3.14ω)2

PROOF. Let B∞ (ν) be as defined in Proposition 3.2. We get that
B∞ (ν)∼ν→∞

log(q)− 1
2

ω log(3)ν +ω

(
log(2)− 2

3
− 1

2
log(3)

)
.

Let ν0 be a root of B∞ (ν) at infinity (i.e. ν → ∞). We get:

ν0 =
6 log(q)+6ω log(2)−4ω−3ω log(3)

3ω log(3)
. (10)

Then, as k0 = dnβ0e =
⌈

n
ν2

0

⌉
, we recover the result announced.

Note that when q is too small, β0 becomes greater than one and the
approximation is not valid.

We are now in position to derive the (asymptotical) complexity of
the hybrid approach. We use the value of β0 provided in Proposi-
tion 3.3 together with (7) to have an asymptotic of the regularity.
It is a multiple of n, and we denote by γ0 the corresponding factor.
Precisely:

γ0 =

(
1+β0

2
−
√

β0

)
. (11)

Finally, we obtain the asymptotic complexity of the hybrid ap-
proach – with the best tradeoff – using the complexity (5). Let
D0 = 1−β0 + γ0, we have Chyb(k0) =Chyb(β0 n)

∼ qβ0 n(√
2π
)ω ·

(
(n−β0 n+ γ0 n)n−β0 n+γ0 n+ 1

2

(n−β0 n)n−β0 n+ 1
2 (γ0 n)γ0 n+ 1

2

)ω

,

∼ qβ0 n(√
2π
)ω ·

1
(
√

n)ω ·

 D
n−β0 n+γ0 n+ 1

2
0

(1−β0)
n−β0 n+ 1

2 γ
γ0 n+ 1

2
0

ω

,

∼ qβ0 n(√
2π n

)ω ·
(

D0

(1−β0)γ0

) ω
2
·

(
DD0

0

(1−β0)1−β0 γ
γ0
0

)ω n

. (12)

This leads to:

THEOREM 3.1. The complexity of the hybrid approach – us-
ing the trade-off k0 = dβ0 ne of Proposition 3.3 – is asymptotically
equivalent to

2nω (1.38−0.63ω log2(q)
−1), when n→ ∞,q→ ∞ and log(q)� n.

PROOF. From (12) and using the value k0 in Prop. 3.3:

log2
(
Chyb(k0)

)
∼ nK−ω log2

(√
2π n

)
+O(1) (13)

with K =

log2(q)
ν2

0
+ω

(
3
2
− 1

2ν2
0
− 1

ν0

)
log2

(
3
2
− 1

2ν2
0
− 1

ν0

)

−ω

(
1− 1

ν2
0

)
log2

(
1− 1

ν2
0

)

−ω

(
1
2
+

1
2ν2

0
− 1

ν0

)
log2

(
1
2
+

1
2ν2

0
− 1

ν0

)
.

When q→ ∞, K tends to

3
2

ω log2 (3)−ω− 1
4

ω2 log2(3)
2

log2 (q)
= 1.38ω−0.63

ω2

log2 (q)
.

The first term in (13) is dominant, so the complexity of the hybrid
approach is asymptotically 2nK .

If ω = 2.4 for instance, the complexity of the hybrid approach is:

2n
(

3.31−3.62 log2(q)
−1
)
.

4. ASYMPTOTIC GAIN OF THE HYBRID
APPROACH

The purpose of this part is to quantify the gain of the hybrid
approach with respect to a direct approach. We restrict our attention
here to the case m = n (i.e. α = 1).



The degree of regularity of a square quadratic system of n equa-
tions is n+1 [8]. Using Stirling’s formula in (4):

CF5 ∼

(
1√
2π
· (2n+1)2n+ 3

2

nn+ 1
2 (n+1)n+ 3

2

)ω

.

To simplify this expression, we use:

(2n+1)2n+ 3
2

(2n)2n+ 3
2

=

(
1+

1
2n

)2n+ 3
2

∼ e.

Thus, CF5 ∼(
1√
2π
· e(2n)2n+ 3

2

nn+ 1
2 enn+ 3

2

)ω

∼

(
1√
2π
· n

2n+ 3
2 22n+ 3

2

nn+ 1
2 nn+ 3

2

)ω

∼

(
1√
2π
· 2

2n+ 3
2

n
1
2

)ω

.

Finally:

CF5 ∼
(

2√
π n

)ω

·22ω n . (14)

Let k0 be as defined in Proposition 3.3. Using (12) and (14), we get

that
CF5

Chyb(k0)
∼
(

2√
π n

)ω

×

22ω n (√2π n
)ω

qβ0 n

(
(1−β0)γ0

1−β0 + γ0

) ω
2
(

(1−β0)
1−β0 γ

γ0
0

(1−β0 + γ0)1−β0+γ0

)ω n

.

This last expression can be written as follows:

(
2
√

2
)ω

·
(
(1−β0)γ0

1−β0 + γ0

) ω
2
·

(
1

qβ0

(
22 ·

(1−β0)
1−β0 γ

γ0
0

(1−β0 + γ0)1−β0+γ0

)ω)n

.

As a consequence:

CF5

Chyb(k0)
∼ 1

qβ0 n

(
22 ·

(1−β0)
1−β0 γ

γ0
0

(1−β0 + γ0)1−β0+γ0

)ω n

. (15)

This corresponds to the asymptotic gain of the hybrid approach.
To simplify our notations, we denote by Q = log2

(
CF5

Chyb(k0)

)
the

logarithm of the gain. It holds that Q∼ nC, with:

C =−β0 log2 (q)+2ω log2 (2)+ω log2

(
(1−β0)

1−β0 γ
γ0
0

(1−β0 + γ0)1−β0+γ0

)
.

Note that C does not depend on n. We replace β0 and γ0 by their
respective values obtained from Prop. 3.3 and equation (11). To
have an approximation of this gain, one can compute an asymptotic
expansion of C when q→ ∞. Using the logarithmic in base 2:

C ∼ 3ω− 3
2

ω log2 (3) = 0.62ω . (16)

This allows to state the following:

THEOREM 4.1. Let F = { f1, . . . , fn}⊂Fq[x1, . . . ,xn] be quadratic
equations verifying Hypothesis 1. When n→∞, q→∞ and as long
as n� log2(q), the gain of the hybrid approach compared to a
direct Gröbner basis approach is asymptotically 20.62ω n.

Theorem 4.1 gives a trend of the asymptotic gain. It shows the
overall efficiency of the hybrid approach compared to the simple
Gröbner basis approach. For ω = 2.4, we get a speed-up of 21.49n

as stated in the abstract.

On the other hand, the actual gain can be more precisely com-
puted with explicit values of Chyb, the best trade-off, and CF5 ). We
compare the real gain with several of our asymptotic estimations
for fields of size q = 2,16,256,216,232 using ω = 2.4. Each fig-
ure (Fig. 1 to 5) has four curves, except when q 6 13, where the
approximation of Proposition 3.3 is not relevant. – The theoreti-
cal gain (plain line) obtained from the explicit complexity of CF5

(4) and the best trade-off as the minimum of Proposition 2.1 for all
k,0 6 k 6 n.

– The gain when n→∞ (dashed line) obtained from (16) and the
trade-off is computed with Proposition 3.1.

– The gain when n→ ∞ with k0 from Proposition 3.3 (loosely
dashed line) obtained from (16) (relevant for q > 13).

– The asymptotic gain when n→ ∞ and q→ ∞ (dotted line) of
Theorem 4.1.
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Figure 1: Gain when solving a system over F2.
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Figure 2: Gain when solving a system over F16.
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Figure 3: Gain when solving a system over F28 .
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Figure 4: Gain when solving a system over F216 .
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Figure 5: Gain when solving a system over F232 .
As expected, the gain becomes more accurate as q grows (Fig.

1 to 3). When n is not big enough compared to q, it becomes less
accurate (Fig. 5).

Asymptotically, the hybrid approach is then always better than
a direct solving. Eventually, when q is too big (with respect to n),
the cost of an exhaustive search, even in one single variable, will
be too expensive compared to Gröbner basis computation.
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APPENDIX

Table 2: Sample values for β0 depending on several values of α

and q with ω = 2.4. An entry is empty when there is no positive
solution (i.e. best trade-off is k = 0).

q 22 23 24 25 26 28 216

β0 (α = 1) 0.52 0.35 0.24 0.17 0.12 0.071 0.017
β0 (α = 1.1) 0.47 0.29 0.17 0.087 0.036 – –
β0 (α = 1.25) 0.40 0.19 0.052 – – – –
β0 (α = 1.5) 0.28 0.028 – – – – –
β0 (α = 1.75) 0.16 – – – – – –

β0 (α = 2) 0.042 – – – – – –
β0 (α = 3) – – – – – – –
β0 (α = 4) – – – – – – –
β0 (α = 5) – – – – – – –


