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Abstract: Real-time distributed systems may be modeled in different for-
malisms such as time Petri nets (TPN) and networks of timed automata (NTA).
This paper focuses on translating a 1-bounded TPN into an NTA and considers
an equivalence which takes the distribution of actions into account. This trans-
lation is extensible to bounded TPNs. We first use S-invariants to decompose
the net into components that give the structure of the automata, then we add
clocks to provide the timing information. Although we have to use an extended
syntax in the timed automata, this is a novel approach since the other transfor-
mations and comparisons of these models did not consider the preservation of
concurrency.
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Traduction d’un réseau de Petri temporel vers un
réseau d’automates temporisés, avec préservation
de la concurrence

Résumé : Les systémes temporisés distribués peuvent étre modélisés dans
différents formalismes comme les réseaux de Petri temporels ou les réseaux
d’automates temporisés. Cet article s’intéresse a la traduction d’un réseau
de Petri temporel 1-borné vers un réseau d’automates temporisés et consid-
ére une équivalence qui tient compte de la distribution des actions. Cette tra-
duction peut s’étendre aux réseaux de Petri temporels bornés. Nous utilisons
d’abord les S-invariants pour décomposer le réseau en composants qui donnent
directement la structure des automates, puis nous rajoutons des horloges pour
retranscrire I'information temporelle. Bien que l'utilisation d’une syntaxe éten-
due dans les automates temporisés soit nécessaire, ce travail est une approche
originale puisque les autres transformations et comparaisons de ces modéles ne
considérent pas la concurrence.

Mots-clés :  concurrence, traces temporisées, réseaux de Petri temporels,
réseaux d’automates temporisés, traduction
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1 Introduction

Techniques that aim at improving reliability and safety of automated systems
have dramatically improved during the last thirty years (synthesis,
odel-checking, test...). Studying a complex system generally requires the use
of multiple techniques and tools. Consequently the system must be translated
from one formalism to another. The difficulty is to show that the different repre-
sentations are equivalent. This work proposes a translation between two popular
formalisms that describe timed concurrent systems: 1-bounded time Petri nets
(TPN) and networks of timed automata (NTA) [3]. These formalisms have
different histories but they were both designed to model real-time, distributed
systems. Moreover they both handle urgency, which is a key feature without
which most real-time systems cannot be modeled correctly.

Because these two formalisms are used by different verification tools, trans-
formations have been proposed, and we remark the following. (i) The trans-
formations mainly rely on natural structural equivalences between the basic
elements of the formalisms. For instance, the location of an automaton corre-
sponds to a place of a Petri net, a transition of a Petri net corresponds to a
tuple of synchronized transitions of an NTA, and the timed interval associated
to a transition of a Petri net becomes a pair guard-invariant in a timed au-
tomaton. (ii) Beyond these natural equivalences, limitations for more general

RR n°® 7338
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models are not clear. Indeed, the natural transformations tend to preserve con-
currency. But when the transformations become less immediate, one uses tricks
that unfortunately destroy concurrency.

Therefore it is not surprising that the first works about formal comparisons of
the expressiveness of these models do not consider preservation of concurrency.
In [6], a structural transformation from TPN to NTA is defined. This trans-
formation builds a timed automaton per transition of the TPN and preserves
weak timed bisimilarity. In the other direction, [4] shows that there exist timed
automata that are not weakly timed bisimilar to any TPN. In [5], the authors
propose a translation from bounded timed-arc Petri nets (another variant of
Petri nets extended with time) to NTA, based on the decomposition of the net
in sequential components that communicate through handshake synchroniza-
tions (in the UPPAAL style). In 18], another timed extension of Petri nets with
intervals on arcs is considered. For a matter of compositional properties (which
is close to our problem), their Petri nets are translated to timed automata en-
riched with an ad-hoc mechanism of deadlines, which hides the communications
between components that would be necessary to implement it.

Here we focus on the preservation of concurrency. Since both TPNs and
NTA were designed to model distributed systems, we consider that not only
their sequential behavior as timed transition systems is relevant, but also their
distributed behavior. For that reason, we take into account the distribution of
actions over a set of processes, each process representing a component which
has its own alphabet of actions. When an action belongs to several processes,
it represents a synchronization, otherwise it is a local action. In the untimed
context, Mazurkiewicz traces [9] are defined using an independence relation that
arises naturally from this distribution of actions.

However, in the presence of time such relation would have less nice properties
because even actions that occur in two totally independent processes may be
ordered by their occurrence time. These orders induced by causality and by the
time stamping of events appear in [1], where timed MSCs (Message Sequence
Charts) and MSCs with timing constraints are considered and in [2| where
the authors consider distributed timed automata with independently evolving
clocks. In [15,[17], an independence relation is defined among the actions of
a timed automaton using a diamond property that takes time into account.
This relation is used to define partial order reduction techniques that avoid the
combinatorial explosion in the analysis of timed automata. Anyway the time
constraints make this independence relation very restrictive. Therefore it cannot
be seen as a general concurrency relation for timed systems.

In this article, we propose to study the distribution of actions as a first step
towards the understanding of what concurrency means in timed systems. For
this purpose, we define a notion of timed traces as a partial order representation
of executions of our models for real-time distributed systems. We will use them
as an alternative to timed words, to represent the executions of either an NTA
or a TPN where processes have been identified.

Then we propose a structural transformation from 1-bounded TPNs to NTA
which preserves the distribution of actions. That is we require that if the TPN
represents the product of several components (called processes), then each pro-
cess should have its counterpart as one timed automaton in the resulting NTA.
To this end, we first discuss how to identify processes in a TPN; then the struc-

RR n°® 7338
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ture of each process gives a natural transformation into an automaton, and we
show how to equip this automaton with timed constraints so that the resulting
NTA preserves the timed traces. We show that this transformation is possible
in general only if we allow the automata to read the states of their neighbors,
which we interpret as a dependency between the processes, that was hidden in
the TPN.

This paper is organized as follows. Section [2] presents centralized timed
systems, and Sect. [3] presents distributed timed systems and introduces timed
traces. In Sect. 4l we recall how to identify the processes in a Petri net. Lastly,
in Sect. [5 we propose a translation from a TPN to a timed bisimilar NTA with
the same distribution of actions.

2 Centralized timed systems

Timed automata are a popular formalism for modeling centralized timed sys-
tems. Their runs can be described by timed words, and their semantics can be
expressed as a timed transition system.

2.1 Basics

Definition 1 (Timed Words). A timed word w over a finite alphabet ¥ is

a finite or infinite sequence w = (ag,dp)(a1,d1)...(an,dy)... s.t. for each

i>0,a; € X, d; € Ry and d;+1 > d; (the d;’s are absolute dates). A
A timed language over X is a set of timed words over 3.

Definition 2 (Timed Transition System). A timed transition system (TTS) is
a tuple S = (Q, qo, A, —) where

e () is a set of states,

qo € @ is the initial state,

A is a finite set of actions disjoint from R,

— CQ x (AUR>g) x @ is a set of edges.

VAN

If (q,e,q') € —, we also write ¢ = ¢'.
An initial path of a TTS is a possibly infinite sequence of transitions p =
o - qh 2% g 5 ¢, 2% ..., The timed word w = (ao,do)(a1,d;)...
an,dy) ... is said to be accepted by the TTS if there exists an initial path p

such that d; = Z;ZO 7; for every 1 <i < k.

Definition 3 (Timed Bisimulation). Let S; = (Q1,¢?, A, —1) and So = (Q2, ¢,
A, =) be two TTS and =~ be a binary relation over Q1 X Q2. We write ¢ = ¢’
for (q,¢') € =. = is a timed bisimulation relation between S; and S5 if:
o ¢} ~ a3,
o if g 51 ¢} with a € AURsq and g1 = g2, then 3go 5 ¢4 such that
¢, =~ qb; conversely if ¢o o ¢4 with a € AU R>¢ and g1 =~ g2, then
3q1 %1 ¢} such that ¢} ~ gb. VAN

RR n°® 7338
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2.2 Timed automata

The set B(C) of clock constraints over the set of clocks C' is defined by the
abstract syntax g i=x <k | gAg, wherexz € C, k € Nand < € {<,<,=,>,>}.
Invariants are clock constraints of the form g =2 <k |z <k|gAg.

Definition 4 (Timed automaton [3]). A timed automaton (TA) is a tuple
A= (L,£4y,C,3, E, Inv) where

e L is a finite set of locations,

lo € L is the initial location,

C is a finite set of clocks,
e Y is a finite set of actions,

ECLxB(C)x ¥ x2%xLis aset of edges,

e Inv: L — B(C) assigns invariants to locations.

A

If (¢,g,a,m,0) € E, we also write £ 225 ¢'. For such an edge, ¢ is called the

source location, g the guard, a the action, r the set of clocks to be reset and ¢’
the target location.

Semantics We denote by (¢,v) a state of a TA, where ¢ € L is the current
location and v : C — R>g is a clock valuation that maps each clock to its
current value. The pair (¢,v) is a legal state for the timed automaton only if
the valuation v satisfies the invariant of location ¢, denoted by v |= Inv(¢). The
initial state is (€o,vo), where vy maps each clock to 0. For each set of clocks
r C C, the valuation v[r] is defined by v[r](z) = 0 if z € r and v[r](z) = v(x)
otherwise. For each d € Rxg, the valuation v + d is defined by (v + d)(x) =
v(z) + d for each = € C.

Let A = (L, 4y,C, %, E, Inv) be a TA. We define the TTS generated by .4
as T(A) = (S, s, X, —), where:

e S={{l,v) e Lx(C—Rxs)|vEInv()}
e 30 = ({o,v0),
e — €S x(2UR>g) x S is defined by

— Action step: (£,v) = (¢/,0") iff 3¢ L ¢") € E, v =g, v = v[r] and
v E Inv(l'),

— Time delay step: Vd € Rxq, (£,v) % (¢, v+d) iff Vd' € [0,d],v+d’ |=
Inv(?0).

A run of a TA A is a path in T'(A) starting in sp where continuous and
discrete transitions alternate. A timed word is accepted by A if it is accepted
by T(A).

RR n°® 7338
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b, {z}
®
>3 r=4 y=1
a c c d
{z} {y}

Figure 1: A network of timed automata.

3 Distributed timed systems

Distributed timed systems are systems with several components (or processes)
that may perform local actions or synchronize with each other. We focus on two
models for such systems: networks of timed automata and one of the variants of
Petri nets extended with time, called time Petri nets, introduced in [16]. We first
present the sequential semantics of these systems, as it is usually done. Then
we define a partial order semantics which reflects the distribution of actions, as
an alternative to timed words.

3.1 Networks of timed automata

A network of timed automata (NTA) is a parallel composition of n timed au-
tomata (A1, ..., Ay,), with A; = (L;, 9, C;, %, E;, Inv;) (see Fig. . We denote

79

by C = |, C; the set of clocks and ¥ = J; ¥; the set of action names. Clocks
and action names may be shared.

Sequential semantics The set of synchronizations Sync is defined as the set
of (e1,...,en) € (E1U{e}) x - - x (E,U{e})\ {(e,...,e)} such that the same
label a is attached to all the edges e; # e, and for all i such that e; = o, a ¢ ;.
For any s = (e1,...,en) € Sync, I, = {i € [1..n] | e; # o} denotes the indices of
the automata that are concerned by the synchronization.

We denote by (Z v) a state of an NTA, where 7€ Ly x --- x L, is the
vector of current locations and v is a clock valuation. The semantics of the
NTA (Ay,...,A,) can be described as the timed transition system (S, sg, 2, —)
such that:

o S={(6v) € (L1 x -+ x Ly) x (C = Rxg) | v |= A\, Invi(£:)},
o 5) = ([6,1}0) with Va € C,vg(z) = 0,
e — €5 X (XUR>g) xS is defined by

— Action step: (,v) % (¢, v') iff
x ds = (e1,...,e,) € Sync s.t. Vi < n,if a ¢ ¥;,¢, = ¢; and
e; = o, otherwise e; = (¢;, gi, a,7;, ;)

RR n°® 7338
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* U Nier, 90 V' = v[Uigg, 7], and o' = A Inwy (6)
— Time delay step: Vd € Rxq, (£,0) % (F,v+d) iff Vd' € [0,d],v+d’ |=
N; Inv;(¢;).

Local and extended syntaxes We call local syntar the common syntax in
which clocks are local i.e. can be read and reset by only one automaton. Thus,
invariants are of the form g :=xz <k |z <k|gAg, as defined in 2.2}

We define an extended syntax (that will be used in Sec. [5)) in which clocks
can be read by any automaton, and invariants are of the form ¢ ::= a < k|
x<k|gNhg|l|gVyg The two last constructors are not standard. In an
invariant, “¢” is true if ¢ is a current location, that is, invariants are evaluated
according to the state of the system (current locations and valuation) and not
only to the valuation. We denote by B(C, L) the set of such constraints over
the set of clocks C and the set of locations L.

Other operators that do not extend the expressiveness of g can be used, such
as the negation of a location: —f; = Ve \ (0,3 ¢, the implication: ¢ = (x
k) = -4V (x < k), and the minimum of a set of clocks: min;ecs(z;) < k
Vier(@: < k).

This extended syntax does not change the expressiveness w.r.t. the sequen-
tial semantics. But we will show in Sect. [5| that, if we consider the distributed
timed language (see subsection , the extended syntax improves the expres-
siveness of the NTA.

A

3.2 Time Petri nets

Definition 5 (Petri Net). A Petri net is a tuple (P, T, F, M) where P and T are
two disjoint sets, called set of places and set of transitions, F C (PxT)U(T x P)
is the set of arcs connecting places and transitions such that vVt € T, 3p € P s.t.
(p,t) € F, and My C P is the initial marking. A

Definition 6 (Time Petri Net [16]). A time Petri net (TPN) is a tuple (P, T, F,
0, efd, lfd) where (P,T,F, M) is a Petri net and efd : T — R and Ifd : T —
R U {0} associate an earliest firing delay efd(t) and a latest firing delay Ifd(t)
with each transition ¢. A

For x € PUT, we define the pre-set of z as *z = {y | (y,z) € F} and
the post-set of x as z* = {y | (z,y) € F'}. Given a set X C PUT, we define
*X =Upex *zand X* =,y 2°.

Sequential semantics A marking M of a TPN is a subset of P (we consider
1-bounded TPNs). A state of a TPN is given by (M, v) where M is a marking
and v : T — R> is a valuation such that each value v(t) is the elapsed time
since the last time transition ¢t was enabled. g is the initial valuation with
Vt € T,v(t) = 0. A transition ¢ is enabled in a marking M iff *t C M. For
1-bounded TPNsg, if a transition ¢ is enabled in a reachable state (M, v), then
t*N(M\*t)=0.

A transition ¢’ is newly enabled by the firing of ¢ from marking M if it is not
enabled by M\*t¢ (intermediate marking) and it is enabled by M’ = (M\*t)Ut®
(reached marking). Formally:

Tenabled(t', M, t) & (*t' C M)A (*t' € (M\*t))

RR n°® 7338
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Do P2 @\
[0, oo IE\ [0,0] [1,2]
N

[2,2]

p4O

Figure 2: A time Petri net. Places are represented by circles and transitions are
represented by boxes.

Figure 3: The semantics of the TPN of Fig. 2] as a timed automaton.

For the firing delays of a transition, we use the strong semantics: ¢ can fire
if it is enabled and v(t) > efd(¢) and has to fire before v(¢t) overtakes Ifd(t).

With these rules, we are able to define the semantics of the TPN (P, T, F, My,
,Ufd) as the TA (L, £y, C, %, E, Inv), called marking TA and introduced in [10],
such that:

o L C 27 is the set of all reachable markings,
e (/o = My is the initial marking,

e (' is a finite set of clocks s.t. each clock z; is associated to one transition
i,

RR n°® 7338
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e Y =T is the finite set of actions,

o B = {(Mgt,r,M) | M" = (M\*t) Ut*,g =z > efd(t),r = {zv |
tenabled(t', M,t)}} is the set of edges,

e Inv: L — B(C) assigns invariants to markings s.t. Inv(M) = Ne,cp (2 <
Ifd(t)).

A timed word is accepted by a TPN iff it is accepted by its marking TA. Figure[3|
shows the marking TA of the TPN presented in Fig.[2l We note that concurrency
is not explicit in this automaton, although we can observe a diamond that shows
the possible interleavings between actions a and c.

This interpretation of a TPN as a TA gives naturally its sequential semantics.

A sequential semantics is not adapted to describe distributed systems be-
cause the information about the distribution of actions is lost. We aim at
identifying processes in such systems, and defining their semantics with new
notions such as timed traces and distributed timed languages that reflect the
distribution of actions. In an NTA, it is clear that a process is an automaton
and we can also identify processes in a TPN (see Sect. .

3.3 Timed traces

Once processes have been identified, we can describe the runs of distributed
timed systems as timed traces, where each action is associated with the processes
that have performed it. Actions may be local or shared (synchronizations).

Definition 7 (Timed Trace, Distributed Timed Language). A timed trace over
the alphabet ¥, and the set of processes II = (mq,...,7m,) is a tuple W =
(E, %, A\ t, proc) where:

e [/ is a set of events,

< C (E x E) is a partial order over E,
e )\: F — Y is a labeling function,

e t: EF — R>( maps each event to a date and is such that, if e; < ez, then
t(er) < t(e2);

e proc: ¥ — 2" maps each action to a subset of II,

and such that for any i in [1..n], <, = SN (E; x E;) is a total order on E;,
where E; = {e € E | Me) € %;}, and ¥; = {0 € ¥ | m; € proc(o)} is the
alphabet of ;.

A distributed timed language is a set of timed traces. VAN

Figure [ gives a representation of a timed trace. An event e € E is denoted
by (A(e),t(e)) and events are ordered along one process from the top to the
bottom of the line, but two events on different processes may not be ordered.
For example, (a,4) and (d,1) are not ordered but (b,4)=(d,9) because (c,8)
takes them apart by transitivity.

Given an accepted timed word w = (a1,dy)...(an,dy,)... and the distri-
bution of actions proc over the automata, we can build an accepted timed
trace for an NTA' E ={ey,...,en,...}, A and t are such that, Vi, A(e;) = a;
and t(e;) = d;, and < is the transitive closure of the relation <’ define as
e; <" ej & (i < jAproc(Mej)) Nproc(A(e;)) # 0).

RR n°® 7338
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(a,4) (d,1)
(b,4)
c, 8
(d,9)

Figure 4: A timed trace representing an accepted run for the NTA of Fig.
One possible associated timed word is (d, 1)(a, 4)(b,4)(c, 8)(d,9).

4 S-subnets as processes for Petri nets

Identifying processes in a TPN is not as immediate as in an NTA. But, in
practice, when a system is modeled as a TPN, the designer knows its physi-
cal structure and builds the TPN as a composition of components that model
the subsystems. Anyway, if a TPN is given without its decomposition, these
components can be identified.

We first define S-subnets as the processes of a Petri net, and the decompo-
sition of a Petri net in S-subnets. Then we show how we can find this decom-
position. We borrow the main definitions from [8], where the authors give a
method (introduced in [11]) to decompose a live and bounded free-choice net in
such components and we adapt this method to decompose more general nets.

4.1 Decomposition in S-subnets

Since the notion of process involves only the structure and does not depend
on any time property, in this section, we consider only the structure of a Petri
net: a net is denoted by (P, T, F) where P is the set of places, T is the set of
transitions, and F' C (P x T) U (T x P) is the set of arcs.

A net (P,T,F)is an S-net it Vvt € T, |*t| = |t*| = 1.

An S-net is an automaton where locations are places and edges are transi-
tions. We want to decompose a net N in S-nets that cover the net. To do so,
we introduce the notion of S-subnet.

A net (P',T',F’) is a subnet of the net (P,T,F) if PP C P, 7" C T and
F'=Fn (P xT)u(T' xP)).

We say that the subnet (P, T, F') of N is P-closed if T' = *P’'U P'®. That
is, any transition connected to a place which is in the subnet is also in the
subnet. The subnet of N generated by a set of places P’ is the P-closed subnet
(P, T',F") of N.

Definition 8 (S-subnet). An S-subnet of a net N is a P-closed subnet N’ =
(P',T',F') of N such that N’ is an S-net. JAN

The net N = (P, T, F) is decomposable in S-subnets iff there exists a set of
S-subnets {Ny,...,N,} with N; = (P;,T;, F;), such that |J; P, = P. In this
case, the set of S-subnets is called a cover of N (and |J; T; = T because the
S-subnets are P-closed).

RR n°® 7338
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Note that the notion of S-subnet generalizes the notion of S-component pre-
sented in [8] because we do not impose that the subnet is strongly connected.

Definition 9  (Incidence matrix). Let N be the net (P,
T, F). The incidence matrix N : (P x T)) — {—1,0,1} of N is defined by
-1 if (p,t) € F and (t,p) ¢ F
N(p,t) = 1 if (p,t) ¢ F and (t,p) € F
0 otherwise
VAN
An incidence matrix is given in Table The entry N(p,t) corresponds to
the change of the marking of the place p caused by the occurrence of transition
t. Hence, if ¢ is fired from marking M, the new marking is M’ = M + t, where
t is the column vector of IN associated to ¢.

Definition 10 (S-invariant [14]). An S-invariant of a net IV is an integer-valued
solution of the equation X - N = 0. A
From the definition of incidence matrix it follows that a mapping I : P — Q
is an S-invariant iff for every transition ¢ holds »° c., I(p) = > cse I(p).
An S-invariant I of a net is called semi-positive if I > 0 and I # 0. The
support of a semi-positive S-invariant I, denoted by (I), is the set of places p
satisfying I(p) > 0. Every semi-positive S-invariant I satisfies *(I) = (I)°.

Proposition 11. A Petri net (P,T,F) is decomposable in S-subnets iff there
exists a set of S-invariants {X1,...X,} such that,

e Vic [l.n],X;: P— {0,1} (set of places), (1)
e Vic[l.n],Vt T, ;tXi(p) =1 (= %;Xi(p)), (2)
e Vp € P} X;(p) = 1 (the set covers the net). (3)

To our knowledge such proof does not exist yet.

Proof. (=) Assume P is decomposable in S-subnets, then there exists a set of
n S-subnets N; = (P;,T;, F;), with i € [1..n], such that | J, P, = P. We can
choose n mappings X; : P — {0,1} such that for each place p, X;(p) = 1 if
p € P;, and X;(p) = 0 otherwise. Since N; is an S-net, for each transition
t, |P;,N*t| = |P,Nt* = 1. Therefore, for each transition ¢, > X;(p) =1
peE®t
and Y X;(p) =1; thatis, > X;(p) = >_ Xi(p) which defines an S-invariant.
peEte pe°*t pEt®

Moreover, Vp € P,> ", X;(p) > 1 also holds because each place is in at least one
subset of places.

(«=) Assume now that there exists a set of S-invariants {X1,..., X,,} which
satisfies the three conditions of Proposition We show that the n subnets
generated by each (X;) with ¢ in [1..n], are S-subnets that cover N. We de-
note them by ZVz = (Pi,Ti,Fi), with Pi = <Xz> and Ti = .<X1> = <Xl>. By
construction, N; is a P-closed subnet of N. Moreover, since for each place p,
Xi(p) € {0,1}, p € (X;) implies that X;(p) = 1, and p ¢ (X;) implies that
Xi(p) = 0. That is, for each transition ¢, [*t N P;| = [*tN(X;)| = > Xi(p) =1

pe*t

and, in the same way, [t*NP;| = 1. Hence N, is an S-net. Lastly, the n S-subnets
cover the net because for each place p, Y. X;(p) > 1, which implies that there
exists 7 in [1..n] such that p € (X;), that is |J,(X;) = P. O
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Figure 5: A net which is decomposable in S-subnets, and its decomposition.

Note that, if N is connected, every X; is minimal (w.r.t. set inclusion).
When the net is decomposable, there exists a set {Iy,...I;} of minimal S-
invariants that covers the net and such that for each 1 < i < k, if I; is removed
from the set, then the net is no longer covered (the set is minimal). This set
gives a decomposition of the net in the S-subnets generated by the minimal
S-invariants. Note that this decomposition is not unique and that a place may
be shared by several S-subnets.

The number of tokens in an S-subnet is constant. Thus, an S-subnet initially
marked with one token represents an automaton where the active location is the
marked place. Such subnet is called a process. If the S-subnet is initially marked
with m tokens, then it corresponds to m processes with the same structure but
not necessarily starting in the same place, and these processes do not synchronize
with each others. To simplify, we only consider 1-bounded TPNs.

4.2 An example of decomposition

We want to decompose the net shown in Fig. [5| To this purpose, we determine
its S-invariants that satisfy conditions 1 and 2. If they cover the net (condition
3), then the net is decomposable.

Table 1: The incidence matrix of the net of Fig.

tl tg t3 t4 t5

D1 1 -1 0 0 O
p2|—-1 1 0 0 O

ps| 0 0 0 0 1

N= ps| O 0 -1 0 0
ps| O 0 1 0 -1

ps| O 0 0 1 -1

pr| O 0 1 -1 0

With the incidence matrix given in Table [I} we obtain the following S-
invariants: X; =[1100000], Xo=[0011011],and X3=[0011100].
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p3

P4 O
Figure 6: The processes of the TPN of Fig.

These S-invariants satisfy the three conditions of Prop. [II] they are minimal
and they form a minimal set. Therefore the net is decomposable in the three S-
subnets generated by the sets of places {p1,p2}, {3, P4, 06,7}, and {ps, ps, ps},
see Fig.

4.3 Algorithms and size of the decomposition

Some algorithms for the computation of minimal S-invariants can be found in |7]
where they are called p-semiflows.

The number of places in the decomposition is equal to ), | P;| and is at most
|P|? because a place may be shared by several components and no more than
|P| components are needed to cover the net. And the number of transitions is
>;|Ti| and is at most |T'| x |P| for the same reason. But these upper bounds
are pessimistic since generally there are fewer components and few places and
transitions are duplicated in all components.

5 Translation from time Petri net to network of
timed automata

A TPN can be translated in a TA which accepts the same timed words (see
Fig. 3). But we would like to translate it in an NTA which accepts the same
timed traces. In this section, we propose a structural translation from a TPN
to an NTA, based on the decomposition in processes.

5.1 Procedure

We first look at the untimed net to determine the processes and we check that
each subnet is initially marked with one token. We get the subnets shown in
Fig. [6] This translation involves three more steps:

1. Each subnet is translated in an automaton preserving its structure (places
become locations and transitions become edges). Each edge is labeled with
the name of the corresponding transition.

2. Time is added by providing each automaton with a clock x;. This clock is
reset on each edge. The idea is that the value of z; gives the time elapsed
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Figure 7: The resulting NTA.

in the current location. On each edge, if [a, b] is the firing interval of the
corresponding transition, we add a guard x; > a, and if the transition is

not shared, we add an invariant x; < b on the source location.

Then, we have to deal with the synchronizations (transitions with several
input places). Such transitions have to fire if they are enabled and their
latest firing delay is reached. On our example, see Fig. [7] we can stay in
7 = (01,03) as long as min(v(z1),v(z2)) < 0 (because min(v(z1),v(z2))
is the elapsed time since b was enabled and [fd(b) = 0). Thus, we add
Inv(l1,b) =403 = (1 < O0Vae <0) =LV (z; <0Vay <0) and
Inv(lz,b) = 41 = (11 < 0Vay <0) =4 V(g <0Va <0)in
the invariants of ¢; and ¢3 (actually we only need to add this “global”
invariant to the invariant of one of the source locations concerned by the
synchronization).

Formally, a TPN N = (P, T, F, My, efd, Ifd) with n processes can be trans-
lated in the NTA (.Al, N ,.An) with Vi € [ln], .Ai = (P“ E?, C, Ei, Ei, ITL’UZ')
such that:

P; (places of the i*" subnet) is the set of locations,

29 s.t. {£9} = P, N M, is the initial location,

C ={x1,...,2,} is the set of clocks,

¥; = T; (transitions of the i*" subnet) is the set of actions,

E; C (PyxB(C) x Ty x2¢ x P;) such that E; = {(p,g,t,r,p’) |pectny €
t*, g =z > efd(t),r = {x;}} is the set of edges,

Inv; : P, — B(C, P) assigns invariants to locations s.t. Vp € P;, Inv;(p) =
N Inov(t),
tep®
where Inv(t) = ( A\ p') = gllP(xk) <Ifd(t) with I, = {i € [1.n] | t € T;}
p'E*t el
the set of indices of the subnets that contain ¢.
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Here, we use the extended syntax (see subsection : automaton A; can
read the clocks of the other automata, but does not reset them and it can also
read the current location of the other automata in its invariants. Inv;(p) makes
sure that we cannot overtake the latest firing delay of an enabled transition
which is in the post-set of p.

5.2 Size of the network of timed automata

Once the decomposition is computed, we directly have the structure of the timed
automata. Thus the NTA has at most |P|? locations and |T'| x |P| edges (see
Subsection . The number of edges is exactly >, [I¢].

Then, the timing information is provided by as many clocks as processes,
that is at most |P| clocks. There is one clock comparison on each edge, because
the guards are of the form x; > Ifd(t). Moreover, each Inv(t) contains |I;| clock
comparisons (because the min ranges over |I;| clocks). Inv(t) can be attached
only to one of the input places of ¢ because a state is legal as long as the valuation
satisfies all the invariants of the current locations, thus, if ¢ is enabled and one
of its input places carries Inv(t), Ifd(t) cannot be overtaken. Therefore, if we
attach each Inv(t) to only one of the input places of ¢, we have 3, . |I¢| clock
comparisons in the invariants. To conclude, the size of the timing information
given by the clock comparisons is proportional to the number of edges.

Proposition 12. The initial 1-bounded time Petri net, N and the network of
timed automata S which results from the translation have the same distributed
timed language (are timed bisimilar with the same distributions of actions).

Proof. For any i in [1..n], we note p; = M N P; the current location of automaton
A;. We first show that,

viE \ Invip) &Vt €T st *t C M,u(t) < Ifd(t) (1)

1<i<n

Indeed, by construction, Invi(pi) = Nyep,o ((ApeerP) = g’lc_lllfl(xk) < Ifd(t)).
Thus, v = A <i<,, Invi(pi) is equivalent to V¢ € T s.t. (tNM # D) A (%t C M),
Eél]l:(l]($k)) < Ifd(t), (*t N M # () can be removed).
Moreover, by construction, for each enabled transition ¢, v(t) = I}él]l}(v(l’l)),
that is
Vest. tC M J\ gi(t) & v(t) < efd(t) (2)
i€l

where g¢;(t) is the guard associated to the edge labeled by ¢ in automaton A;.
Then we define a relation R between states of S and states of A as follows:

(M, ) R(M,v) & VteTst. *tC M) = Erenjn(v(:cl))
t
Note that R is not a bijection because the clocks of the automata do not cor-
respond to the clocks of the transitions, and a state of A" may correspond to
several states of S. We want to show that R is a timed bisimulation.
We first observe that (Mo, vo)R(Moy, ) and we show that, from any corre-
spondent states, (M, v)R(M,v), the same executions are possible.
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Delay step Assume that there exists d € R>¢ such that (M, v) 4 (M,v+4d).
Then, Vd' € [0,d),v+d = A\, <<, Invi(p;). Equation (1)) implies that v+ d’ is
an admissible valuation for marking M, and (M, v + d)R(M,v + d).

Similarly, if there exists d € R>o such that (M,v) 4 (M,v + d), then,
(M,v +d) is also an admissible state for S and (M, v + d)R(M,v + d).

Action step Assume now that there exists an action ¢ such that (M, v) 4

(M’,v"), and I is the set of indices of the processes that perform ¢. Then, there
exists e = (e1,...,e,) € (B U{o}) X --- x (E, U{e}) s.t. Vi € [1..n],
if i ¢ I, then e; =  and p; = p}
pi € *tAp; €,
otherwise, e; = (p;, 9i, t, 74, p}) s.t. gi = x; > efd(t),
r; = {xz}
and v = N\;cp, gis V' = v[Ueq, il and v = A, Inv (py).

(M,v)R(M,v) implies that transition ¢ is firable from (M, v), because it is
enabled (*t = {p; | ¢« € I;}) and its firing delays are respected (because of
and (2)). This transition leads to state (M",v') s.t. M” = (M\*t) Ut® = M’,

, i 0 if tenabled(t', M, t),
and V' € T, v/ (t') = v(t') otherwise. ( :

By construction, Vi € [1..n],v'(z;) = 0if i € I}, and v'(z;) = v(x;) otherwise.
That is, for each transition ¢/, lrn}n (v/(x;)) = 01if Iy NI, # 0 and lng}n (v (7)) =

t

i i herwise.
min (v(z;)) otherwise

Then, for each enabled transition t', we distinguish two cases:

1. ¢’ is newly enabled by the firing of ¢ from marking M (Tenabled(t’', M,t)
holds). That means that the last token to enable ¢’ has been created by
t, that is, Iy N I # 0. Therefore, v'(t') =0 = m}n (V' (7).
[ASY

2. t' was enabled before the firing of ¢. That implies I N I; # (0 (because
there is one token by process and the tokens in *# have not been moved
by t). Therefore, v'(t') = v(t') = miln(v(xi)) = m}n (v (25))-

iel] i€l

Therefore, v/ is an admissible valuation for M’ and (M',v")R(M',v").
Similarly, if there exists ¢ € T such that (M, v) -5 (M’, 1) then, we can take

synchronization ¢: (M, v) 4 (M’,v"), such that this synchronization is shared

by the automata whose indices are in I; and, for any ¢, v'(x;) = 0if i € I

and v'(z;) = v(x;) otherwise. That is, for any transition ¢/, m}n (v'(x;)) =0 if
velyr

I,nIy # 0, and m}n (V' () = m'}n (v(z;)) otherwise. Therefore, if ¢’ is enabled,
1€y 1€ty

m}n(v’(xi)) =V (t'), and (M',v")R(M',V").

vely

We have shown that R is a timed bisimulation between the TTS of N and
S. Moreover, there is a bijection between the processes of N” and those of S
and we have the same distribution of actions between the processes. Therefore,
N and S accept the same distributed timed language. O

RR n°® 7338



Concurrency-Preserving Translation from TPN to NTA 18

T T2 1 2
a,0
(a,0) 1)
(d,2) (c,2)
w w'
S T2
(a,0
(¢, 1)
(d,2)
W\ﬂd HW/|7T2

Figure 8: Two accepted timed traces and one non accepted timed trace for the
TPN of Fig.

5.3 Know thy neighbor!

Our translation produces a network of timed automata which accepts the same
distributed timed language (and which is timed bisimilar). But we use an ex-
tended syntax (see subsection in which each automaton can read the state
(location and clock) of the other automata. We show that the use of this ex-
tended syntax is necessary.

Proposition 13. Given a TPN N with its processes, in general, there does
not exist any NTA S using the local syntax such that N and S have the same
distributed timed language.

For example, Fig. |8 shows two timed traces W and W’ representing the
beginning of two possible runs, without synchronization, for the TPN N of
Fig.[2l Any NTA S using the local syntax and accepting W and W’ would also
accept the timed trace built by composing the projection of W onto m; and the
projection of W' onto m (see Fig. [8). But this timed trace is not accepted by
N.

To prove Prop. we first give some definitions about timed traces, and a
lemma that will be used in the proof.

Timed linearization and projection A timed linearization of a timed trace
is a possible execution expressed as a timed word which respects both the causal
order and the order imposed by the time stamping.

A timed trace W can be defined as a couple (w, proc) where w is a timed
linearization of W, see Fig.

The projection of a timed trace VW onto process m;, denoted by W), is defined
as the projection of a linearization of W, w, onto ¥;, denoted by wyx,:

o if w=c¢, then wy, =¢
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o if w=(a,0) w,
,0) - ! if a € 3;
then wyy, = (a/ ) Y T .
: wyy, otherwise

Juxtaposition of timed words The juztaposition of n timed words, w; ||
way || -+ || wy is the timed trace over n processes, W such that for each i in
[1..n], if 3; denotes the set of actions that appear in w;, then W5, = w;.

We denote by S a network of n timed automata (A1, ...,.4,), and by Ry(S)
the set of all timed traces representing admissible runs of S, without synchro-
nization, and stopping at date 6.

Lemma 14. Let S be a network of n timed automata that do not read the state
of the other automata, then, for any timed traces Wi, ..., W,, € Ry(S) (not
necessarily different), Wiz, || - || Whajr, € Ro(S)-

Proof of Lemma[I]]. In 6, the automata have not yet synchronized, that is their
runs stopping at date 6 are independent, and they could have performed any
other admissible sequence of actions, stopping at date 6, without synchroniza-
tion. O

Proof of Prop. [I3 Assume that the two automata corresponding to the two
processes of the TPN A of Fig. [2are not able to read the current location and
the clock of the other automaton. Then, for any two timed traces W and W',
representing two admissible runs without synchronization, stopping at date 6,
the timed trace Wi, || W[, represents also an admissible run.

If we choose, as in Fig. W = (w, proc) and W' = (w', proc), with w =
(a,0)(d,2)(c,2), w' = (¢,1) and proc = {(a,ﬂ'l),(b, {m1,m2}), (¢, m2), (d, 71'1)}
(with 0 = 2), then Wi, || W/, = ((a,0)(c, 1)(d, 2), proc) (see Fig. [§) should
represent an admissible run for S and . Which is false because as soon as
¢ has been performed, b must be performed immediately. Therefore, the local
syntax must be extended. O

6 Loose ends and future works

6.1 TPNs with good decompositional properties

There are some simple cases when it is possible to translate a TPN in an NTA
which uses the local syntax. For example, assume that for any transition ¢,
there exists a place p in *¢ which is always the last place to be marked among
*t. Then, we chose to add Inv(t) only in Inv;(p) (this can be done, as explained
in the third step of the translation). By construction, Inv(t) = ((/\p,e.tp') =

Eéi}}(xk) < Ifd(t)). In this case, (Apce; P') is always true in Inv;(p) — because if

p is marked, then all places in *¢ are marked — and }{mln(v(xk)) =v(x;) = v(t).
€l

Therefore, for any ¢ in [1..n] and for any place p in P;, Inv;(p) can be expressed

with the local syntax.

But these cases are restrictive, and it would be interesting to give a general
characterization of these nets.
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Figure 9: A TA that cannot be translated in a time S-net with one token.

6.2 Reverse translation

We can consider a reverse translation, from an NTA to a TPN. There exist
translations, for example in [4] from a TA into a weak timed bisimilar TPN, but
we want to preserve the distributed timed language, that is, when we translate
an NTA into a TPN, we want to preserve the processes. This implies that we
should be able to translate each automaton in a TPN which is an S-net with
one token and then compose the obtained nets.

A time S-net with one token is less expressive than a TA with one clock
because it can be translated in a TA with one clock which accepts the same timed
language. Thus, it is less expressive than a TA with two clocks, according to [12].
We can even strengthen this by proving that some TA with one clock cannot be
translated in finite time S-net with one token (see Prop. . Therefore, only a
very small class of TA can be translated.

Proposition 15. Time S-nets with one token are strictly less expressive than
TA with one clock.

Proof. Assume that the TA A of Fig. [0] can be translated in a finite time S-net
with one token which accepts the same timed language, called N. Then, in N,
finitely many states can be reached after having fired an a. We denote these
states by s; = ({p:},0) with ¢ € [1..n]. The clocks of the enabled transitions
have been reset.

Now, assume that we can reach s; by firing a at some date ¢;. Then, the
only possible continuation from s; is to delay during §; = 4—6; and fire b. That
is, (a, 61) is the only possible way to reach s; (otherwise, we would have another
possible continuation from s;).

Therefore, each state s; can only be reached by executing a at one date 6;,
and from each s; only one continuation is possible. This implies that N has a
finite number of admissible runs whereas A has infinitely many. Thus, A cannot
be translated in a time S-net with one token. O

6.3 Usability in practice

We have translated some example time Petri nets with the translation proposed
in [6] and with our translation, and we have used UPPAAL (see [13]) to check a
reachability property on the resulting networks of timed automata.

Although our translation only works for bounded TPNs and does not always
give a model in the UPPAAL style (with handshake synchronizations), it gener-
ally produces networks with fewer automata, because their translation produces
n + 1 automata for an initial net with n transitions. And we think that our
translation gives an NTA which is more readable.
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Regarding the number of clocks, we also generally have fewer clocks because
we have one clock by process instead of one clock by transition. But as men-
tioned in [6], UPPAAL only considers the active clocks during the verification.
In our case, in a given state, all clocks are active and with the translation of [6],
the number of active clocks is equal to the number of enabled transitions in the
corresponding marking (Theorem 3 in [6]). Therefore, we can have fewer active
clocks if there are some conflicts.

6.4 Towards identification of concurrency in timed sys-
tems

This work is a starting point for a more advanced study of concurrency in timed
systems. Indeed, concurrency in timed systems involves both causality and the
time stamping of events. Transitions that appear as concurrent in an untimed
model may not remain independent when time constraints are added. First,
time constraints may easily force a temporal ordering between them. But, even
worse, the occurrence of a transition may have consequences on apparently
concurrent transitions due to time constraints: this is what happens in our
TPN of Fig. [2] where firing ¢ after delay 1 from marking {pi1,p2} prevents d
from firing (because it forces b to fire earlier). In our translation, the necessity
to allow the automata to read the states of their neighbors highlights these
complex dependences between different processes.
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