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Abstract—We discuss three complementary approaches that
can provide both portability and an increased level of abstrac-
tion for the programming of heterogeneous multicore systems.
Together, these approaches also support performance portability,
as currently investigated in the EU FP7 project PEPPHER.
In particular, we consider (1) a library-based approach, here
represented by the integration of the SkePU C++ skeleton pro-
gramming library with the StarPU runtime system for dynamic
scheduling and dynamic selection of suitable execution units for
parallel tasks; (2) a language-based approach, here represented
by the Offload-C++ high-level language extensions and Offload
compiler to generate platform-specific code; and (3) a component-
based approach, specifically the PEPPHER component system
for annotating user-level application components with perfor-
mance metadata, thereby preparing them for performance-aware
composition. We discuss the strengths and weaknesses of these
approaches and show how they could complement each other
in an integrational programming framework for heterogeneous
multicore systems.

I. INTRODUCTION
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The need to improve the performance/energy ratio has

caused a general trend towards increased heterogeneity in

multi- and manycore systems, where general-purpose com-

puting cores are complemented with energy-efficient special-

purpose accelerators located either on or off-chip, as in,

e.g., GPU-supported systems. However, this trend has also

brought new, fundamental problems for the design, optimiza-

tion and maintenance of software for such systems. Current

programming approaches are either platform-specific, such

as CUDA for Nvidia GPUs, or are portable but at a low

level of abstraction, as with, e.g., OpenCL [11]. OpenCL

requires explicit coding of data transfer, memory management,

kernel launch etc., and re-optimization and adaptation to

obtain decent performance when migrating to a new device

configuration. We see a main challenge in how to combine

two seemingly conflicting goals, namely (1) programmability

of heterogeneous multi-/manycore systems, i.e., guaranteeing

portability while raising the level of abstraction and leveraging

modern software engineering technology, and (2) performance

portability, i.e., supporting a best-effort automated adaptation

of code to effectively utilize the underlying architecture.

This paper elaborates on this challenge and summarizes our

ideas and contributions towards a solution, as presented in

a hot-topic special session at DATE-2012. In particular, we

present several key approaches and tools:

• the StarPU runtime system, based on performance-aware

dynamic scheduling and selection of task variants to auto-

matically run on the most suitable type of execution unit

in the context of heterogeneous systems, combined with

the SkePU skeleton programming library as front-end to

provide abstraction and more parallelism (Section II);

• the Offload-C++ language, an extension of C++ for high-

level portable programming of accelerator-based systems,

and its compiler to OpenCL (Section III);

• the PEPPHER component model and methodology to

achieve performance portability for applications based

on annotated software components that expose their im-

plementation variants, performance-relevant metadata and

tunable parameters in an extended composition interface

(Section IV).

We conclude in Section V by comparing these approaches

to each other and describing how their strenghts could be

combined in an integrated programming framework for het-

erogeneous multi-/many-core systems.

II. SKELETON PROGRAMMING WITH HETEROGENEOUS

RUN-TIME SYSTEM

A. The StarPU runtime system

StarPU [1] is a C-based runtime system capable of schedul-

ing graphs of tasks onto heterogeneous multicore platforms. It

uses the concept of codelet, a C structure containing different

implementations of the same functionality for different com-

putation units (e.g., CPU and GPU). A StarPU task is then an

instance of a codelet applied to some data. The programmer

has to explicitly submit all tasks and register all the input

and output data for all tasks. Thanks to a dynamic database

of autotuned per-task performance models, the runtime system

can perform intelligent task scheduling on variety of platforms

without requiring any manual modifications in the program.

StarPU provides a software virtual shared memory abstraction



by keeping track of data copies in accelerator-embedded

memory and features a data-prefetching engine.

B. The SkePU skeleton programming library

Skeletons are generic components derived from higher-

order functions that describe common computation structures

that could be mapped to parallel or platform-specific imple-

mentations. Skeletons are instantiated with problem-specific

sequential user code.

SkePU [7] is a generic, tunable skeleton programming

framework developed in C++ for single- and multi-GPU

systems. It currently implements several data-parallel skeletons

including map, reduce, mapreduce, map-with-overlap, map-

array, and scan, providing multiple implementations for each

skeleton type (CUDA, OpenCL, OpenMP and sequential C).

The SkePU skeletons accept SkePU generic containers (Vec-

tor, Matrix) as arguments, which implicitly manage the data

transfers between host and GPU memory and keep track of

multiple copies of the data residing on different memory units.

As shown in the earlier work [5], SkePU provides higher

programming abstraction while retaining performance close

to hand-written code for real-world applications.

C. SkePU-StarPU integration

To support performance portability as offered by the StarPU

runtime system at a higher programming abstraction, we have

integrated the SkePU library with StarPU. Behind the generic

SkePU interface, the SkePU skeleton calls are mapped to

one or more StarPU tasks, generating task-parallelism for the

runtime system. Several programming techniques (e.g., usage

of static member functions etc.) are employed to integrate

SkePU written in C++ with the pure C-based StarPU system.

Furthermore, support for different StarPU features, such as

data partitioning and different scheduling policies (e.g., his-

tory based performance models) is implemented to exploit

performance gains for a variety of situations. Experiments on

several real-world applications have shown the usefulness of

this integration, in terms of programmability and performance

portability.

Figure 1 shows the performance of executing a Coulombic

potential application written using SkePU skeletons on a

hybrid system containing one GPU and multi-core CPUs.

Thanks to the integration with the runtime system, we are

able to seamlessly use both CPU and GPU devices present in

the system in parallel for the computation work. As shown

in Figure 2, the same application when ported to a system

containing two high-end and one low-end GPU is able to use

all devices in the system and scales well over the GPU devices

present in the system. During this porting process, no changes

in the application code are required as the runtime system is

managing the selection and scheduling decisions. Figure 2 also

shows the overhead of the SkePU-StarPU integrated approach

by comparing it to a hand-written CUDA code.
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Fig. 1: Coulombic potential grid execution on a heterogeneous

platform (CPUs and GPU) for different matrix sizes. The base-

line is SkePU-generated StarPU code using CUDA.
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Fig. 2: Coulombic potential grid execution on a heterogeneous

platform containing three NVIDIA (2 C2050 and 1 C1060)

GPUs; the base-line is hand-written CUDA code.

III. HIGH-LEVEL PROGRAMMING AND COMPILING FOR

HETEROGENEOUS SYSTEMS

Using Offload [4] Codeplay has developed flexible tech-

niques for using C++ to achieve performance portability, and

ease of programming across a range of different accelerator

devices, including Cell BE, GPUs and FPGAs. These tech-

niques are already used by game developers and are becoming

available for use by wider range of software developers. In

this section we describe the key features of Offload and how

different requirements of different hardware are addressed.

A. Fundamentals of Offload C++

The key language feature of Offload C++ are __offload

blocks which are sections of code that run on accelerator

processors. Without significant code changes this enables

complex C++ accelerator code to be embedded inside host

code and interact with data and code on the host. This

interaction is usually transparent to the programmer as the



Offload C++ compiler transforms any data accesses to host

data into calls into the Offload runtime (software cache or

DMA), whereas called functions are transparently cloned for

the accelerator processor employing a process named call-

graph duplication [4]. These transparent mechanisms not only

enable the development of portable software across different

heterogeneous devices as Offload extensions can be buried

inside libraries with standard C++ interfaces. This automated

offloading process also enables the programmer to focus

more on performance tuning for example by placing different

types of offload blocks (synchronous or asynchronous) in

different parts of the code and by using local data caching

techniques [3].

Codeplay’s Offload technology was originally developed for

PlayStation c©3 developers. The intention was to offload single

threads from the main CPU core onto the accelerator cores of

the PlayStation c©3 (the cores called SPUs). In this use-case

no parallelization was necessary, as the task-parallelism used

in games engines just requires individual tasks to be moved

onto SPUs to gain maximum performance.

B. Offload C++ for OpenCL Devices

As part of the PEPPHER project Codeplay has adapted its

Offload technology to work with OpenCL-based GPUs. The

main features added to Offload compiler and runtime were

support for data-parallelism, OpenCL- specific memory spaces

and OpenCL buffers. Essentially offload blocks are compiled

by the OffloadCL compiler into OpenCL kernels1. The Offload

runtime has been adapted to work on top of the OpenCL

runtime (indirectly through the PEPPHER runtime system, i.e.,

StarPU) as OpenCL performs runtime compilation of kernels.

void offloadCLExample ( int width, int height,

float *myFloatArray )

{ GpuBuffer<float, 2> myGpuBuff

(width, height, myFloatArray);

myGpuBuff.unmap(); //move data onto device

parallel_for( width, height,//process buff

processBuffer (myGpuBuff) //in parallel

);

myGpuBuff.map(); // map result to host

}

In the above example, we process an array of data (this is

the data parallelism of GPUs). The array has a width, a height,

and we get a pointer to the data, myFloatArray. We need to

un-map the array from host (CPU) onto the device (GPU),

then process it in parallel on the device, then map it back to

host. What we have done here is hide most of the complexity

of an OpenCL buffer object inside a C++ class.

This enables developers to put any array they want to pro-

cess on GPU inside such a class, and most of the complexity of

mapping to from GPU can be handled. We could use a RAII2

class that automatically handles map and unmap, but for best

performance optimization, we sometimes need to leave it to

1Restrictions imposed by the current OpenCL specification limit the set of
compilable C++ features inside an offload block

2Resource Acquisition Is Initialization

Fig. 3: Mapping data between host and GPU memory

the programmer. Figure 3 shows the data mapping between

host and device memory.

To handle the data parallelism we use the parallel_for

function. This is a standard C++ way of handling parallelism.

In C++11, we can use a lambda-function, which makes pro-

gramming easier. Here, we have used a C++ functor, which

is an object that can be used like a function. In OpenCL, a

buffer is a way of handling the fact that data shared between

host and device might be in a different memory chip, at a

different address, copied or shared, or use different pointer

sizes (32-bit vs 64-bit, etc.). This requires that on the device

side we need a different data-type for the buffer. We therefore

provide a translation system where any GpuBuffer parameter

is translated to a GpuKernelBuffer value on the device.

Fig. 4: Data elements on CPU and GPU

On the host side, a buffer has a cl_mem object, has

a pointer to the host data, has a size, has some state

(mapped/unmapped/in-use/in-transit etc). On the kernel side, a

buffer is a pointer to global or constant memory, and has a size.

In OpenCL, the transition from buffer to global or constant

pointer is only handled by clSetKernelArg. The transition

cannot be done anywhere else. It cannot be called in a kernel,

and cannot be called beforehand. So, we need to create a

parallel function call that passes in some buffers, but the



function receives global and local pointers. Any data accessed

by a kernel must go through this process.

C++ lets us write a lot of complex forms of parallelism

in a way that is portable between different compilers, by

hiding implementation details in generic classes. For example,

we have been able to compile example programs produced

for Microsoft’s C++AMP3 GPU compiler by implementing

compatible version of the C++AMP classes. The critical issue

is the translation of types between CPU and GPU, which we

implement by defining special linked classes with a CPU and

GPU implementation.

IV. THE PEPPHER COMPONENT FRAMEWORK

PEPPHER targets programmability and performance porta-

bility for single-node heterogeneous manycore architectures by

means of a component-based approach to parallel program de-

velopment in combination with advanced compilation and run-

time technology. In the following we overview the PEPPHER

component model, and describe high-level language features

for constructing applications using components together with

the associated transformation framework.

A. The PEPPHER Component Model

A basic premise underlying PEPPHER is that for the

efficient utilization of heterogeneous parallel architectures, dif-

ferent programming models and APIs, tailored and optimized

for the different types of architectural components, have to be

combined within an application. In PEPPHER performance-

critical parts of a C/C++ application (typically functions) are

realized by means of multi-architectural components that en-

capsulate behind an interface different implementation variants

of a function tailored to different architectural components

(e.g., CPU and GPU) of a heterogeneous manycore system.

Component interfaces and implementation variants are ac-

companied with rich meta-data, kept in external XML de-

scriptors, describing the parameter intent (in, out, inout) and

non-functional properties of implementation variants, includ-

ing information about resource requirements, possible target

platforms, and performance relevant parameters [13].

PEPPHER components have been designed to support

the prediction of performance aspects (e.g., execution time)

by associating corresponding performance prediction models

with implementation variants. Based on these models, the

PEPPHER framework attempts to optimize performance by

selecting (at runtime) best suited component variants and target

execution units based on performance predictions.

Figure 5 depicts our performance modeling approach in the

context of PEPPHER. The performance model for a PEPPHER

component is built by an expert programmer (that is the

component developer) or is generated automatically by the

PEPPHER framework using historical performance data. The

performance data needed to build the model is provided by

the PEPPHER simulator or by measurements of component

execution on a specific platform.

3Accelerated Massive Parallelism; specification for heterogeneous comput-
ing by Microsoft

Fig. 5: Overview of performance modeling in PEPPHER.

Performance models are provided by the component developer

or automatically generated by the run-time system.

Beside analytical performance modeling techniques, in PEP-

PHER we use an instruction level simulator (PeppherSim) for

performance evaluation. An interesting feature of PeppherSim

is estimation of energy consumption in addition to the execu-

tion time of a program. PEPPHER run-time system uses the

output of PeppherSim to generate analytical models of energy

consumption based on linear or quadratic regression.

Component implementation variants are usually written by

expert programmers using different programming APIs (e.g.,

CUDA, OpenCL) or are taken from optimized vendor-supplied

libraries. Non-expert programmers (e.g., domain scientists)

construct applications at a higher level of abstraction by in-

voking component functionality using conventional interfaces

and simple source code annotations to delineate asynchronous

(or synchronous) component calls.

B. The PEPPHER Composition Tool

The PEPPHER composition tool [6] performs basic com-

position, i.e., call-to-callee binding with optional static pre-

selection of execution unit and implementation variant) of

PEPPHER components. It parses the XML-based metadata

specifications of components and their implementation variants

and generates stubs (glue code) that intercept calls and prepare

for selection and execution on the appropriate target platform,

by default by creating a task for the (StarPU) runtime system.

C. The PEPPHER Coordination Language

The PEPPHER coordination language aims to enable in-

cremental transformation of existing (sequential) C/C++ ap-

plications for efficient execution on heterogeneous manycore

architectures by offering a set of annotations (pragmas) for

coordinating invocations of PEPPHER components. The ba-

sic coordination abstractions enable synchronous (blocking)

and asynchronous (non-blocking) invocation of component-

provided functionality in PEPPHER applications and com-

ponents. This allows to express inter-component parallelism

while delegating to the runtime the actual exploitation of

parallelism through dynamic task scheduling.

The following code snippet shows two annotated call sites,

each of which are realized by means of multi-architectural



components. Selection of the best implementation variant is

delegated to the runtime system.

#pragma pph call

cf1(A, N); // non-blocking component call

...

#pragma pph call

cf2(B, M);

Here, the call annotation indicates a non-blocking call.

Since no data dependencies exist between the two calls, both

components may be scheduled for parallel execution, provided

enough execution resources are available at runtime. Further,

optional features are provided to support the specification of

performance requirements and constraints, data partitioning in-

formation and access patterns, and preferred execution targets

for components.

A number of higher-level coordination primitives are pro-

vided for supporting parallel patterns, e.g., pipelining [10]. The

pipeline construct indicates that the subsequent while

loop is a pipeline. Within the loop body, each stage of

the pipeline corresponds to a call to a multi-architectural

component with different implementation variants. By means

of the buffer clause the order strategy (priority, random, and

fifo) and size of buffers may be specified. The required data

structures to implement buffers between pipeline stages are

generated automatically by the transformation system based

on an analysis of the data packets passed between pipeline

stages. The stage construct may be used to merge several

component calls into a single stage. The replicate clause

is provided to control stage replication, by automatically

generating multiple instances of a stage, which may operate

in parallel on different data packets. Stage replication aims

at increasing pipeline throughput by replicating stages with

(relatively) high execution times. — The following code

excerpt shows an example of a face detection pipeline which

has been implemented within the PEPPHER framework using

the OpenCV image processing library [8].

unsigned int N = get_max_execution_units();

#pragma pipeline with buffer(PRIORITY,N*2)

while(image.number < 32) {

readImage(file,image);

#pragma stage replicate(N) {

resizeAndColorConvert(image);

detectFace(image,outImage);

}

writeFaceDetectedImage(file,outImage);

}

D. The PEPPHER Transformation System

We have developed a prototype source-to-source compiler

that transforms C/C++ applications with the described anno-

tations into C++ with calls to a runtime coordination layer

that utilizes the StarPU heterogeneous runtime system [1].

The runtime system schedules stages for parallel execution

onto the execution units of each heterogeneous manycore

system. The source-to-source compiler has been implemented

using the ROSE compiler framework [12]. An overview of the

framework is shown in Figure 6.

Hybrid Hardware

GPU GPU

PEPPHER Component Framework

Task-based Heterogeneous 

Runtime System

Application  with  Components,

Metadata and Code Annotations

Composition Tool and Transformation Tool

Coordination Layer

SMP

PEPPHER

Component

Repository

ContainersStubs

Fig. 6: Overview of the PEPPHER Composition and Trans-

formation System

Below we show initial performance results for the face

detection pipeline shown above on a CPU/GPU architecture

and compare it to an implementation using Intel Threading

Building Blocks (TBB). With our framework, for the detection

stage two different implementation variants for CPUs and

GPUs, are provided, while Intel TBB cannot take advantage of

GPUs. Performance evaluation was performed for different im-

age resolutions including VGA(640x480), SVGA(800x600),

XGA(1024x768), and QXGA(2048x1536) on a a heteroge-

neous system consisting of two Intel Xeon X5550 (4 cores,

2.67 GHz), one Nvidia GeForce GTX 480 (480 Cores, 1.5GB,

1.40GHz), and one Nvidia GeForce GTX 285 (240 Cores,

1GB, 1.48GHz). The system uses the latest CUDA 4.0, and

runs Red Hat Enterprise Linux 5.6.

VGA SVGA XGA QXGA

Intel TBB (1 Core) 12.75 20.07 35.15 145.68
PEPPHER (1 Core) 9.62 14.33 24.94 111.45
PEPPHER (1 Core + 1 GPU) 3.94 5.91 10.35 46.30
PEPPHER (1 Core + 2 GPUs) 2.95 2.72 6.53 30.81

Intel TBB (8 Cores) 1.47 2.29 4.13 17.40
PEPPHER (8 Cores) 1.18 1.78 3.58 13.69
PEPPHER (7 Cores + 1 GPU) 1.13 1.63 2.91 11.89
PEPPHER (6 Cores + 2 GPUs) 0.94 1.40 2.44 10.71

TABLE I: OpenCV execution times (seconds)

Table I shows performance results for the two different

OpenCV image processing code versions. Using only the CPU

cores, we get slightly better results than with TBB. As op-

posed to TBB, however, our approach can automatically take

advantage of the GPUs by utilizing the GPU implementation

variant for the (merged) middle pipeline stage. Since for each

GPU an additional CPU core is required, the number of usable

general purpose cores is reduced accordingly. With one CPU

core and one GPU (GTX 460) the execution time is reduced

by a factor of up to 3.14 compared to the TBB version using

one CPU core. Using now a second GPU results, however, in



Approach Code Flexi- Progr. Abstrac- Perform.
Portab. bility Effort tion Portability

Platform-specific e.g. CUDA No High Medium Low No

OpenCL Yes High High Low No

StarPU Yes Medium Medium Medium Yes
SkePU Yes Low Low High Yes
SkePU+StarPU Yes Medium Low High Yes

Offload-C++ Yes Medium Low High No

PEPPHER components Yes High Medium High Yes
PEPPHER coordination Yes High Low High Yes

TABLE II: Summary of the programming systems mentioned

only modest further performance improvements. These initial

results indicate that our high-level approach to pipelining has

the potential to outperform TBB, while significantly improving

programmability. Based on our concept of multi-architectural

components together with a versatile heterogeneous runtime

system, we can take advantage of a heterogeneous CPU/GPU-

based architecture without modifying the high-level applica-

tion code.

V. CONCLUSION

We have considered three different and complementary ap-

proaches to high-level portable programming of heterogeneous

multicore systems (see also Table II):

• The library approach (here, SkePU skeleton programming

library and StarPU run-time system),

• The language approach (here, Codeplay’s Offload-C++

language and compiler), and

• The component approach (here, the PEPPHER compo-

nent model and transformation system).

Each of these approaches can be used stand-alone and

provides portability, compared to OpenCL with better pro-

grammability thanks to a higher level of abstraction. When

starting from a (well-written) sequential legacy (C/C++) code,

each of these approaches allows for an incremental paral-

lelization process and requires only moderate restructuring

of the code. While Offload requires, in principle, adding

a few additional keywords only, the other two approaches

are designed to additionally support performance portability.

SkePU skeletons are ready-to-use generic components for most

common data- and task parallel computation patterns, while

PEPPHER components can encapsulate user-provided code of

arbitrary complexity but require comprehensive metadata to

support optimized composition [9].

We are therefore working towards an integration of these ap-

proaches in the PEPPHER framework. For instance, Offload-

C++ can be used to code certain accelerator-based imple-

mentation variants of a PEPPHER component at high level

and compile it to OpenCL or platform-specific target code,

while either leaving selection and scheduling to the underlying

(StarPU) runtime system or being wrapped as PEPPHER

components with additional metadata for static composition.

As long as Offload-C++ code and coordination-annotated code

are kept in separate source files and compiled separately, with

the Offload compiler and the transformation tool respectively,

these can be combined in the same application.

Where they fit the structure of the computation, SkePU

skeleton calls can be used in the same way as PEPPHER

components but are more light-weight and do not require

user-supplied XML descriptors for their metadata specifica-

tion. Both SkePU, the PEPPHER composition tool and the

PEPPHER transformation framework target (also) StarPU as

runtime system, and hence tasks coded with these different

frameworks can be mixed at runtime. Finally, the transforma-

tion framework for annotations of SkePU or component calls

can provide complex coordination patterns at a high level of

abstraction while still allowing for optimized configuration,

selection and scheduling of variants, thereby also achieving

performance portability.
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