
HAL Id: hal-00768685
https://hal.inria.fr/hal-00768685v3

Submitted on 16 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

RIOT: One OS to Rule Them All in the IoT
Emmanuel Baccelli, Oliver Hahm, Matthias Wählisch, Mesut Günes, Thomas

Schmidt

To cite this version:
Emmanuel Baccelli, Oliver Hahm, Matthias Wählisch, Mesut Günes, Thomas Schmidt. RIOT: One
OS to Rule Them All in the IoT. [Research Report] RR-8176, INRIA. 2012. �hal-00768685v3�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49828277?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00768685v3
https://hal.archives-ouvertes.fr


IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
81

76
--

FR
+E

N
G

RESEARCH
REPORT
N° 8176
December 2012

Project-Team HiPERCOM

RIOT: One OS to Rule
Them All in the IoT
E. Baccelli, O. Hahm, M. Wählisch, M. Günes, T. C. Schmidt





RESEARCH CENTRE
SACLAY – ÎLE-DE-FRANCE

Parc Orsay Université
4 rue Jacques Monod
91893 Orsay Cedex

RIOT: One OS to Rule Them All in the IoT

E. Baccelli, O. Hahm, M. Wählisch, M. Günes, T. C. Schmidt

Project-Team HiPERCOM

Research Report n° 8176 — December 2012 — 13 pages

Abstract: The Internet of Things (IoT) embodies a wide spectrum of machines ranging from
sensors powered by 8-bits microcontrollers, to devices powered by processors roughly equivalent
to those found in entry-level smartphones. Neither traditional operating systems (OS) currently
running on internet hosts, nor typical OS for sensor networks are capable to fulfill all at once
the diverse requirements of such a wide range of devices. Hence, in order to avoid redundant
developments and maintenance costs of IoT products, a novel, unifying type of OS is needed.
The following analyzes requirements such an OS should fulfill, and introduces RIOT, a new OS
satisfying these demands.

Key-words: Network, internet, things, objects, IoT, routing, OS, energy, efficient, operating
system, protocol, IPv6, wireless, radio, constrained, embedded



RIOT: un système d’exploitation pour les gouverner tous
dans l’Internet des Objets

Résumé : Ce document analyse les propriétés qu’un système d’exploitation doit avoir pour être
approprié pour l’Internet des Objets dans son ensemble, rassemblant des appareils communicants
de capacités très diverses. Un nouveau système d’exploitation, RIOT, rassemblant ces propriétés,
est ensuite introduit.

Mots-clés : réseaux, internet, objets, routage, radio, sans-fil, capteurs, IPv6, système d’exploitation,
protocole, OS, efficace, énergie, contraint, embarqué



RIOT: One OS to Rule Them All in the IoT 3

1 Introduction

Wireless networks of microelectromechanical systems have been envisioned since the 1990s, when
early concepts such as Smart Dust introduced the idea of computers equipped with sensors and
simple radio transceivers [1]. These computers are so cheap and tiny that massive use is possible.
To accomplish the purpose of the various application scenarios, nodes must be cheap, have a very
small form factor coupled with the ability to function long enough (typically months or years)
on battery supply. These requirements lead to the development of very constrained nodes in
terms of computing power and available memory. Furthermore, nodes are also very constrained
in the way they communicate: they resort to radio transmissions as seldom as possible to save
energy, and otherwise use energy efficient wireless communication technologies, which typically
offer little bandwidth and very small payload per packet.

To match such constraints, specialized proprietary protocols have been designed and used
so far. Standard Internet protocols, such as TCP and IP, were at first deemed inappropriate
in this context [2]. However, as various distributed embedded systems have emerged recently
(home automation, building automation, healthcare automation, and intelligent transport sys-
tems) power-line communications and spontaneous wireless networks are now expected to in-
terconnect heterogeneous devices including sensors, home appliances, handhelds, vehicles, thus
giving birth to the Internet of Things (IoT) [3].

Over the last decade the IoT has thus come to embody the low-end of computers on the
current and future Internet: a wide spectrum of billions of devices ranging from those based on
8-bit or 16-bit microcontrollers, to devices powered by processors roughly equivalent to those
found in entry-level smartphones. The use of IP on these devices is increasingly considered as
the cheapest alternative in the long-run, and contrary to IPv4, IPv6 is viewed as a viable and
desirable solution to power IoT devices, due to its larger address space, its more appropriate
packet header design and convenient features that enable bootstrapping and neighbor discovery.

The contribution of this paper is twofold. First, we analyze the generic requirements for
software running on IoT devices. In particular, we derive from this analysis that none of the
existing operating systems is capable to fulfill the diverse requirements of IoT systems, which
include heterogeneous hardware constraints, as well as various network stack, autonomy and
real-time constraints. Although several efforts aimed at adapting existing operating systems for
the IoT, key features such as maximum energy efficiency or strong real-time guarantees cannot
be efficiently implemented as add-ons to a pre-existing system, because such features impact
every part of the system. The diversity of the requirements that need to be fulfilled by software
running on IoT devices is too challenging for existing operating systems, which were not designed
to run on the full range of hardware platforms that compose the IoT.

As a second contribution, we introduce RIOT OS, a microkernel-based operating system
matching the various software requirements for IoT devices. We show how RIOT’s design and
implementation deals with the diverse challenges in powering networks of constrained devices
connected to the Internet. For this purpose, RIOT also features the implementation of an adap-
tive network stack, providing full-fledged IPv6 as well as protocols targeting more constrained
networks, e.g. 6LoWPAN or RPL. By providing the same developer-friendly API across all plat-
forms (from 16-bit micro-controllers to 32-bits processors) and by simultaneously providing key
features such as real-time capabilities and energy efficiency, RIOT can power a wide spectrum of
IoT devices. RIOT can thus be leveraged to avoid redundant code development and maintenance
costs for IoT applications.

The remainder of this paper is structured as follows. In section 2, we will analyze the key
software requirements for IoT devices, while subsection 2.3 will focus on a specific part of the
software running on such devices: the network stack. Then, section 3 will analyze, categorize

RR n° 8176



4

and compare existing operating systems, while matching them with the identified requirements.
Subsequently, we introduce RIOT in section 4, an alternative OS fulfilling the heterogeneous
requirements of IoT devices, while providing a standard, powerful API. The paper closes in
section 5 with conclusions and future work.

2 IoT Software Requirements

During the last decade the formerly separated fields of embedded systems and Internet systems
converge increasingly. In parallel with the IoT, concepts such as Cyber-physical Systems (CPS)
have emerged, based on a complex combination of, and the coordination between, computer
software systems and mechanical or electronic objects, connected by a wired or wireless network,
e.g. the Internet. Each CPS typically consists of very heterogeneous hardware platforms, which
need to communicate with one another in order for the system to work.

2.1 Use Case

A vast research community and numerous projects currently address the IoT domain. One
example is SAFEST, a French-German project funded by the ANR and BMBF, which studies
and develops a CPS using sensors to provide better safety and security in public spaces and
around critical infrastructure [4]. More specifically, SAFEST targets crowd control and area
surveillance in airports by coupling two categories of systems:

1. A visual and audio surveillance system that monitors large crowds in order to provide
guidance in case of unexpected events (e.g., mass panic).

2. A perimeter protection system that uses distributed event detection algorithms to detect
unauthorized intrusions.

For the first task, rather powerful hardware is required: The system must be capable of
audio-video processing, and the amount of data that has to be transferred can be substantial.
For the second task on the other hand, hardware requirements are quite different: Light-weight
nodes should be scattered over a large area, in which wired power supply may not be feasible,
and the amount of data that has to be transferred is much less substantial. In order to fit these
diverging requirements the project partners decided to use two different hardware platforms:

1. a powerful board based on an Intel® Atom™ and an ARM Cortex-A8 controller for the
surveillance system, and

2. a constrained board based on an ARM7 TDMI-S micro-controller for the perimeter pro-
tection system.

The issue that arose at this point was that, as discussed in the following, existing operating
systems are either (i) unable to leverage the capabilities of the powerful board, or (ii) unable to
run on the constrained board. This implies the use of several operating systems in parallel, and
thus forces the development and the maintenance of redundant application code running across
the network of such devices. Therefore, in order to cut the cost of redundant code development
and maintenance, a developer-friendly, generic operating system is desirable, able to run on
constrained devices, as well as to leverage the capabilities of more powerful platforms.

Inria



RIOT: One OS to Rule Them All in the IoT 5

2.2 Software Characteristics

As for the SAFEST project, typical IoT scenarios comprise very heterogeneous hardware handling
tasks of various complexity. This implies strong requirements for the software running on such
devices. A first category of requirements pertains to potentially constrained hardware. A second
category deals with the demand for these systems to work autonomously. Finally, a third type
of requirements focuses on the usability of the system from a developer’s perspective.

2.2.1 Heterogeneous Hardware Constraints

Memory Requirements
As many of typical IoT devices have very little memory (typically between 5kB and some
hundreds of megabytes), the minimum memory requirement of the software has to be very
low. This concerns RAM as well as persistent program storage.

CPU Requirements
The complexity of operations must be kept very low, because some of the MCUs in a IoT
system will work at a very low clock cycle.

Limited Features
Software for IoT must be able to run on constrained hardware without more advanced
components like a Memory Management Unit (MMU) or a Floating-Point Unit (FPU).

Platform Support
Software for IoT must support a variety of hardware platforms, run on constrained plat-
forms, but also be able to leverage the capabilities of less constrained platforms.

2.2.2 Autonomy

Energy efficiency
The software must exploit the power saving features of the hardware and allow for large
sleep cycles as much as possible.

Adaptive Network Stack
The network stack should provide full-fledged TCP/IP implementations as well as a 6LoW-
PAN stack aiming for more constrained devices. It should also be modular in a way that
the protocols at each layer can be easily replaced.

Reliability
IoT systems are often deployed in critical applications in which physical access is difficult
and related to high costs in many cases. For that reason, it is important that the system
is robust and thus that the operating system runs very reliably.

2.2.3 Programmability

Standard API
In order to ease software development and simplify the porting of existing software, a
standard programming interface such as POSIX or STL should be provided.

Standard Programming Languages
Support for standard high level programming languages, such as C++, is vital.

RR n° 8176



6

Figure 1: Comparison of the traditional TCP/IP stack used by most Internet hosts (on the right
side) and the corresponding protocols for IoT networks (on the left side).

Following these generic insights concerning software running on IoT devices, we can derive the
following conclusions concerning operating systems eligible to power the IoT. An operating sys-
tem for IoT devices must strike the balance between the constraints of the hardware and the
usability for developers. On the one hand, it must perform well on multiple systems with a
varying capacities and capabilities. On the other hand, it must be able to exploit the features
provided by the platform in order to handle different complex tasks. Nevertheless, software
should be easily portable between various systems, to minimize development and maintenance
efforts while providing optimal interconnectivity. It is desirable to run the same operating system
on all of the current platforms, as well as on future platforms. This operating system should
however be as developer-friendly as possible. For example, while it is inevitable to implement
some parts of the operating system and drivers in an assembly language, the OS should at least
make C or C++ available for the application developer, a task which has remained a challenge
so far, on constrained platforms.

2.3 IoT Network Stack

Let’s now study a key part of the software running on IoT devices: the network stack. In order
to integrate constrained nodes into the Internet, protocols of the TCP/IP stack must indeed be
adapted for these systems. For example, standard IP datagrams require a minimum payload of
576 bytes for IPv4 or 1280 bytes for IPv6, while typical IoT devices use a radio technology that
offers a packet size of less than 150 bytes. In fact, if we compare the traditional IP network stack
and the network stack currently envisioned for IoT systems, we can observe major differences at
all layers, as depicted in Figure 1.

While traditional MAC/PHY layers used on the Internet (such as IEEE 802.3 Ethernet or
IEEE 802.11 Wi-Fi) provide a bandwidth of several Mbit/s or even Gbit/s, IoT networks mostly
use IEEE 802.15.4 MAC/PHY providing a bandwidth well below 500 kbit/s, supporting only
very small packet sizes, and typically suffering from severe and frequent packet loss.

At the network layer IPv4 and IPv6 use ICMP for control messaging. While IP datagrams
with a typical size of a few hundred bytes can be encapsulated into link layer frames tradi-
tionally used in the Internet, more effort is required on IoT networks, where an adaption layer
(6LoWPAN) is used to deal with the constraints of the IEEE 802.15.4 MAC/PHY, such as
packet fragmentation. This adaptation layer introduces methods for header compression de-

Inria



RIOT: One OS to Rule Them All in the IoT 7

creasing datagram size and modifications to the neighbor discovery that reduces bootstrapping
complexity [5, 6].

Various routing protocols such as OSPF, IS-IS, or BGP are used for routing within or between
autonomous systems in the Internet. These protocols were designed to fulfill requirement that are
extremely different from those of spontaneous wireless networks in the IoT with IEEE 802.15.4
MAC/PHY. Several alternative routing protocols have thus been proposed and designed. The
IETF has, for example, recently standardized a routing protocol for low-power and lossy networks
(LLNs) called RPL [7], targeting wireless sensor networks that focus primarily on data collection
at the sink.

At the transport layer the User Datagram Protocol (UDP) and Transmission Control Protocol
(TCP) are mostly used in the Internet. While some efforts currently take place to adapt TCP
for LLNs [8], TCP is often considered as too complex for LLNs. In addition, its elaborate
congestion control mechanism usually decrease performance in wireless networks as packet loss
does not indicate congestion. UDP is thus typically used on LLNs.

Similarly, at the application layer, while HTTP is used on the Internet, this protocol is con-
sidered too complex on constrained nodes and alternative mechanism have been developed for
operation on LLNs. In this domain, the IETF is currently developing CoAP (Constrained Appli-
cation Protocol [9]), a web transfer protocol targeting machine-to-machine (M2M) applications,
able to function on constrained nodes in LLNs, which can also natively interoperate with HTTP.

3 Operating Systems
In order to successfully adapt to the constraints of typical IoT devices, an operating system
must be designed purposely in all its aspects, similarly to what we observed for the network
stack in the previous section. In this section, we will thus analyze the key design aspects of
operating systems in the IoT context and decompose the existing operating systems according
to this analysis, in order to compare them.

3.1 Characteristics
There are multiple characteristics that categorize different types of operating systems [10]. One
of the most fundamental design aspect concerns the structure of the kernel. The operating
system can (i) be built in a monolithic way, (ii) follow a layered approach, or (iii) implement
the microkernel architecture. This decision strongly affects the whole composition of the system.
While a monolithic kernel is the simplest way to design an operating system, it lacks modularity
and often results in a complex structure that is hard to understand when the system exceeds a
certain size. The layered model helps to better segment the system in a hierarchical way. The
developer has to chose the level of separation between kernel and user space. In the microkernel,
design goes even further in modularity: the whole operating system is split up in small, well-
defined modules, and only a minimum set of functions runs in kernel mode. This approach
increases the reliability of the system as bugs in individual components (such as device drivers
or the file system) will not crash the system.

Another key design aspect is the scheduler. The choice of the scheduling strategy is tightly
bound to capabilities of system to fulfill real-time properties, to support different priorities and
degrees of user interaction.

A third fundamental design aspect is the programming model. In some operating systems all
tasks are executed within the same context and have no segmentation of the memory address
space. Other systems offer multi-threading where every process can run in its one thread and has
its own memory stack. The programming model is also linked to the selection of the programming

RR n° 8176



8

language. It may have a strong impact on the chosen programming language for operating system
implementation itself and therefore, define which programming languages are available for the
application developers.

3.2 Comparison of Operating Systems

OS Min RAM Min ROM C Support C++ Support Multi-Threading MCU w/o MMU Modularity Real-Time

Contiki <2kB <30kB ◦ 8 ◦ 3 ◦ ◦
Tiny OS <1kB <4kB 8 8 ◦ 3 8 8

Linux ~1MB ~1MB 3 3 3 3 ◦ ◦
RIOT ~1.5kB ~5kB 3 3 3 3 3 3

Table 1: Key characteristics of Contiki, TinyOS, Linux, and RIOT. (3) full support, (◦) partial
support, (8) no support. The table the OS in minimum requirements in terms of RAM and
ROM usage for a basic application, support for programming languages, multi-threading, MCUs
without memory management unit (MMU), modularity, and real-time behavior.

Taking into account the fundamental design aspects and the requirements derived from section 2,
we now compare existing operating systems that are a priori eligible to power IoT devices.
For that, we selected representative operating systems both among embedded WSAN operating
systems, and among traditional full-fledged operating systems running on Internet hosts.

On WSAN devices, the two dominant operating systems are Contiki [11] and TinyOS [12].
Both provide implementations of various algorithms, protocols, device drivers, and helpful tools
such as a file systems or a shell. On more traditional devices connected to the Internet, the
most widespread operating systems are Windows, several UNIX derivatives, and Linux. In the
following, we will thus comparatively analyze Tiny OS, Contiki, and Linux, the latter being
chosen as the representative full-fledged OS, because it is open source and supports a wide
spectrum of hardware platforms. Note that most of the statements below are true for the
Windows and UNIX derivatives, too.

We will consider the characteristics of these operating systems with regards to the aforemen-
tioned categories of design aspects. TinyOS and Linux are implemented as a monolithic kernel,
while Contiki is built in a modular way that corresponds to a layered system. In TinyOS a set
of required components is glued to together to build a single, static binary. The components
expose one or more interfaces and communicate via commands and events. While the Linux
kernel itself is monolithic, it is possible to configure device drivers as modules. In this way, a
Linux system can be trimmed down to match exactly the particular needs for the application.
But despite the fact that these modules can be loaded and unloaded during runtime, a failing
driver might still crash the whole system. Contiki offers the operating system facilities, such
as device drivers, communication, and sensor data handling as services. Besides the mandatory
components, the Contiki core however comprises also the uIP stack, a device driver loader, and
the protothreading system.

The scheduling in Contiki is purely event driven, similar to that in TinyOS where a FIFO
strategy is used. Their scheduling strategies are optimized for simple event processing, such
as handling interrupts from an asynchronous sensor. Linux currently uses the Completely Fair
Scheduler (CFS) that guarantees a fair distribution of processing time based on a red-black-tree.

Inria



RIOT: One OS to Rule Them All in the IoT 9

The goals for this scheduler is maximization of overall CPU utilization as well as interactive
performance.

The programming models in Contiki and TinyOS are based on the event driven model, in a
way that all tasks are executed within the same context, although they offer some kind of multi-
threading support. TinyOS version 2.1 introduces TOS Threads that use a cooperative threading
approach, where the threads have to rely on an application to explicitly yield the CPU [13].
Contiki provide protothreads as a light-weight and stackless implementation of simple multi-
threading [14]. Since events run to completion, no process synchronization between protothreads
is possible.

Contiki uses a subset of the C programing language, where some keywords cannot be used.
TinyOS is written in a C dialect called nesC. Linux, on the other hand, supports real multi-
threading, is written in C and offers support for a wide range of different programming and
scripting languages.

Let us now examine the capabilities of these operating systems with regards to the require-
ments derived from section 2 in order to power a wide range of IoT devices. Contiki and TinyOS
were designed to match the requirements of the very constrained WSANs. Thus, they have
very little minimum requirements on memory and computational power. Although there exist
specialized ports of Linux for embedded systems (like uClinux), the minimum requirements on
memory and CPU are still much higher [15]. The same is true for systems with a limited feature
set, where the WSAN operating systems will work on most common micro-controllers, uClinux is
only available for more powerful micro-controllers. All modern operating systems aim to achieve
a certain degree of energy-efficiency. However, due to the relatively complex architecture, Linux
will never allow for very long sleep periods. But this architecture enables advanced programming
interfaces, such as almost full POSIX compliance and vast amount of available programming and
scripting languages. The WSAN operating systems, Contiki and TinyOS, provide only C or a
C-alike programming language, and the developer has to adapt to the particular programming
paradigm. While the amount of available network protocols is similar for all of these operating
systems, the focus is very diverse. Linux offers a highly configurable TCP/IP stack, capable to
deal with very high data rates, but support for low-power protocols such as 6LoWPAN or RPL
is only rudimentary. On the contrary, Contiki and TinyOS provide evolved implementations of
these protocols for constrained devices, their variants for more complex protocols such as TCP
is limited. Looking at the summary of these capabilities shown in Table 1, we can conclude that
TinyOS, Contiki and Linux each lack important features in order to fulfill the requirements of
IoT devices in general.

4 RIOT OS

RIOT OS aims exactly to fulfill the requirements mentioned in section 2 and bridge the gap we
observed between operating systems for WSANs and traditional full-fledged operating systems
currently running on Internet hosts. The source code of RIOT is available online [16].

Modularity
In order to achieve a minimum memory usage, the system is designed in a modular way. Thus,
the configuration of the system can be customized to meet the particular specification. The size
of the kernel itself is minimized, thus requiring only a few hundred bytes of RAM and program
storage. Dependencies between the modules are reduced to an absolute minimum.

Tickless Scheduler
In contrast to many other operating systems, RIOT’s scheduler works without periodic events
and can be considered as an tickless scheduler. Whenever there are no pending tasks, RIOT

RR n° 8176



10

will switch to the idle thread. The only function of the idle thread is to determine the deepest
possible sleep mode, depending on the peripheral devices in use. In this manner, it is guaranteed
to maximize the time spent in sleep mode, thus, minimizing the energy consumption of the whole
system. Only interrupts (external or kernel-generated) wake up the system from idle state. In
addition, all kernel functions are kept as small as possible, which allows the kernel to run even on
systems with a very low clock speed. The scheduler is designed to minimize the occurrences of
thread switching, hence, reducing the overhead by context switching. This strategy is favorable
for IoT systems, where user interaction is not required.

Hardware Support
RIOT supports several MCUs such as a 16-bit MSP430 or a 32-bit ARM7, and a basic application
requires less than 5 kByte of ROM and less than 2 kByte of RAM. It needs neither a Memory
Management Unit (MMU) nor a Floating Point Unit (FPU). However, if the microcontroller
provides extra features – for example like a Vectored Interrupt Controller (VIC) that is provided
by many ARM processors –, RIOT is able to benefit of them, because CPU dependent code is
strictly separated from the kernel implementation itself. In general the implementation abstracts
from the hardware, allowing for entirely platform independent development of kernel functions,
system libraries, and applications. This abstraction is achieved by strictly separating hardware
dependent from hardware independent code and providing well-defined interfaces. The separation
allows also for the exploitation of hardware specific features without the need to change the kernel
or system libraries itself. Unnecessary overhead that would be introduced by function pointers
or any other kind of indirection is avoided.

Architecture
The microkernel architecture written in ANSI C and support for full multithreading enables a
developer-friendly API. POSIX compliance is partly already available and full POSIX compliance
is planned for the near future. Since RIOT is completely written in C, it also allows for the usage
of C++ and the utilization of the GNU Compiler Collection (GCC) in the latest version.

Network Stack
Network protocols for resource constrained systems – such as 6LoWPAN or RPL – are provided
as well as full support for IPv6, UDP, and TCP. The implementation of the network stack is
entirely modular, too, thus, allowing for the easy exchange of every protocol at any layer. Above
the driver for the radio transceiver, an adaptation layer is provided, that offers an IEEE 802.15.4
compliant interface, even if the radio transceiver itself is not capable of this protocol.

Reliability and Real-Time Features
RIOT’s kernel inherits from that of FeuerWare [17] which targets devices used in rescue scenar-
ios, that require built-in maximum reliability, and strong real-time characteristics. RIOT thus
supports multi-threading and real-time in that it features (i) zero-latency interrupt handlers, and
(ii) minimum context-switching times combined with thread priorities. For instance, assuming
that every interrupt handler uses only N cycles, it is guaranteed that RIOT will switch to the
corresponding thread (e.g., the device driver thread) within a maximum of N+ε clock cycles,
with ε being a very low number of clock cycles consumed by the context switch itself. It is also
guaranteed that the thread with the highest priority, that is not blocked or sleeping, will never
be interrupted by more than N+ε cycles. The kernel is kept as simple as possible and comprises
- besides the scheduler and threading system - only mutexes and inter-process communication
(IPC). Following the microkernel paradigm all other system functionality such as device drivers
or the file system run in threads. The approach of a microkernel indeed provides a very stable
system, since an erroneous device driver, for example, will not crash the whole system. The
kernel itself is kept to an absolute minimum, which increases the stability in the sense we just
described (extra-kernel activity cannot crash the system).

Inria



RIOT: One OS to Rule Them All in the IoT 11

5 Conclusion and Future Work
In this paper we compare existing operating systems eligible to power IoT devices and conclude
that none of them is appropriate to serve the whole spectrum of devices making the IoT. The
IoT is indeed very challenging concerning the design of a suitable generic operating system,
which must be capable to deal with very diverse requirements of heterogeneous hardware plat-
forms and application scenarios, provide an adaptive IP network stack, and offer a standard
developer-friendly API. We thus introduce a novel operating system, RIOT, which meets these
requirements. RIOT provides a reliable microkernel architecture, where the kernel itself requires
just a few hundreds bytes of ROM and RAM. Among its features it comprises an highly adaptive
network stack, including the latest standards of the IETF for connecting constrained systems to
the Internet like 6LoWPAN and RPL. Due to RIOT’s developer-friendly API, which is partly
POSIX compliant, and support for various platforms, it is possible to build the whole software
system upon RIOT OS and easily adopt existing libraries for projects involving heterogeneous
IoT hardware. On-going work includes OLSRv2 and CoAP implementations for RIOT, full
POSIX compliance, and porting of the OS to additional popular IoT platforms.

RR n° 8176



12

References
[1] J. M. Kahn, R. H. Katz, and K. S. J. Pister, “Next century challenges: mobile

networking for "Smart Dust",” in MobiCom ’99: Proceedings of the 5th annual ACM/IEEE
international conference on Mobile computing and networking. New York, NY, USA: ACM
Press, 1999, pp. 271–278. [Online]. Available: http://dx.doi.org/10.1145/313451.313558

[2] S. P. Kumar, “Sensor networks: Evolution, opportunities, and challenges,” Proceedings
of the IEEE, vol. 91, no. 8, pp. 1247–1256, 2003. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1219475

[3] H. Sundmaeker, P. Guillemin, P. Friess, and S. WoelfflÌ©, Eds., Vision and challenges for
realising the Internet of Things. Cluster of European Research Projects on the Internet of
Things, European Commision, 2010.

[4] “Social-Area Framework for Early Security Triggers at Airports,” 2012. [Online]. Available:
safest.realmv6.org

[5] “Neighbor Discovery Optimization for Low Power and Lossy Networks (6LoW-
PAN),” August 2012. [Online]. Available: ftp://ftp.rfc-editor.org/in-notes/internet-drafts/
draft-ietf-6lowpan-nd-21.txt

[6] J. Hui and P. Thubert, “Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based
Networks,” RFC 6282 (Proposed Standard), Internet Engineering Task Force, Sep. 2011.
[Online]. Available: http://www.ietf.org/rfc/rfc6282.txt

[7] T. Winter, P. Thubert, “IPv6 Routing Protocol for Low-Power and Lossy Networks,” in
Internet Engineering Task Force RFC 6550, 2012.

[8] “TCP header compression for 6LoWPAN,” October 2010. [Online]. Available: http:
//tools.ietf.org/id/draft-aayadi-6lowpan-tcphc-01.txt

[9] Z. Shelby, K. Hartke, C. Bormann, and B. Frank, “Constrained Application
Protocol (CoAP),” December 2012. [Online]. Available: http://tools.ietf.org/id/
draft-ietf-core-coap-13.txt

[10] A. S. Tanenbaum, Modern Operating Systems, 3rd ed. Upper Saddle River, NJ, USA:
Prentice Hall Press, 2007.

[11] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and flexible operating
system for tiny networked sensors.” in LCN. IEEE Computer Society, 2004, pp. 455–462.
[Online]. Available: http://dblp.uni-trier.de/db/conf/lcn/lcn2004.html#DunkelsGV04

[12] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay,
J. Hill, M. Welsh, E. Brewer, and D. Culler, “TinyOS: An Operating System for
Sensor Networks,” in Ambient Intelligence, W. Weber, J. M. Rabaey, and E. Aarts,
Eds. Berlin/Heidelberg: Springer-Verlag, 2005, ch. 7, pp. 115–148. [Online]. Available:
http://dx.doi.org/10.1007/3-540-27139-2_7

[13] K. Klues, C.-J. M. Liang, J. Paek, R. Musăloiu-E, P. Levis, A. Terzis, and
R. Govindan, “Tosthreads: thread-safe and non-invasive preemption in tinyos,” in
Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems, ser.
SenSys ’09. New York, NY, USA: ACM, 2009, pp. 127–140. [Online]. Available:
http://doi.acm.org/10.1145/1644038.1644052

Inria

http://dx.doi.org/10.1145/313451.313558
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1219475
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1219475
safest.realmv6.org
ftp://ftp.rfc-editor.org/in-notes/internet-drafts/draft-ietf-6lowpan-nd-21.txt
ftp://ftp.rfc-editor.org/in-notes/internet-drafts/draft-ietf-6lowpan-nd-21.txt
http://www.ietf.org/rfc/rfc6282.txt
http://tools.ietf.org/id/draft-aayadi-6lowpan-tcphc-01.txt
http://tools.ietf.org/id/draft-aayadi-6lowpan-tcphc-01.txt
http://tools.ietf.org/id/draft-ietf-core-coap-13.txt
http://tools.ietf.org/id/draft-ietf-core-coap-13.txt
http://dblp.uni-trier.de/db/conf/lcn/lcn2004.html#DunkelsGV04
http://dx.doi.org/10.1007/3-540-27139-2_7
http://doi.acm.org/10.1145/1644038.1644052


RIOT: One OS to Rule Them All in the IoT 13

[14] A. Dunkels and O. Schmidt, “Protothreads - lightweight, stackless threads in c,” 2005.

[15] D. McCullough, “uCLinux for Linux Programmers,” in Linux Journal, 2004.

[16] “RIOT OS - An Operating System for the IoT,” 2012. [Online]. Available: www.riot-os.org

[17] H. Will, K. Schleiser, and J. H. Schiller, “A real-time kernel for wireless sensor networks
employed in rescue scenarios,” in Proc. of the 34th IEEE Conference on Local Computer
Networks (LCN), M. Younis and C. T. Chou, Eds. Piscataway, NJ, USA: IEEE Press,
October 2009, pp. 834–841.

RR n° 8176

www.riot-os.org


RESEARCH CENTRE
SACLAY – ÎLE-DE-FRANCE

Parc Orsay Université
4 rue Jacques Monod
91893 Orsay Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399


	Introduction
	IoT Software Requirements
	Use Case
	Software Characteristics
	IoT Network Stack

	Operating Systems
	Characteristics
	Comparison of Operating Systems

	RIOT OS
	Conclusion and Future Work

