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Helmholtz decomposition of vector fields with mixed
boundary conditions and an application to a posteriori
finite element error analysis of the Maxwell system

Emmanuel Creusé∗, Serge Nicaise†, Zuqi Tang‡

July 18, 2012

Abstract

This paper is devoted to the derivation of a Helmholtz decomposition of vector
fields in the case of mixed boundary conditions imposed on the boundary of the
domain. This particular decomposition allows to obtain a residual a posteriori error
estimator for the approximation of magnetostatic problems given in the so-called A-
formulation, for which the reliability can be established. Numerical tests confirm the
obtained theoretical predictions.

AMS (MOS) subject classification 35Q61; 65N30; 65N15; 65N50.
Key Words Helmholtz decomposition, Finite element methods, A posteriori error esti-
mators.

Introduction

Nowadays, the finite element method is widely used to study electromagnetic systems. In
order to carry out an adaptive mesh refinement strategy as well as to control the error
obtained between the numerical solution and the exact one, local a posteriori error es-
timators are needed. Since the pioneering work due to Babuska and Rheinboldt [3, 4],
and then several monographies related to this subject [1, 5, 26], an impressive number
of papers have been published, considering several kinds of equations, numerical methods
or approximation spaces, and providing a large variety of error estimators. In this work,
we are particularly interested in explicit residual-based error estimators, devoted to the
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approximation of the solutions of Maxwell equations, discretized by Nédélec H(curl) con-
forming edge elements.

For the last twenty years, these error estimators have been developped for the compu-
tation of quasistatic electromagnetic fields in conductors in the case of regular data and
domains [6]. They have been then generalized to the case of anisotropic meshes and non
regular data [21], as well as to the one of Lipschitz domains [25]. The robustness of the
estimations with the data was also addressed in [11]. More recently, in the same kind
of work, namely explicit residual-based a posteriori estimators have also been developped
for quasistatic magnetodynamic problems, modeled with harmonic potential formulations
[9, 13, 27, 28]. Moreover, some papers are now devoted to the way to design some adaptive
mesh loop strategies, in order to ensure the convergence process while the mesh is being
refined using the error estimators [10, 17, 18].

In most of the above quoted papers, the reliability of the estimator (namely, the fact
that the error is bounded from above by the estimator) is based on a suitable orthogo-
nal Helmholtz decomposition of the error. This one is needed to allow the use of some
suitable interpolation operators, which are crucial in the proofs. Nevertheless, to our best
knowledge, the case corresponding to mixed boundary conditions imposed on the vector
field (see the boundary conditions on A arising in (3) below) have not been reported yet.
Consequently, the main objective of this paper is to prove the corresponding Helmholtz
decomposition, in order to extend the reliability of residual-type estimator to this case.

The schedule of the paper is the following. In section 1, the context of the problem is
recalled. The continuous model we are interested in is given, the existence and uniqueness
of the solution are established, and the finite element approximation is briefly described.
Section 2 constitutes the main part of this work and is devoted to the Helmholtz decom-
position of vector fields. Several lemmas are proved, and used to derive Theorem 2.3.
Consequently, in section 3 we are able to derive the a posteriori residual error estimator.
With the previous Helmholtz decomposition in hands, the proof can be easily derived from
previous papers, but we chose to recall its main steps to make this work self-contained. Fi-
nally, section 4 is devoted to numerical tests, to underline the good correspondence between
theoretical and numerical results obtained.

1 Setting of the problem

1.1 Modeling and continuous variational formulation

Let us consider an open simply connected domain Ω ⊂ R3 with a Lipschitz boundary
Γ = ∂Ω. In this paper, we are interested in the magnetic flux density B induced in Ω by
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an eddy current Js, modeled by the following stationary Maxwell equations :{
divB = 0 in Ω (Gauss equation),
curl H = Js in Ω (Maxwell-Ampère equation), (1)

where H is the magnetic field defined by B = µH, with µ ∈ L∞(Ω) the magnetic perme-
ability of the medium, for which we assume that there exists µmin ∈ R∗+ such that µ ≥ µmin

in Ω. Let us moreover suppose that Γ = ΓN ∪ ΓT , with ΓN ∩ ΓT = ∅ and ΓN connected.
Finally we denote by n the unit outward normal to Ω on Γ. Usual boundary conditions on
B associated with problem (1) are given by :

B · n = 0 on ΓN ,

1

µ
B × n = 0 on ΓT .

(2)

Then, a vector potential A is introduced such that B = curlA, and problem (1)-(2) is
reformulated in its potential formulation given by :

curl
(

1

µ
curlA

)
= Js in Ω,

A× n = 0 on ΓN ,

A · n = 0 and
1

µ
curl A× n = 0 on ΓT ,

divA = 0 in Ω.

(3)

Let us note that the divergence-free constraint on A corresponds to the gauge condition,
needed to ensure the uniqueness of the solution. Here, Js is supposed to be given such
that : {

div Js = 0 in Ω,
Js · n = 0 on ΓT .

(4)

In the following, for a given domain D, the L2(D) (or (L2(D))3) norm will be denoted by
|| · ||D. The usual norm and semi-norm of H1(D) (or (H1(D))3) will be denoted || · ||1,D
and | · |1,D respectively. We first introduce the following functional spaces:

X(Ω) =
{
A ∈ L2(Ω)3 : curl A ∈ L2(Ω)3 and A× n = 0 on ΓN

}
,

H1
ΓN

(Ω) =
{
ϕ ∈ H1(Ω) : ϕ = 0 on ΓN

}
,

X0(Ω) =

{
A ∈ X(Ω) :

∫
Ω

A · ∇ϕ = 0 ∀ ϕ ∈ H1
ΓN

(Ω)

}
,

with the natural norm || · ||X(Ω) defined on X(Ω) by :

||A||2X(Ω) = ||A||2Ω + ||curl A||2Ω.
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Then, we consider the variational formulation associated with (3) by looking for A ∈ X0(Ω)
such that, for all A′ ∈ X0(Ω), we have :

a(A,A′) = l(A′), (5)

with :
a(A,A′) =

∫
Ω

1

µ
curlA · curlA′ and l(A′) =

∫
Ω

Js · A′. (6)

In order to address the question of the well-posedness of the problem, let us introduce the
space XM(Ω) defined by :

XM(Ω) =
{
A ∈ L2(Ω)3 : curl A ∈ L2(Ω)3, div A ∈ L2(Ω), A× n = 0 on ΓN and A · n = 0 on ΓT

}
,

with its associated natural norm || · ||XM (Ω) defined by :

||A||2XM (Ω) = ||A||2Ω + ||div A||2Ω + ||curl A||2Ω.

Since XM(Ω) is compactly embedded in L2(Ω)3 [24], and since it can be moreover easily
shown that X0(Ω) ⊂ XM(Ω), the following Friedrichs-type inequality holds :

There exists C > 0 such that for all A ∈ X0(Ω), we have :

||A||Ω ≤ C ||curlA||Ω.
Consequently, we deduce from the Lax-Milgram lemma that problem (5) is well-posed and
admits a unique solution A ∈ X0(Ω).

Now, let us derive the following property :

Lemma 1.1 Let A ∈ X0(Ω) be the unique solution of (5). Then for all B ∈ X(Ω), we
have

a(A,B) = l(B). (7)

Proof. Since B ∈ X(Ω), we can decompose it using the following Helmholtz decomposi-
tion:

B = Ψ +∇τ,
with Ψ ∈ X0(Ω) and τ ∈ H1

ΓN
(Ω). Indeed, τ ∈ H1

ΓN
(Ω) is simply defined by∫

Ω

∇τ · ∇ϕ =

∫
Ω

B · ∇ϕ, ∀ ϕ ∈ H1
ΓN

(Ω),

and Ψ = B −∇τ . So we may write

a(A,B) = a(A,Ψ) = l(Ψ).

Because of (4) and the fact that τ|ΓN
= 0, we clearly have l(Ψ) = l(B), so that (7) holds.
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1.2 Finite Element approximation

Problem (5) is approximated using a finite element method. The domain Ω is from now
supposed to be polyhedral, and is discretized by a conforming mesh Th made of tetrahedra
denoted by T . The magnetic permeability of the medium µ is supposed to be constant
over each tetrahedron. We denote by hT the diameter of T and by ρT the diameter of
its largest inscribed ball. For any element T , the ratio hT/ρT is supposed to be bounded
from above by a constant α > 0 independant of T and of the mesh size h = max

T∈Th

hT .

The faces of Th are denoted by F , and we denote by hF the diameter of the face F . For
compatibility reasons, we suppose that only one boundary condition can be prescribed on
a given boundary face F ⊂ Γ. In other words, if F ⊂ Γ, we assume that either F ⊂ ΓN or
F ⊂ ΓT . Finally, the set of the faces of the triangulation is denoted by F , whereas the set
of the internal faces to Ω is denoted by Fint.

The approximation spaces are now defined by :

Xh(Ω) = X(Ω) ∩ND1(Ω,Th) =
{
Ah ∈ X(Ω) : Ah|T ∈ ND1(T ), ∀ T ∈ Th

}
,

ND1(T ) =

{
Ah :

T −→ R3

x −→ a+ b× x , a, b ∈ R3

}
,

Θ0
h(Ω) =

{
ξh ∈ H1

ΓN
(Ω) : ξh|T ∈ P1(T ) ∀ T ∈ Th

}
,

X0
h(Ω) =

{
Ah ∈ Xh(Ω) :

∫
Ω

Ah · ∇ξh = 0 ∀ ξh ∈ Θ0
h(Ω)

}
.

The discrete variational formulation now consists in finding Ah ∈ X0
h(Ω) such that, for all

A′ ∈ X0
h(Ω), we have :

a(Ah, A
′
h) = l(A′h). (8)

Because of this finite element choice, and from a discrete compactness property of X0
h(Ω)

[19, 22], we have, as for the continuous case, that the discrete problem (8) is well-posed
and admits a unique solution Ah ∈ X0

h(Ω). Let us remark that the approximation is sought
on the Nédélec functions that are discrete divergence-free. Nevertheless, in practice, the
corresponding gauge condition is not explicitly forced. Indeed, thanks to the particular
iterative solver used for the resolution of the linear system, the divergence-free property of
the successive vector fields obtained is preserved, so that the gauge condition is implicitly
imposed [23].

2 Helmholtz decomposition of vector fields

The aim of this section is to obtain Theorem 2.3, which will be used in section 3 to derive
the a posteriori error estimate.
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To begin with, for v ∈ XM(Ω), we remark that curl v belongs to

Ĵ(Ω) := {v ∈ L2(Ω)3 : divv = 0 and v · n = 0 on ΓN}.

According to Lemmas 3.1 and 3.2 of [12] we first consider smooth vector potentials for
elements of Ĵ(Ω). For that purpose we combine some ideas from Theorems 3.1 and 4.1 of
[7] (see also [8]). First we state a technical result.

Lemma 2.1 Let A be a bounded domain of R3 with a Lipschitz boundary. Then there
exists a linear continuous operator EA from H1(A) into H1

loc(R3) such that

EA1 = 1, (9)

and fulfilling the usual properties of an extension operator:

EAu = u on A,∀ u ∈ H1(A), (10)

and for all open sets B of R3 containing Ā, there exists a positive constant C depending
only on A and B such that

‖EAu‖1,B ≤ C‖u‖1,A,∀ u ∈ H1(A).

Proof. By Theorem 1.4.3.1 of [16], there exists a linear continuous operator E from H1(A)
into H1(R3) such that

Eu = u on A, ∀ u ∈ H1(A),

and
‖Eu‖1,R3 ≤ C‖u‖1,A,∀ u ∈ H1(A),

for some constant C1 > 0. An appropriate choice for EA is

EAu = E(u−MAu) +MAu,∀ u ∈ H1(A),

whereMAu is the mean of u in A, namely

MAu = |A|−1

∫
A

u(x) dx,

when |A| is the mesure of A. The definition of EA and the fact that E is linear imply that
(9) holds. In the same manner we see that (10) is valid because

E(u−MAu) = u−MAu on A.

Finally the continuity property of EA comes from the continuity of E and the fact that

‖MAu‖1,B = ‖MAu‖B =
|B|1/2

|A|1/2
‖MAu‖A ≤

|B|1/2

|A|1/2
‖u‖A.
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Lemma 2.2 For all f ∈ Ĵ(Ω) there exists w ∈ H1(Ω)3 such that

w × n = 0 on ΓN , (11)

and fulfilling
curlw = f in Ω, (12)

and
‖w‖1,Ω ≤ C‖f‖Ω, (13)

for some constant C > 0 depending only on Ω.

Proof. As said before we combine some arguments from Theorem 3.1 of [7] (case ΓT = ∅)
and from Theorem 4.1 of [7] (case ΓN = ∅).

Step 1 We consider Ω̃ a bounded domain of R3 with a polyhedral boundary such that

Ω ⊂ Ω̃,

and such that the common faces between A := Ω̃ \ Ω and Ω are the faces of ΓT . As A
enters in the framework of Lemma 2.1, we can use the extension operator EA.

Step 2 Set

H1
m(A) := {u ∈ H1(A) :

∫
A

u(x) dx = 0},

that can be equipped with the H1-semi norm. Let u ∈ H1
m(A) be the unique solution of∫

A

∇u · ∇w dx =

∫
Ω

f · ∇EAw dx,∀ w ∈ H1
m(A). (14)

This solution exists and is unique owing to the Lax-Milgram lemma because the right-hand
side is a linear and continuous form on H1

m(A). Furthermore as EA1 = 1, (14) is valid on
the whole of H1(A), namely we also have∫

A

∇u · ∇w dx =

∫
Ω

f · ∇EAw dx,∀ w ∈ H1(A). (15)

Now we set
f̃ :=

{
f in Ω,
−∇u in A

Let us check that f̃ belongs to

J(ν, Ω̃) := {v ∈ L2(Ω)3 : divv = 0 and v · n = 0 on ∂Ω̃}.

Since it is well known that f̃ ∈ J(ν, Ω̃) if and only if∫
Ω̃

f̃ · ∇h dx = 0,∀ h ∈ H1(Ω̃), (16)
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it remains to check this last property. For an arbitrary h ∈ H1(Ω̃), by the definition of f̃ ,
we have ∫

Ω̃

f̃ · ∇h dx =

∫
Ω

f · ∇h dx−
∫
A

∇u · ∇h dx.

Since u satisfies (15) we get∫
Ω̃

f̃ · ∇h dx =

∫
Ω

f · ∇h dx−
∫

Ω

f · ∇EAh dx =

∫
Ω

f · ∇(h− EAh) dx.

Hence by Green’s formula in Ω we obtain∫
Ω̃

f̃ · ∇h dx = −
∫

Ω

divf(h− EAh) dx+ 〈f · n;h− EAh〉(H̃1/2(ΓN ))′−H̃1/2(ΓN ),

reminding that h = EAh on ΓT . Since f belongs to Ĵ(Ω), this last right-hand side is zero
and we have proven (16).

Step 3 Fix a ball B of R3 such that
Ω̃ ⊂ B,

and set

g :=

{
f̃ in Ω̃,
0 in B \ Ω̃.

As f̃ ∈ J(ν, Ω̃), g belongs to J(ν,B). Therefore by [7], there exists w0 ∈ H1(B)3 such that

curlw0 = g and divw0 = 0 in B, (17)

with
‖w0‖1,B ≤ C1‖g‖B = C1‖f̃‖Ω̃, (18)

where C1 is a positive constant that depends only on B. But according to the definition
of f̃ ,

‖f̃‖2
Ω̃

= ‖f‖2
Ω + ‖∇u‖2

A,

and by (14), Cauchy-Schwarz’s inequality and Lemma 2.1 we get

‖∇u‖A ≤ C2‖f‖Ω,

where C2 is a positive constant that depends only on A and B. Therefore the estimate
(18) reduces to

‖w0‖1,B ≤ C3‖f‖Ω. (19)

where C3 is a positive constant that depends only on A and B.
Step 4 As g = 0 on B \ Ω̃, we get

curlw0 = 0 in B \ Ω̃.
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Since this set is simply connected, there exists ΦA ∈ H1(B \ Ω̃) such that

w0 = ∇ΦA in B \ Ω̃. (20)

This function ΦA even belongs to H2(B \ Ω̃) since w0 ∈ H1(B)3.
Denote by Π the extension (linear continuous) operator from H2(B \ Ω̃) into H2(B)

such that
Πw = w in B \ Ω̃.

Now setting
Φ = ΠΦA,

we notice that
w = w0 −∇Φ

yields the conclusion. Indeed w belongs to H1(Ω)3 by the regularity of w0 and Φ. Further-
more

curlw = curlw0,

and therefore by (17), we obtain (12) (as g = f in Ω). Finally

w × n = w0 × n−∇Φ× n on ΓN .

and by (20),
w × n = ∇ΦA × n−∇ΠΦA × n = 0 on ΓN .

by the property of the extension operator and proves (11).

Theorem 2.3 If Ω is simply connected and ΓN is connected, then for any u ∈ XM(Ω)
there exist w ∈ H1(Ω)3 satisfying (11) and ϕ ∈ H1

ΓN
(Ω) := {ψ ∈ H1(Ω) : ψ = 0 on ΓN}

satisfying div∇ϕ ∈ L2(Ω) and such that the following Helmholtz decomposition

u = w +∇ϕ in Ω, (21)

holds with the estimate

‖w‖1,Ω + ‖ϕ‖1,Ω + ‖div∇ϕ‖Ω ≤ C‖u‖XM (Ω), (22)

for some constant C > 0 depending only on Ω.

Proof. For u ∈ XM(Ω) consider v = curlu that belongs to Ĵ(Ω). Hence by Lemma 2.2,
there exists w ∈ H1(Ω)3 satisfying (11) and fulfilling

curlw = curlu in Ω,

and
‖w‖1,Ω ≤ C‖ curlu‖Ω, (23)
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for some constant C > 0 depending only on Ω. This means that u − w is curl free and
since Ω is simply connected, there exists ϕ0 ∈ H1(Ω) such that

u− w = ∇ϕ0 in Ω. (24)

As (u− w)× n = 0 onΓN , we deduce that

∇ϕ0 × n = 0 on ΓN .

Consequently there exists a constant K ∈ C such that (reminding that ΓN is connected)

ϕ0 = K on ΓN .

The conclusion follows by taking
ϕ = ϕ0 −K,

since ∇ϕ = ∇ϕ0 and using (23) and (24).

Remark 2.4 The previous result still holds if ΓN is not connected, but in that case ϕ
will be constant on each connected component of ΓN . Similarly the previous result also
holds if Ω is not simply connected, indeed it suffices to apply the previous theorem to each
connected component of Ω.

With additional low geometrical assumptions, it is possible to recover homogeneous
Neumann boundary conditions for ϕ involved in the Helmholtz decomposition, this is the
subject of Theorem 2.5. Nevertheless, it will not be useful in section 3 to derive the a
posterior error analysis.

Theorem 2.5 Assume that Ω is simply connected and ΓN is connected. Assume further-
more that
i) for all edges e in common between a face of ΓT and a face of ΓN , the interior angle ωe

is different from π/2,
ii) for all corners c, the eigenvalues λmixed

c,k of ∆mixed
c are different from 3/4, where ∆mixed

c

is the non negative Laplace-Beltrami on the unit sphere with mixed boundary conditions
(in accordance with the partition of the faces of ΓN (Dirichlet) and of ΓT (Neumann)
containing c).

Then for any u ∈ XM(Ω) there exist w0 ∈ H1(Ω)3∩XM(Ω) and ϕ0 ∈ H1
ΓN

(Ω) satisfying
div∇ϕ0 ∈ L2(Ω) and

∂ϕ0

∂n
= 0 on ΓT ,

and such that the following Helmholtz decomposition

u = w0 +∇ϕ0 in Ω, (25)

holds with the estimate

‖w0‖1,Ω + ‖ϕ0‖1,Ω + ‖div∇ϕ0‖Ω ≤ C‖u‖XM (Ω), (26)

for some constant C > 0 depending only on Ω.
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Proof. In fact the previous Theorem shows that ϕ ∈ H1
ΓN

(Ω) a weak solution of the
boundary value problem {

div∇ϕ = divu− divw in Ω,
∂ϕ

∂n
= −w · n on ΓT .

Since the assumptions on u and the regularity of w garantee that divu− divw belongs to
L2(Ω) and since w · n belongs to H1/2(ΓT ), we can apply the results from [14] to obtain
the next decomposition of ϕ:

ϕ = ϕR + ϕ0,

where ϕR ∈ H2(Ω) and ϕ0 ∈ H1
ΓN

(Ω) such that{
div∇ϕ0 ∈ L2(Ω),
∂ϕ

∂n
= 0 on ΓT .

with the estimate

‖ϕR‖2,Ω + ‖ϕ0‖1,Ω + ‖div∇ϕ0‖Ω ≤ c(‖divu− divw‖Ω + ‖w · n‖H1/2(ΓT )),

where c is a positive constant depending only on Ω. We then conclude by taking

w0 = w +∇ϕR,

where w ∈ H1(Ω)3 is the vector potential from Theorem 2.3.

3 A posteriori residual error analysis
Let us define πh as the projection operator from H(div,Ω) = {u ∈ L2(Ω)3; div u ∈ L2(Ω)}
to an ad hoc discrete approximation space (which can be chosen for example as the low
order Raviart-Thomas finite element space [15] so that it is included in H(div,Ω)), and let
us denote by [u]F the jump of the quantity u over a face F of the mesh. For each T ∈ Th,
the local error indicator ηT is defined by :

η2
T = η2

T,1 + η2
T,2 +

∑
F⊂∂T,F∈Fint

η2
F,1 +

∑
F⊂∂T,F⊂ΓT

η2
F,2,

with :

ηT,1 = hT

∥∥∥∥πhJs − curl
(

1

µ
curl Ah

)∥∥∥∥
T

,

ηT,2 = hT ||Js − πhJs||T ,

ηF,1 = h
1/2
F

∥∥∥∥[ 1

µ
curl Ah × n

]
F

∥∥∥∥
F

,

ηF,2 = h
1/2
F

∥∥∥∥ 1

µ
curl Ah × n

∥∥∥∥
F

.
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Then, the global error indicator η is defined by :

η2 =
∑
T∈Th

η2
T .

Theorem 3.1 Let us suppose that Ω is simply connected and ΓN is connected, there exists
a constant Cup > 0, which does not depend on A, Ah or h, such that :(∫

Ω

1

µ
|curl (A− Ah)|2

) 1
2

≤ Cup η. (27)

Proof. The proof can be easily derived from previous more general works (for example
[13] which deals with the magnetodynamic case), but in the restricted case ΓT = ∅ (or,
equivalently, ΓN = Γ). The novelty of this result is the generalization to the case ΓT 6= ∅,
thanks to the new Helmholtz decomposition (21) and to (22). The sketch of the proof is
then very similar to the case ΓT = ∅. Consequently, we only recall here the main steps for
the sake of completeness.

1. First, for any q ∈ X(Ω), the residual form associated with (8) is defined by :

r(q) = l(q)− a(Ah, q). (28)

Because of Lemma 1.1, setting eA := A− Ah, we obtain :

r(eA) =

∥∥∥∥ 1
√
µ
curl eA

∥∥∥∥2

Ω

. (29)

Now, we define Ψ ∈ H1
ΓN

(Ω) by :∫
Ω

∇Ψ · ∇χ =

∫
Ω

eA · ∇χ, for all χ ∈ H1
ΓN

(Ω).

Setting ẽA = eA − ∇Ψ, we have ẽA ∈ X0(Ω) ⊂ XM(Ω). Using the Helmholtz
decomposition (21), we have :

eA = w +∇(ϕ+ Ψ),

with w ∈ H1(Ω)3 ∩X(Ω) and (ϕ+ Ψ) ∈ H1
ΓN

(Ω). From (28) and using (4), similarly
to the proof of Lemma 1.1 , we get

r(eA) = r(w). (30)

The point now is to bound from above the quantity |r(w)| so that (27) occurs from
(29) and (30).
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2. We introduce an operator PCl defined by the identity (32) of [6] where for any edge
E belonging to ΓN , the face FE has to be chosen in ΓN :

PCl : H1(Ω)3 ∩X(Ω) → Xh(Ω),
v → PClv.

From lemma 5 of [6], we get :
∑
T∈Th

1

h2
T

||v − PClv||2T ≤ C1 ||v||21,Ω,∑
F∈Fint∪(F∩ΓT )

1

h2
T

||v − PClv||2F ≤ C2 ||v||21,Ω,
(31)

where the constants C1 and C2 do neither depend on v nor on the mesh size h, but
only on the shape regularity of the mesh. We use the fact that r(w) = r(w−PClw),
so that, with classical Green formula, we get :

r(w) =
∑
T∈Th

∫
T

(
Js − curl

(
1

µ
curlAh

))
· (w − PClw)

−
∑

F∈Fint

∫
F

[
1

µ
curl Ah × n

]
F

· (w − PClw)

−
∑

F∈F∩ΓT

∫
F

(
1

µ
curl Ah × n

)
· (w − PClw).

3. Finally, the use of Cauchy-Schwarz inequalities, discrete Cauchy-Schwarz inequalities,
the properties (31) on PCl and the stability relation (22) yield (27).

For completeness we now state the efficiency of the estimator (namely, the fact that the
local estimator is bounded from above by the local error) :

Theorem 3.2 Let us define the patch of the element T by PT =
⋃

T ′∩T 6=∅

T ′. Then, there

exists a constant Cdown > 0, which does not depend on A, Ah or h, such that:

ηT ≤ Cdown

∥∥∥∥ 1
√
µ

curl (A− Ah)

∥∥∥∥
PT

.

Proof. The proof is here exactly the same as the one corresponding to the case ΓT = ∅,
since we do not need any Helmholtz decomposition, but only need to use classical bubble
functions and inverse inequalities. It is available in previous papers (see for example [13]).
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4 Numerical validation

4.1 Analytical solution

Let us consider here the unit cube Ω = [0, 1/2]3. We want to compute the magnetic flux
density B = curlA given by (3) with the following data (see Figure 1) :

Js = (0, 0, 107)T ,

ΓN =

{
(x, y, z) ∈ ∂Ω such that xyz(z − 1

2
) = 0

}
,

ΓT = ∂Ω\ΓN ,
µ = 4π . 10−7.

x y

z

Js

Figure 1: Domain configuration and eddy current Js.

The solution of this problem is known analytically and is given by (see [2]) :

Bx(x, y, z) =
16 . 107µ

π3

+∞∑
n=0

+∞∑
p=0

sin((2n+ 1)πx) cos((2p+ 1)πy)

(2n+ 1)[(2n+ 1)2 + (2p+ 1)2]
,

By(x, y, z) = −16 . 107µ

π3

+∞∑
n=0

+∞∑
p=0

cos((2n+ 1)πx) sin((2p+ 1)πy)

(2p+ 1)[(2n+ 1)2 + (2p+ 1)2]
,

Bz(x, y, z) = 0.

Setting Bh = curlAh, the error
∥∥∥∥ 1
√
µ

(B −Bh)

∥∥∥∥
Ω

is plotted versus DoF in Figure 2(a)

(where DoF is the number of edges in the mesh), to show that the numerical approximated
value of the magnetic flux density Bh converges towards the exact one B at order 1 in h
(or order -1/3 in DoF since DoF = O(1/h3)), as theoretically expected by an ad hoc a
priori convergence analysis (see for example [20]). The solution Bh is moreover plotted in
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figure 2(b) in the plane z = 1/2 to show its qualitatively good behavior. Then, the ratio∥∥∥∥ 1
√
µ

(B −Bh)

∥∥∥∥
Ω

/η is plotted versus DoF in Figure 3, in order to numerically confirm the

reliability of the estimator given by (27).
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Figure 2: (a) : Convergence rate of the error, (b) : Approximated magnetic flux density
field Bh in the plane z = 1/2.
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Figure 3:
∥∥∥∥ 1
√
µ

(B −Bh)

∥∥∥∥
Ω

/η versus log(DoF ).

4.2 Singular solution

We consider here a singular solution, in order to show that the estimator detects the
elements where the error is the largest. The domain under consideration is defined by Ω =
L×(0, 1), where L is the two dimensional L-shaped domain L := (−1, 1)2\([0, 1]× [−1, 0]).
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The corresponding mesh is composed of 227155 tetrahedra. We want to compute the
magnetic flux density B = curlA given by (3) with the following data (see Figure 4) :

Js = (0, 0, 1)T ,
ΓN = {(x, y, z)> ∈ ∂Ω : z = 0, or z = 1, or y = 0},
ΓT = ∂Ω\ΓN ,
µ = 1.

y

x

z

Js

Figure 4: Domain configuration and eddy current Js.

The exact solution is not known analytically but has an edge singularity along the
edge x = y = 0. Figure 5 shows that the estimator picks up correctly this singular
behavior. Consequently, the efficiency is numerically confirmed (see Theorem 3.2) and a
mesh-refinement strategy using this estimator could be successfuly used in order to adapt
the mesh in the vicinity of the singularity.

0.148582

0.0193040

0.00250801

0.000325845

4.23344e-005

ESTIMATEUR_REAL 0, -

Figure 5: Local estimator map.
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Conclusion

In this paper, we were interested in the residual a posteriori error analysis of a magneto-
static problem given in its vectorial potential formulation in the context of a finite element
approximation. Here, the model under consideration induces some mixed boundary con-
ditions, what constitutes the originality of the present work. The key point needed in the
proof of the reliability of this estimator is a new Helmholtz decomposition of vector fields,
which has been established and constitutes the core of this contribution. Consequently,
the reliability can be achieved using the same kind of proof as for the case of homogeneous
boundary conditions. Numerical tests are then proposed, for a regular as well as for a
singular solution, in order to illustrate the obtained theoretical results.
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