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Abstract. In the context of hyperspectral image analysis in planetology,
we show how to estimate the physical parameters that generate the spec-
tral infrared signal reflected by Mars. The training approach we develop
is based on the estimation of the functional relationship between param-
eters and spectra, using a database of synthetic spectra generated by a
physical model. The high dimension of spectra is reduced by using Gaus-
sian regularized inverse regression to overcome the curse of dimensionality.
Compared with a basic k-nearest neighbors approach or a Partial Least
Square (PLS) regression, estimates are more accurate and are thus promis-
ing.

1 Introduction

Visible and near infrared imaging spectroscopy is a key remote sensing technique
to study and monitor planets. It allows the detection, mapping and character-
ization of minerals, as well as volatile species, that often constitute the first
step toward the resolution of key climatic and geological issues. These tasks
are carried out by the spectral analysis of solar light reflected in different di-
rections by the materials forming the top few millimeters or centimeters of the
ground. Physical properties of the surface, such as chemical composition, gran-
ularity, texture, and physical state are some of the most important parameters
that characterize the morphology of the hundred thousand spectra that typi-
cally constitute an image. Modeling the direct link between these parameters
and observable spectra is usually called the forward problem in classical physics.
It can be evaluated numerically by radiative transfer models, simulating the
propagation of solar light through the atmosphere and surface to the sensor.
It allows us, for given values of the model parameters, to simulate the spectra
that should be observed. Conversely, deducing the physical model parameters
from the observed spectra is called an inverse problem. It generally cannot be
solved analytically, and the use of optimization or statistical methods becomes
necessary. From a general point of view, solving inverse problems requires that
the fundamental physics are adequately understood, such that a function, G,
may be specified that relates the spectra X = (X1, . . . , Xd) and the parameters
Y = (Y 1, . . . , Y p):

X = G(Y ). (1)



Once this relationship G is known, different methods can be used to deduce the
parameters Y from the observable X. They can be roughly divided in three
categories:

• Optimization algorithms are the most traditional approaches. They consist
of minimizing an objective function that expresses the similarity between
an observed spectrum and a simulated one. For example, this function may
be the mean square errors function, where the errors are the differences
between observed and simulated reflectances at each wavelength. These
methods involve numerical optimization techniques (Powell’s method, Sim-
plex method, quasi-Newton method...) starting with an initial guess of
the parameters and searching for the optimum parameters via an iterative
process that minimizes the merit function [10]. In fact, estimations are un-
stable since inverse problems are often ill-posed (solutions are not unique
and a small change in the data can lead to enormous differences in the
estimations). A probabilistic approach can then be used in inverse prob-
lems by introducing a prior distribution on model parameters [13]. These
approaches are computationally expensive since they iteratively simulate
new spectra. Therefore, they cannot be applied in the case of the inver-
sion of an image with several hundred thousand pixels. Moreover, they
can sometimes fall into local minima if the merit function is not convex.

• Look-up table / k-nearest neighbors approach (k-NN): In order to replace
a heavy runtime computation with a simpler look-up operation, a large
database (look-up table) is generated by radiative transfer for many pa-
rameter values and stored on disks. To reverse a hyperspectral image, the
spectrum at each pixel is then compared with the look-up table spectra in
order to find the best match (the nearest neighbor), according to a merit
function minimization. Parameters are then deduced from the look-up
table best match spectrum. In comparison with traditional optimization
methods, the speed gain is significant, since retrieving a value from mem-
ory is often faster than undergoing an expensive computation. The main
disadvantages of this approach are the multiplicity of solutions and their
instability [2].

• Training approaches assume that there exists a functional relationship

Y = F (X) (2)

between spectra and parameters. This relationship corresponds to the
inverse of the physical model G in the forward problem (1). The idea is to
use a look-up table to estimate the underlying mathematical relationship
F . This relationship then allows us to estimate the parameters of new
spectra. Computation time can then be very competitive. Neural networks
[9] or support vector machines (SVM) [7] can be used to learn the function
F as well as PLS regression for linear problems [8]. The advantage of a
such a training approach is that, once the relationship has been established,



it can be used for very large sets and for all new images with the same
physical model.

In this paper, we develop a training approach, based on a dimension reduc-
tion technique: the sliced inverse regression. To the best of our knowledge, this
method has never been used in the context of model inversion on images in plan-
etology. It has the advantage of being fast, stable and statistically interpretable.
It can also help to select an appropriate look-up table for inversion.

2 Our methodology

Our aim is to estimate the d-variate function F in the inverse problem (2). For
the sake of simplicity, only one parameter Y ∈ R is considered in the sequel.
Because of the curse of dimensionality, estimating such a relation is not realistic.
Dimension reduction techniques have to be applied to choose a lower dimensional
regressor space, sufficient enough to describe the relationship of interest. In
practice, it appears [2] that a unidimensional regressor space gives satisfactory
results. Thus, we assume that there exists a function f from R to R such that:

F (X) = f(< β,X >). (3)

As a consequence, the estimation of the relationship reduces to computing one
projection axis spanned by β and an univariate function f .

Principal component analysis (PCA) is the most current technique that could
be used to choose β [5]. However, in the case of a regression problem, PCA is
generally not satisfying since only the explanatory variables X are considered
and the dependent variable Y is not taken into account. Specific dimension
reduction techniques have been developed for regression problems, and among
them Sliced Inverse Regression [11] is the most popular. It consists of applying
PCA to the inverse regression curve E(X|Y ) instead of applying it to the original
predictor X. The projection axis β is then deduced by calculating the eigenvec-
tor corresponding to the largest eigenvalue of Σ−1Γ where Γ = Cov(E(X|Y )) is
the covariance matrix of the inverse regression curve and Σ = Cov(X) is the pre-
dictors covariance matrix. Since inverse problems are generally ill-posed [13, 1],
Σ is ill-conditioned making its inversion difficult. We thus propose to compute a
Gaussian Regularized version of Sliced Inverse Regression (GRSIR). Theoretical
details can be found in [4, 3]. The concept of this method is to incorporate some
Gaussian prior on the projections in order to dampen the effect of noise in the
input data, and to make the solution more regular or smooth. The ill-posed
problem is then replaced by a slightly perturbed well-posed problem depend-
ing on a regularization parameter δ. Similarly, GRSIR consists of computing
the eigenvector also corresponding to the largest eigenvalue of (Σ2 + δId)−1ΣΓ
where Id is the d× d identity matrix. In practice, Σ and Γ are replaced by their
empirical counterpart. Once a relationship has been revealed between reduced
spectra < β,X > and the parameter Y , then f is estimated using piecewise
linear interpolation.



3 Application

3.1 Data

In this paper, we concentrate on an observation of the south pole of Mars at
the end of summer. It has been collected during orbit 103 by the French imag-
ing spectrometer OMEGA on board Mars Express Mission. A detailed analysis
of this image [6] revealed that this portion of Mars mainly contains water ice,
carbon dioxide and dust. This has led to the physical modeling of individual
spectra with a surface reflectance model. This model allows the generation of
30,000 synthetic spectra with the corresponding parameters that constitute a
look-up table. At first, we focus on the terrain unit of strong CO2 concentra-
tion: the bright permanent south solar cap. This unit has been determined by
a classification method based on wavelets [12]. It contains approximately 5,000
spectra to reverse. The 5 most important parameters characterizing the mor-
phology of these spectra are the proportions of CO2, water and dust; and the
grain sizes of water and CO2.

3.2 Validation on simulated data

As a first step, we propose to validate GRSIR methodology using test data.
Spectra are simulated by radiative transfer modeling for random values of the
5 parameters of interest. In order to work in realistic conditions, multiGaussian
noise of dimension d has been added to all the spectra of the test data. Zero-
mean noise is simulated with a covariance matrix determined experimentally
from real observation. We denote by:

• n the number of spectra from the test data (n = 3500),

• xi ∈ R
d, i ∈ 1, . . . , n the spectra from the test data,

• yi ∈ R, i ∈ 1, . . . , n one of the 5 associated parameters.

To quantify the relevance of GRSIR methodology, we examine two aspects of the
validation: the quality of the estimations but also the quality of the relationship
between reduced spectra and parameters. To this end, we used two validation
criteria. The first one, called Normalized Root Mean Square Errors (NRMSE),
quantifies the importance of estimation errors, given by the differences between
the real values yi and the estimations ŷi:

NRMSE =
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∑
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yi. (4)

This measure is invariant with respect to position and scale and therefore
it is possible to deduce if one parameter is better estimated than another. The
NRMSE is close to zero when the predicted values are accurate and conversely



becomes larger when predictions are poor. The second one, called SIR criterion
(SIRC) [11] quantifies the quality of the relationship between projected spectra
and parameters. The closer SIRC is to 1, the better the relationship is. Results
are presented in Table 1, and are compared with a basic k-NN approach currently
used by physicists and with a PLS regression [8]. The number of axes for the
PLS regression has been fixed to 5 which globally gives the best results for the
whole set of parameters. Results show that, for most parameters, estimations
are more accurate with GRSIR. Only one parameter, the grain size of water,
is better estimated on average by k-NN. This may be due to the fact that too
few values have been considered for simulations in the look-up table (only 5).
In all other cases, we can see an important gain on the NRMSE which can be
3 times smaller with GRSIR than with k-NN or with PLS regression. A more
detailed analysis shows that the original densities simulated in the test data are
better reproduced with GRSIR giving a good idea of the parameter’s range of
variation. Finally, the SIRC, always close to 1, is very satisfying.

Parameters k-NN PLS GRSIR

NRMSE NRMSE NRMSE SIRC
Proportion of water 0.86 0.50 0.40 0.90
Proportion of CO2 0.88 0.58 0.30 0.98
Proportion of dust 0.44 0.48 0.17 0.99
Grain size of water 0.43 0.65 0.54 0.84
Grain size of CO2 0.53 0.41 0.22 0.95

Table 1: Comparisons between GRSIR and k-NN with validation criteria

3.3 Inversion of real data

The inversion of the image observed from orbit 103 by GRSIR and k-NN shows
that GRSIR gives very smooth mappings for all sets of parameters. Moreover,
GRSIR estimations vary continuously while k-NN estimations assume a small
number of values. An example is given in Figure 1, where we see that, the
proportion of dust is nearly always estimated to a constant equal to 0.0003 with
k-NN. With GRSIR, the map is more detailed. We did not present the map
estimated by PLS regression because of the lack of space, but let us precise
that it is similar results to GRSIR’s. Because no ground data is available, it is
difficult to determine the accuracy of inversion estimates.

4 Conclusion

In this paper, we proposed a regularized version of Sliced Inverse Regression in
order to retrieve the physical parameters from the spectra observed on Mars
by an OMEGA spectrometer. To the best of our knowledge, this methodology
has never been used in the domain of remote sensing and more particularly in
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Fig. 1: Proportion of dust estimated by k-NN and GRSIR from the hyperspectral
image observed from orbit 103.

planetology. Results on simulations are promising. Estimations are accurate,
and most of the time better than the ones given by the k-nearest neighbors
algorithm or the PLS regression. On real data, maps are smoother with GRSIR,
than with k-NN, and seem to give a coherent mapping if we compare the inversion
of different hyperspectral images of the same portion of Mars surface.
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[12] F. Schmidt, S. Douté, and B. Schmitt. WAVANGLET: An efficient supervised classifier for
hyperspectral images. Geoscience and Remote Sensing, IEEE Transactions, 45(5):1374–
1385, 2007.

[13] A. Tarantola. Inverse problem theory and model parameter estimation. SIAM, 2005.


