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Abstract. In this paper, we explore how potential biomechanical influences

on cell cycle entrance and cell migration affect the growth dynamics of cell

populations. We consider cell populations growing in free, granular and tissue-

like environments using a mathematical single-cell-based model. In a free

environment we study the effect of pushing movements triggered by proliferation

versus active pulling movements of cells stretching cell–cell contacts on the

multi-cellular kinetics and the cell population morphotype. By growing cell

clones embedded in agarose gel or cells of another type, one can mimic aspects

of embedding tissues. We perform simulation studies of cell clones expanding

in an environment of granular objects and of chemically inert cells. In certain

parameter ranges, we find the formation of invasive fingers reminiscent of

viscous fingering. Since the simulation studies are highly computation-time

consuming, we mainly study one-cell-thick monolayers and show that for

selected parameter settings the results also hold for multi-cellular spheroids.

Finally, we compare our model to the experimentally observed growth dynamics

of multi-cellular spheroids in agarose gel.

S Online supplementary data available from stacks.iop.org/NJP/14/055025/
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1. Introduction

Most in vivo tumors expand into the surrounding tissue. To do so, a growing tumor must

overcome mechanical barriers by either exerting mechanical stress on the host tissue (the tumor

micro-environment) or secreting matrix-degrading enzymes that modify the local environment

by cutting fibers such that the macroscopic mechanical resistance is lowered.

Biomechanically induced interactions are increasingly discovered to play an important

role in the growth control of tissues and tumors [1–17]. Biomechanical interactions can serve

as morphogenetic regulators [3] and permit cells to compare and adjust their growth rate to

surrounding cells [5], help cells to choose their orientation according to their environment [6]

or to adjust their growth rate to a local geometric property such as tissue curvature; this has

led to the conjecture that sometimes functions follow form [7]. Morphogenetic strain rates, cell

shape change and intercalation have been demonstrated to be interlinked [18].

Tumors have been observed to grow slower when their embedding medium is stiffer,

and their shape may reflect the geometrical constraints of their environment [1, 14]. Chaplain

et al [19] studied this situation in a multi-scale, multi-phase model considering tumor cells,

the extracellular matrix (ECM) and the host tissue including molecular factors controlling the

growth. Momentum balance was mimicked by an approach of the Darcy type, hence assuming

the tumor behaves as a porous medium. They find an exponential growth for small tumors

saturating at large stress. Helmlinger et al [1] showed the influence of the biomechanical

properties of the tumor micro-environment by growing tumor spheroids embedded in agarose

gels of different levels of concentration and thus rigidity. Regardless of the host species and

the tissue of origin, increased mechanical stress led to significantly decreased maximal tumor

spheroid sizes, which for example in human colon carcinoma decreased from a diameter of

400 µm (in 0.5% agarose) to 50 µm (in more rigid 1% agarose). Chen et al [20] studied the

saturation of growth within a multi-phase model of a growing tumor in external poroelastic

material in spherical coordinates to explain the Helmlinger experiment. The tumor was modelled

as a two-phase solid–liquid material similar to a porous material where the volume fraction of
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the interstitial liquid was assumed to decrease upon compression of the tumor. They found

saturation after a certain time, as it was observed in the experiments and linear growth if the

poroelastic gel was removed. More recently, another group demonstrated that also the shape

of tumor spheroids is dictated by the shape of the solid stress field by using agarose gels

and co-embedding fluorescent micro-beads [14]. Further analysis revealed that one reason for

this observation was suppression of proliferation and induction of apoptosis in regions of high

mechanical stress. A number of hypotheses have been proposed on the question of how and to

what extent the physical interaction of tumor and host tissue influences tumor morphology and

growth kinetics during cancerogenesis [21, 22]. Nevertheless, many aspects of these complex

interactions remain to be experimentally elucidated [23].

Comparisons of experiments with mathematical models have shown that the increase

of the cell population diameter as well as of the cell proliferation pattern, in both growing

monolayers [24, 25] and growing multi-cellular spheroids [24–27], could largely be explained

by a biomechanical form of contact inhibition, controlled by a force threshold, a pressure

threshold or a deformation threshold, above which cells become quiescent. For example, a

careful analysis of EMT6/Ro multi-cellular spheroids revealed that the size of a multi-cellular

spheroid is almost unaffected even when the external glucose concentration is varied by a

factor of 20 from 0.8 to 16.5 mM, while at the same time the cell population sizes varied

significantly. The glucose medium concentration only affected the size of the necrotic core, but

not the tumor size. Even the growth kinetics of well-vascularized xenografts of human NIH3T3

cells subcutaneously injected into mice could be explained by the same form of biomechanical

growth control [28].

These examples clearly indicate that biomechanical effects have a potentially important

role in growth and form.

However, unlike physical particles, biological cells have the capability to change their

physical properties by intracellular control processes and thereby modify their phenotype.

A prominent example is the epithelial–mesenchymal transition (EMT; see, e.g. [29]) in cancer

where the tissue phenotype changes from an epithelium-type phenotype to a mesenchymal

phenotype by active intracellular regulation facilitating cell detachment [30–32]. Another

example is that cells are able to enter blood vessels by a process called intravasation involving

cancer-cell-induced src activation, leading to the degradation of contacts among endothelial

cells, and thereby decrease the mechanical resistance of the blood vessel walls against cancer

cell invasion [33]. Cell birth and death may facilitate cell movement in tissues which on short

time scales appear as elastic material [16].

These examples suggest that there is a complex interplay of mechanical and active

regulative components during different stages of tumor growth, development and invasion.

To find out the contributions of different active versus passive components it is important to

examine how far the cancer phenotype can be explained by physical effects alone. Otherwise,

morphotypes may be erroneously attributed to active regulatory behavior of cancer cells.

Invasive fingers, for example, can also be triggered purely by physical effects as known

from viscous fingering [34] or other instabilities known from non-equilibrium physics (see,

e.g. [35, 36]). Examples are the Mullins–Sekerka instability of a growing crystal in a super-

cooled melt driven by undercooling at the solid–liquid interface (see, e.g. [37, 38]), and an

elasticity-driven growth instability as a consequence of an applied stress [39], a buckling

instability driven by the competition of cell proliferation and stabilizing effects such as bending

or shear (see, e.g. [8, 40–42]), or an undulation stability as it may occur at the epithelial stromal
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interface again driven by cell proliferation ([43]; see also text below). Different morphotypes

have observed bacterial growth which could be explained by different types of instabilities [44].

In this paper, we explore how far physical properties of the embedding medium of a

growing cell clone affect the emerging spatial–temporal growth pattern. For this purpose we

consider two situations, namely a growing clone of cells in a granular medium and a growing

clone in an environment of inert cells. Within our model the main difference between the two

situations is that for cells we assume an active component of the movement, the cell micro-

motility, whereas for the granular objects we do not. We do not take into account the active

regulation mechanisms for cells as reported in, for example [30, 33]. We mimic each biological

cell individually within the framework of ‘agent-based models’. Our model is based on an earlier

approach where cells have been mimicked as adhesive homogeneous isotropic elastic objects

capable of active migration, growth and division of particles. This model has permitted us to

explain the growth pattern of monolayers and multi-cellular spheroids [24–27] and predicted a

subsequently validated order principle in the regenerating liver [45].

We consider a growing monolayer as the reference situation. Recent experiments in [46]

suggest, for expanding monolayers of MDCK (Madin–Darby canine kidney) cells, an active

migration into the direction of the outwards-pointing normal of the cell population border. The

cell density as well as the cell traction has been reported to increase from the border to the

middle of the monolayer. This suggests a pulling type of movement—perhaps in combination

with an increasing contraction of the cell projection area from the border to the center [47]. In a

recent paper [45], we could show that active directed cell movement is necessary for explaining

the regeneration of a CCl4-induced tissue lesion in mouse liver. Passive movement triggered by

cell proliferation alone was insufficient. However, in both cases the cell populations were not

constrained by the strong resistance of other cells or a capsule.

In contrast, in liver regeneration after partial hepatectomy, the growth of a cell population

must occur against the resistance of a capsule enclosing the liver lobes. Hence, growth in such

an environment must occur against mechanical resistance.

The above-reported observations [45, 46] suggest that both types of movement may exist:

(i) pushing-type fronts if cell division leads to local mechanical stress pushing neighbor cells

into the direction of minimal mechanical compression. (ii) Pulling-type movement may be

triggered by the emergence of a border, resulting in active cell migration into the free zone. For

this reason we compare the effect of a biased micro-motility with the existence of an un-biased

micro-motility. In [24–27] we had only considered the case of an un-biased (i.e. uniformly

distributed) micro-motility.

We first consider growing monolayers with a free border and briefly discuss cell movement

triggered either by cell division (‘pushing-type movement’) or by an active outwards ‘pulling-

type movement’ of cells.

For growing clones embedded in tissues or tissue-like media, a free cell population border

does not exist. Instead, an external medium exerts a pressure on the expanding clone resembling

a carcinoma located in an organ (such as e.g. a liver carcinoma) or a population of hepatocytes

enclosed by a capsule rather than a tumor expanding in free space or in a soft tissue environment.

In such a situation a pulling-like movement of the tumor cells seems unlikely to occur prior to

the EMT.

So, in summary, the main purpose of this paper is to explore the growth and invasion pattern

of biological cells in a minimum model mimicking cells as homogeneous isotropic elastic, sticky

particles capable of self-reproduction and migration.
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In section 2, we present the basic model and its variants used in this paper.

Then we consider pushing- and pulling-type expansion of monolayers in a liquid

environment. We then study monolayers expanding in external media of different properties,

namely granular objects and cells of different types. We mainly consider simulations in two

dimensions noting, however, that in three dimensions the results should be equivalent as long as

glucose or oxygen do not become limiting, which seems to hold over a wide range of glucose

and oxygen concentrations [24]. We demonstrate this by simulations of multi-cellular spheroids

embedded in granular objects in three dimensions.

2. The model

We model each individual cell by an isotropic, elastic and adhesive object. The model cells are

capable of active migration, growth and division and are defined by cell-kinetic, biophysical and

cell-biological parameters that can be experimentally measured. Model cells interact with each

other, with other cells and with the underlying substrate.

2.1. Cell shape and cell–cell interaction

In particular, epithelial-derived tumor cells and epithelial cells may reveal a largely spherical

shape in isolation as shown in [45] (see supporting information in that reference). In culture at

high cell densities they adopt a polygonal shape.

When a cell gets into touch with another cell it can form an adhesive cell–cell contact.

With decreasing distance between cells (e.g. upon compression), the contact area between

them, and with it the number of adhesive bonds, increases, resulting in increasing attractive

interaction. On the other hand, if cells in isolation are spherical, an increasing contact area is

accompanied by an increasing deformation, which results in a repulsive interaction. Hence, the

preferred distance of a pair of interacting cells is where adhesive and repulsive forces balance.

If adhering cells are pulled from each other they reveal a hysteresis effect: they elongate and

stick beyond the distance at which they had come into contact. At the rupture point they still

have a finite interaction area. These observations had led the authors of [24] to approximate

the interaction forces between cells by the Johnson–Kendall–Roberts (JKR) model. The same

model has independently been shown in [48] to apply to pairwise interacting S180 cells using

micro-pipette experiments. The JKR model mimics the force between a pair of interacting sticky

homogeneous isotropic spherical objects. It directly includes adhesion and relates the contact

area to the elastic material properties and the adhesion strength and therefore gives in the limit

studied in [48] a proper quantitative description.

The JKR force F JKR
i j = |F JKR

i j (di j)|, where di j is the distance between the centers of two

interacting spheres i and j that is calculated from two implicit equations [49]:

δ = a2

R̃
−
√

2πγ̂ a

Ẽ i j

, (1)

a3 = 3R̃

4Ẽ i j

[

F JKR
i j + 3πγ̂ R̃ +

√

6πγ̂ R̃F JKR
i j + (3πγ̂ R̃)2

]

, (2)

where a is the contact radius. The effective radius R̃ is defined by R̃−1 = R−1
i + R−1

j , where

Ri is the radius of cell i. di j = Ri + R j − δ is the distance between the centers of model cell
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Figure 1. The force Fi j as a function of the distance di j for two interacting

spheroidal cells i, j according to the JKR model for three different elastic moduli,

Ei = E j = 300, 450 and 1000 Pa. The dashed red lines illustrate different cell-

cycle entrance control conditions that we tested. Rule 1 assumes a compression

threshold, assuming that a cell i can only enter the cell cycle if its distance di j

to its neighbor cell j remains larger than dth. This rule introduced in [24] is

not considered here. Rule 2 assumes that cells can only enter the cell cycle if

the pressure-like measure pi =
∑

j Fi j/Ai j (Ai j is the contact area) is below a

threshold pth > 0 (the sum is over all neighbors of i; for details see text). Rule

3 assumes that only cells that experience a negative pressure are able to enter

the cell cycle. Rule 4 assumes that only if the cell–cell contact to at least one

neighbor cell is stretched is it able to enter the cell cycle. Inset: cell division in

the program. Cells double their volume in interphase and deform into a dumb-

bell in mitosis. (νi = ν j = 0.4, ςm = 1015 m−2.)

i and cell j, where δ = δi + δ j is the sum of the deformations of each cell (upon compression

it is the overlap of the two spheres) along the axis linking the centers of these cells. Ẽ i j is

the composite Young’s modulus defined by Ẽ−1
i j = (1 − ν2

i )E−1
i + (1 − ν2

j )E−1
j . We approximate

γ̂ ≈ ςm Ws . ̺m is the density of cell–cell adhesion molecules in the cell membrane, Ws the

energy of a single bond. If the density of cell adhesion molecules would differ in two cell i

and j in contact, then ̺m = min(̺i , ̺ j). In our simulations we assume the same cell adhesion

molecule density for each cell. Equation (2) has to be solved implicitly to obtain a(F JKR
i j ). The

value of a is then inserted into equation (1) to give δ(a), di j = Ri + R j − δ, di j(a). F JKR
i j (di j)

can be obtained by plotting F JKR
i j (di j) versus di j (figure 1) as the equations (1) and (2) are not

amenable to an explicit solution if γ̂ > 0. We fitted the resulting plot by a polynomial of degree

three and used this polynomial in the simulations. In this way, were able to avoid a prolongation

of the simulation times, which would occur if the JKR model equations were solved numerically

during the simulation runs with the multi-cellular growth model, and to keep the advantages of
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the JKR force outlined above:

F JKR
i j (di j) ≈ a3(di j)

3 + a2(di j)
2 + a1(di j) + a0. (3)

The force vector denoting the force of cell j on cell i results from

F i j = F JKR
i j (di j)

r i − r j

|r i − r j |
.

Certainly, although the JKR-force model seems to be a plausible approximation for the

interaction between cells, it neglects inhomogeneities of the cell material, deviations of the cell

shape from a spherical shape prior to deformation and plastic deformations that are expected to

occur on longer time scales as a consequence of re-organization processes of the cytoskeleton.

Moreover, the force calculated by the JKR model is a two-body force and neglects forces

that may emerge from multi-body interactions. However, in [26] we have shown that multi-

cellular growth phenomena in liquid suspension or monoclonal monolayers show only moderate

differences if the interaction force model is varied, for example, by using an extended Hertz

model or a linear spring-like interaction force between cells. From this we would not expect

any qualitative impact from replacing the JKR-force model by a more detailed description of

interaction forces even though we consider it as an important challenge in the future, as far as

quantitative experiments permit a more detailed measurement of the forces to allow increasingly

quantitative model predictions. On the other hand, we consider it useful to take the JKR force

instead of a cruder interaction force, as it is parameterized in measurable quantities and is

expected to be correct for sufficiently fast deformations.

We here consider perfect one-cell-thick monolayers. They can experimentally be realized

in two ways. As we have shown earlier [25], cells seeded on a flat substrate do not detach from

the substrate if their growth is contact inhibited and if at the same time the cell-substrate forces

are sufficiently strong to ensure that the cells enter the cell cycle rest (G0-) phase before they

would detach from the substrate. Therefore, contact-inhibited cell lines with sufficiently strong

substrate adhesion would form a one-cell-thick monolayer. Another experimental possibility to

ensure the formation of a perfect one-cell-thick monolayer might be to constrain the monolayer

from above so that cells cannot leave the one-cell-thick layer configuration even if they are not

contact-inhibited. We use the JKR force also for the adhesion between cells and the underlying

substrate.

2.2. Cells and the enclosing medium

The expanding cells can grow and divide as explained below. We consider two types of

environmental objects: non-dividing cells or inert granular objects. We label the cells of the

expanding clone ‘A’ and the enclosing objects ‘B’. Below we refer to the cells of the expanding

clone as ‘A-cells’ and to objects (cells or granular objects) of the enclosing medium as ‘B-

objects’.

2.3. Cell growth and division

During G1-, S- and G2-phase we assume that a cell increases its volume by increasing the radius

R in small steps △R ≪ R until it has doubled its initial ‘intrinsic’ volume to VDIV = 2VINIT,

where VINIT is its volume immediately after cell division (figure 1). Here, the intrinsic volume

Vi of a model cell i is approximated by Vi(Ri) = 4pR3
i /3. If Vi = VDIV (hence RDIV ≈ 1.26 · R)
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the model cell i deforms into a dumb-bell at constant volume. Then it divides into two daughter

cells of radius R. We assume that a cell i in G1 switches into a rest phase G0 if the measure ptot
i ,

defined by

ptot
i =

∑

j NNi

(

FAA
i j

Ai j

r i − r j

|r i − r j |

)

+
∑

j NNi

(

FAB
i j

Ai j

r i − r j

|r i − r j |

)

+
FAS

iS

AiS

r i − r j

|r i − r j |
,

overcomes a threshold value p0. ptot
i is a pressure-like measure (hereinafter referred to as

‘pressure’).

Here, FAA
i j is the JKR force between A-cell i and a neighbor j of type A, FAB

i j is that between

A-cell i and a neighbor j of type B, FAS
iS is that between A-cell i and the flat substrate, and Ai j

are the corresponding contact areas calculated with the JKR model. In the first sum of the above

relation, j runs over the nearest neighbors of type A, and in the second sum, it runs over the

nearest neighbors of type B. The pressure is calculated directly after the division of a cell. If

ptot
i 6 p0, then the cell i enters the cell cycle and passes through the whole cell cycle again. If

the forces on cell i were isotropically distributed, acting uniformly on the whole cell surface,

and if the adhesion strength were zero, the measure is identical to the definition of hydrostatic

pressure on the cell.

The orientation of cell division in the monolayer simulations is assumed to be random

uniformly distributed parallel to the two-dimensional (2D) substrate. During the mitosis phase

we assume that cells adopt for a short time period a dumb-bell shape. Forces on cells at this stage

can lead to a torque. The orientation can change as a consequence of the torque which we take

into account by orientation changes. For simplicity we modeled these by energy minimization

(the Metropolis algorithm) instead of numerically integrating equations for the torques. Energy

minimization provides an alternative to a forced-based single-cell dynamics [26]. Within each

time interval 1t for each cell a rotation trial around three space-fixed axes by angles δβi with

i = 1, 2, 3, δβi ∈ [0, δβmax), with δβmax ≪ π/2 was performed, using the algorithm of Barker and

Watts as explained in [26]. The probability PRot that the rotation trial is accepted was calculated

by PRot = min(1, e(−1V/FT)) where 1V = V (t + 1t) − V (t). V (t + 1t) =
∑N

i< j Vi j(t + 1t) is

the total potential energy after the orientation change and V (t) the total potential energy before

the orientation change. FT is a reference energy [24]. The energy and force can directly be

linked by F i j = −∂Vi j/∂r i . The Metropolis algorithm ensures that orientation changes that

lead to a decrease of the energy of the multi-cellular configuration are always accepted, while

those which lead to an energy increase are only accepted with probability e−1V/FT . For spherical

cells we do not consider orientation changes since they do not change the total energy of the

multi-cellular configuration. For the monolayers the cell-substrate forces were assumed to be

strong enough to prevent cells from moving out of the layer.

2.4. Cell migration

First, the modeling framework for monolayers is developed, where cells can crawl on a 2D

substrate. After this, we discuss the difference between monolayers and multi-cellular spheroids,

which are 3D cell aggregates.

Monolayers. In the absence of chemotactic signals, isolated cells in suspension or

culture medium have been observed to perform an active random-walk-like movement in

monolayers [50, 51]. We assume that the random component of the active cell motion, the
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cell micro-motility, can be characterized by the cell diffusion constant D of isolated randomly

moving cells. We used D0 ≈ 10−12 cm2 s−1 as the reference value. More motile cells are

characterized by a larger D. In our model, D is also used to quantify the micro-motility of

cells in contact with other cells.

While in mechanical contact with other cells, proliferating cells exert a pressure on their

neighbors. The neighboring cells try to escape this pressure by moving against the friction

caused by the other neighbor cells and extracellular material, for example ECM [52]. The

movement could be partly passive, due to pushing, and partly active [9, 46], if cells migrate

into the direction in which they escape the mechanical (or morphogen) stimulus. We simulate

cell migration as a friction-dominated over-damped motion with a stochastic contribution by a

stochastic equation of motion for each cell [26, 45, 53]. Schienbein et al [50] have demonstrated

that the migration of an ensemble of isolated cells in culture subject to an external force can be

mimicked by a Fokker–Planck equation for the single-particle distribution function having a

drift and a diffusion term.

Dickinson and Tranquillo [54, 55] have developed equations of motions for different types

of cell movement from cell receptor dynamics and obtained a stochastic dynamics reminiscent

of the approach of [50]. More recently, in [46], in monolayers of MDCK cells a net traction of

cells perpendicular to the border of the layer was observed, suggesting an active pulling-like

movement to increase the spread of the monolayer. Our equation of motion tries to capture the

main aspects of these observations.

The equation of motion of cell i of the expanding cell type (denoted by the superscript A)

is determined by

∑

s

ςAS

is
vA

i (t) =
∑

j NNi

(

ςAA

i j
(vA

j (t) − vA
i (t)) + FAA

i j

)

+F
Active,A
i

+
∑

j NNi

(

ςAB

i j
(vB

j (t) − vA
i (t)) + FAB

i j

)

+ FAS
i .

In this equation, vA
i (t) is the velocity of cell i of type A and vB

i is the velocity of object i

of type B. ςAX

i j
with X = {A, B, S} denotes the friction of cell i of type A and (i) cell j of type A

(if X = A) or (ii) object j of type B (if X = B) or (iii) the substrate S (if X = S). Generally, the

friction may be decomposed into a perpendicular and a parallel component, so that

ςAX

i j
= γ AX

⊥ (u i j ⊗ u i j) + γ AX
‖ (I − u i j ⊗ u i j).

Here, u i j = (r j − r i)/|r j − r i | with r i denoting the center of cell i of type A (or if

cell i is in mitosis and has a dumb-bell shape, the position of the closest sphere of the

dumb-bell). r j denotes the center of object X ∈ {A, B, S} i.e. a cell of type A, an object

of type B, or the substrate S. ‘⊗’ denotes the dyadic product. FXY
i j denotes the JKR force

between cells i and j of type A (X = Y = A), objects i and j of type B (X = Y = B) or

between cell i of type A and object j of type B (X = A, Y = B or X = B, Y = A). FAS
i

is the JKR-force between cell i of type A and the substrate S. The JKR-forces between

cells A and the substrate and between objects B and the substrate are assumed to be

large enough to prevent detachment and are not explicitly modeled here. We assume the

substrate that the cell crawls on to be flat and denote it by a sphere of infinite radius. I is

the unity matrix. ( u ⊗ u )v i is the projection of v i on u. This can be immediately seen as, after
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some re-writing,

ςAX

i j
v i = γ AX

⊥ (u i j ⊗ u i j)v i + γ AX
‖ (I − u i j ⊗ u i j)v i

= γ AX
⊥ u i j(ui jv i) + γ AX

‖ (I v i − u i j(u i jv i)).

If, for example, X = S, then u ik is the unit vector of the line connecting the center of

the sphere of infinite radius representing the substrate k = s and the center of cell i of type A.

(u is ⊗ u is)v i then denotes the projection of the velocity component on the connecting line, i.e.

perpendicular to the substrate, and (I − u is ⊗ u is)v i is the velocity component parallel to the

substrate. Accordingly, γ AS
‖ denotes the tangential friction coefficient of a cell of type A with

the substrate. Correspondingly, (u is ⊗ u is)v i would contribute to a deformation of a sphere

against inner cell friction characterized by γ AS
⊥ . In general, the friction coefficients γ XY

⊥ , γ XY
‖

may differ for cells of type A and objects of type B. We assume here that they are the same

i.e. γ AA
⊥ = γ B B

⊥ and γ AA
‖ = γ BB

‖ . We further assume throughout this paper that γ XY
⊥ = 0 and

that γ XY
‖ ∝ Ai j for two interacting objects i, j of type X, Y (XY = AA, AB, BB, AS or BS).

As we set γ XY
⊥ = 0, we in the following use the simplified notion γ XY ≡ γ XY

|| . Assuming that

γ XY ∝ Ai j assumes that the density of surface adhesion molecules responsible for the strength

of the friction force is nearly constant. If the number of surface molecules were constant, then

γ XY should be independent of Ai j .

FAA
i j is the JKR force the cell i of type A experiences from neighbor cell j of type A,

FAB
i j is the force that A-cell i experiences from a neighbor j of type B, and FAS

i j summarizes

the force A-cell i experiences from the flat substrate, ECM and a possible plate or mesh

preventing movements perpendicular to the substrate. In monolayers, cells are usually attached

to a substrate, usually the culture plate. F
active,A
i is then the active migration force of cell i of

type A from crawling on the substrate.

The equation of motion of the external objects (denoted by the superscript B), either

external medium cells or granular particles, is mimicked by

∑

s

ςB

is
vB

i (t) =
∑

j NNi

(

ςBB

i j

(

vB
j (t) − vB

i (t)
)

+ FBB
i j

)

+F
active,B
i

+
∑

j NNi

(

ςAB

i j

(

vA
j (t) − vB

i (t)
)

+ FAB
i j

)

+ FBS
i .

Equivalently, FBB
i j is the JKR force B-cell i experiences from neighbor cell j of type B, and

FBS
i j is the JKR force of B-cell i by the flat substrate, extracellular material and a constraining

plate or mesh.

If the B-type objects are granular particles, F
active,B
i = 0. For the other cases, the active

migration force of cell B is as defined below.

Beysens et al [56] have proposed an analogue of an ‘Einstein relation’, linking the cell

diffusion constant with an effective temperature. Note, however, that the physics for cells and

colloidal particles is very different. For cells, the effective temperature parameter is controlled

by the cell surface receptor dynamics and not, as for Brownian particles, by collisions with

smaller solvent particles. If the cell motion occurs on a flat substrate, then the random micro-

motility is not isotropic in three dimensions but needs to be split into components parallel and

perpendicular to the substrate.
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For A-type cells we consider two types of micro-motility which are presented below for a

one-cell-thick monolayer.

Case 1: Unbiased micro-motility. We assume that the micro-motility is isotropic within the

plane of the substrate. In this case, F
active,A
i;⊥ (t) = (u is(t) ⊗ u is(t))F

active,A
i (t) is the random force

component perpendicular, and F
active,A
i;‖ (t) = (I − u is(t) ⊗ u is(t))F

active,A
i (t) is the random force

component parallel to the substrate. We assume the perpendicular components to be zero. For

the parallel components, we assume that 〈F
active,A
i;‖ 〉 = 0, 〈F

active,A
i;‖ (t)F

active,A
i;‖ (t ′)〉 = 4γ 2

‖ D‖δ(t −
t ′) in formal analogy with colloidal particles. Moreover, the random force components of

different cells as well as between different vector components of the same cell are uncorrelated.

However, as discussed above the Einstein relation in the case of cells only represents a formal

analogy because unlike colloidal particles cells can control their migratory activity on their own.

Hence the amplitude of the force autocorrelation function generally is a function of cell internal

processes or states.

Case 2: Biased micro-motility. We assume that the active migration is biased into the direction

of minimum stress exerted by A-cells if no embedding medium exists. We found that this

assumption was able to explain the regeneration of the necrotic zone that emerges after

intoxication by CCl4 in liver lobules [45]. Moreover, recent monolayer experiments with MDCK

cells suggest that cells may actively move towards free spaces and pull other cells behind [46].

We mimic aspects of this type of micro-motility in two alternative ways:

1. By the selection of random force contributions into directions of decreasing local

pressure: F
active,A
i = (1 − 2[∇ p i f active,A

i
]) f active,A

i
, where f active,A

i
obeys the same relations

as F
active,A
i in case 1 of isotropic micro-motility in the plane of the substrate, i.e.

〈 f active,A

i;‖ 〉 = 0, 〈 f active,A

i;‖ (t) f active,A

i;‖ (t ′)〉 = 4(γ AS
‖ )2 D‖δ(t − t ′), and f active,A

i;⊥ = 0. Here, 2(x)

is the Heaviside function which is one if x > 0 and is zero otherwise and

pA
i =

∑

j NNi

(

F
AA;ςm=0

i j

Ai j

r i − r j

|r i − r j |

)

is a measure of the stress of A-type cell i by external forces not taking into account the

adhesion of cells. The term mimics the case when cells can distinguish neighbor cells of their

own type from neighbor cells of a different type and move in order to relax the compression

within cells of their own type. If we would consider in the calculation of pA
i also forces between

A-type cells and B-type objects, then the effect at the interface between A-type cells and the

B-type object would become negligibly small.

2. By the addition of a constant force term directed into the local outward-normal of the

border of A-cells. In this case, F
active,A
i = f active,A

i
+ F

directed,A
i .

f active,A

i
is the random component of the active force obeying the same relations as in case 1.

F
directed,A
i = −∇ pi

|∇ pi | F0 with F0 being the deterministic component of the active force, i.e. the cell

moves with a deterministic force into the opposite direction of the local pressure gradient.

Some authors (see, e.g., [57]) assume that migrating cells try to adopt a certain target

speed v0. This can be taken into account by replacing in the first term of the equation of motion

v i → v i(1 − |v i |2/v2
0) for |v0| > 0. We will not consider this case here but note that it can be

easily included in our concept.

New Journal of Physics 14 (2012) 055025 (http://www.njp.org/)

http://www.njp.org/


12

For B-type objects we consider two cases: If B-objects are considered to be cells, then

we assume that the active term F
active,B
i (t) is mimicked in the same way as for A-type cells in

case 1, i.e. as an unbiased active random movement. If B-objects represent granular particles,

we assume that the active force is zero, F
active,B
i (t) = 0.

Multi-cellular spheroids. In the last part of the paper, we consider multi-cellular spheroids, i.e.

3D cell aggregates. The tissue architecture of (3D) multi-cellular spheroids is usually closer to

the in vivo situation and shows the formation of extensive ECM (see, e.g. [58]). For example,

staining for collagen V in SK-MES-1 cells, a non-small-cell lung cancer cell line shows massive

ECM presence [59]. If this 3D network of ECM is stiff enough, it may allow cells to anchor

and move as described in [51]. In this case the interpretation of the terms remains the same as

that in the monolayer situation. The factor ‘4’ in the autocorrelation function is then replaced

by ‘6’ (= 2d; d is the space dimension) and the diffusion is assumed to be isotropic (we use

diffusion constant D). However, some multi-cellular spheroids show only a very sparse matrix.

In this case, the main component of active migration occurs from forces exerted from a cell on

its neighbor cells (i.e. not on the ECM anymore). Those forces are balanced by the respective

reaction forces of the neighbors on that cell. Stochastic forces from one cell on its neighbor cells

may also emerge from fluctuations of the cells’ membranes in which case also momentum is

conserved; hence, the random force terms for neighbor cells have to balance each other. Taking

this into account would modify the equations of motion slightly but the results would not be

expected to show any major changes for the situations presented in this paper. (i) We are here

interested in pattern formation on long time scales compared to the characteristic times of the

stochastic fluctuation terms representing the cell micro-motility and, as the spheroids are em-

bedded in a dense arrangement of granular objects and not swimming in liquid suspension, cells

do not detach and move away as a consequence of the random movement. (ii) For multi-cellular

spheroids we consider below pushing-type movement emerging from cell proliferation. Here

active directed movements are not considered and small fluctuation forces do not play a role.

That the precise form of the noise terms representing the micro-motility does not play a role

is supported by the simulation results at varying micro-motility of the B-objects shown in figures

6(A)–(D), suggesting that the random component in the movement of cells has statistically no

effect on the formed pattern for the situations considered in this paper. However, it might be

worth noting that the movement of the cells in liquid suspension could be mimicked in the same

framework: cell movements due to collisions with fluid particles generate a random Brownian

movement component, usually with smaller amplitude than for active random movement, so in

this case the equations of motions are the same as explained above but with a smaller diffusion

constant.

Overview of simulations. In our simulations below, we consider one-layer-thick monolayers.

For A-type cells the initial number at the start of the simulation at t = 0 is always N (t = 0) = 1.

In the first part we investigate the effect of pushing/pulling-type movement on the growth

kinetics of a monolayer not embedded in another external material of B-type objects.

In the second part, we consider an expanding monolayer in an embedding material of

B-type objects (granular objects or cells). We vary the following parameters: (i) motility

(diffusion constant) and mobility (friction constant) of the embedding medium, (ii) density

of the embedding objects, (iii) elasticity of the embedding objects, (iv) adhesion strength of

the embedding objects, (v) object size of the embedding objects and (vi) cytolysis versus

no cytolysis of apoptotic cells of the expanding clone. The reference parameters used in the

simulations are given in table 1.
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Table 1. Reference parameters.

Parameter/symbol Unit Value (range in Source

sensitivity

analysis)

Cell diameter l µm 15 Assumed

Intrinsic cell cycle h 18 [86]

time τ

Reference energy J 10−16 [50, 56]

FT

Young’s modulus Pa 450 (300–1000) [77, 78]

EA, EB

Poisson ratio υ – 0.4 [87, 88]

Diffusion constant cm2 s−1 10−12 [56]

D

Receptor surface m−2 1015 [83, 84]

density ςm, ςAA

Receptor surface m−2 0 [83, 84]

density ςAB, ςBB

Binding energy ≈ 25kBT [56]

single bond Ws

Friction coefficient Ns m−3 107 Assumed

γ

Diameter of mm 1.6 (0.25–2.4)

environment

In the third part, we consider 3D multi-cellular spheroids in an embedding material of

granular objects and compare our simulation results directly with the findings of Helmlinger

et al [1] and Galle et al [60]. We from now on always use D to denote the diffusion constant.

For monolayers, this corresponds to using the symbol D instead of D‖.

To quantify our simulation results, we measure the cell population size N (t), and the radius

of gyration,

Rgyr =
√

1

N

∑

i
(r i − RCM)2,

where RCM = 1

N

∑

i r i is the position of the center of mass. The sums run over the expanding

(the growing) clone. If the monolayer is compact with a circular border, then R =
√

2Rgyr,

where R is the radius of the monolayer. For this reason, we usually display R or the diameter,

L = 2R, calculated from the radius of gyration. In addition, we store the full spatial–temporal

configuration of cells and objects at different times during the growth process.

3. Results

3.1. Reference situation: growing monolayers without an embedding medium

In [46], the authors found an active migration of cells towards the free edge of an expanding

monolayer culture. Hoehme et al [45] found that an active migration of cells towards a drug-

induced necrotic zone is necessary for explaining regeneration of liver after toxic damage.
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Figure 2. Diameter of the monolayer in the free environment versus time for

different motility models. The black points denote the results experimentally

found for rat astrocytes in [61] denoting an expansion speed in the linear growth

regime of about 6 µm h−1. Typical values for the expansion speed of monolayers

for different cell lines span 2–23 µm h−1 [62]. The red curve (up triangles)

denotes case 1: uniformly distributed micro-motility (with no bias). The full blue

and green lines (diamond and square) result from uniformly distributed micro-

motility plus a directed force term of either 0.8 or 1.6 nN. For an explanation

see case 2(ii) for the active cell migration term of A-cells. The black dashed

curve (down triangles) denotes biased micro-motility as defined for case 2(i).

Here, DA = 3.1D0. Insets: if a cell actively moves into the free space around

the monolayer, the cell density in the surface region is smaller (upper left inset)

than if active migration is purely random (lower right inset). Active migration

accelerates monolayer expansion. In the lower half, white cells are proliferating

and gray cells are in G0 phase.

Figure 2 shows the results of a biased and an unbiased micro-motility in a growing one-

cell-thick dense monolayer. The strength of the bias has been varied up to the size at which cells

detach.

As B-type objects are not considered in this part, and as FAS
iS is approximately constant by

construction, the variable part of the pressure is given by

ptot
i ≈

∑

j NNi

(

FAA
i j

Ai j

r i − r j

|r i − r j |

)

.

The results show an acceleration of growth which can be explained by an increase of the

proliferating rim by the biased cell micro-motility. Due to the active movement towards the

free edge of the monolayer the cell–cell contacts are stretched. This leads to a reduction of cell

compression and thereby facilitates reentrance of cells into the cell cycle. Moreover, the cell
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density close to the border is smaller for biased than for unbiased micro-motility. We conclude

that a bias in the micro-motility promotes the growth of a monolayer. We expect the same result

for multi-cellular spheroids. Transferred to the case of a tumor in the soft tissue environment,

any morphogen that biases micro-motility or an increase of its amplitude or both will promote

the speed of growth of the expanding tumor. Besides this acceleration effect, we observe that

biased micro-motility reduces the random motion of cells inside monolayers because cells in

almost isotropic multi-cellular environments then have a smaller tendency to move. On the

other hand, the micro-motility is larger close to the border.

So far we have used model rule 2 of figure 1 to mimic the cell cycle entrance control.

Rule 1 of figure 1 has been tested in [24]. In figure 3, we test different hypotheses for cell cycle

entrance, namely that the entrance into the cell cycle is triggered if ptot
i < 0, i.e. if normal stress

−ptot
i on the cell is positive (rule 3 in figure 1), and that cell cycle entrance only occurs if a

cell is under stretch (rule 4 in figure 1). Note that for rule 4 it is sufficient if at least a single

contact is stretched (i.e. di j − (Ri + R j) > 0 for at least one j ∈ { j}) even if other contacts are

under compression. It is not necessary that the cell is overall stretched into all directions (i.e.
∑

j di j − (Ri + R j) > 0) or stretched into each direction (i.e. di j − (Ri + R j) > 0, ∀ j).

We again find that an increase of the active migration pulling force accelerates the growth.

Above a certain pulling force (see the curve for 3 nN), cells detach and actively migrate

into the environment. This is reflected in the radius of gyration versus time curve by the

characteristic bump at about 2–3 days, indicating free migration (arrow in figure 3). However,

the condition that cell entrance is possible only if a cell is under tension (positive normal stress)

implies smaller growth velocities as for active directed migration forces and a positive pressure

threshold (compression; implying negative normal stress) for the cell cycle entrance.

Interestingly, the largest and smallest growth speeds are observed for rule 3. The growth

speed is largest for pulling forces of 1 nN or more and smallest in the absence of pulling forces.

For rule 4, stochastic force fluctuations are able to trigger the overstretching of a single cell–cell

contact for a moderate pulling force, resulting in a larger monolayer expansion speed than for

rule 3.

In summary, the growth curve without any embedding medium shows that: (i) a directed

force into the direction of the outwards-pointing interface normal leads to acceleration of

growth compared to random uniformly directed micro-motility, (ii) a growth control mechanism

permitting growth entrance only if a cell experiences a negative force slows down the growth

speed for small pulling forces but accelerates it for large pulling forces, and (iii) a growth control

mechanism that permits only cell cycle entrance for stretched cells leads to a smaller (larger)

growth speed than for negative force control for large (small) pulling forces.

3.2. Growing monolayers in an embedding medium

In the following, the term ‘embedding material’ encompasses both the B-type cells and the

B-type non-cellular objects. A distinction is made only if necessary.

Compared to earlier studies (see, e.g. [24, 26]), the introduction of an embedding material

is an important step towards a modeling of the in vivo situation. We systematically modified the

properties of the embedding material by varying the motility, initial density, elasticity, adhesion

properties and average cell size of the embedding objects (B-type). We assumed the growing

cells and the embedding material to be differentially adhesive with ζm = ζAA = 1015 m−2, where

ζAA denotes the density of adhesion molecules in the case of an interaction between two cells of
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Figure 3. Square root of population size (top plot) and population diameter

(L = 2
√

2Rgyr, see above) (bottom plot) if cells move actively into the direction

of the free edge according to the migration rule in case 2(ii) and different variants

of cell cycle entrance control rules. (i) (Green triangles; blue open squares; light

brown diamonds; up triangle brown/green; full black circles with brown lines;

blue triangle with light green line; full blue square with blue line): cell division

entrance occurs only if the force is attractive (negative; see rule 3 in figure 1).

(ii) (Brown up triangle with brown line; dashed pink line; dashed black line):

cell cycle entrance occurs only if the cell is stretched (see rule 4 in figure 1). For

details see text. For comparison, the reference curve for a uniformly undirected

active migration force (case 1) and positive pressure threshold for cell cycle

entrance (red, hollow circles, see rule 2 in figure 1) as well as the curve with a

directed active force of 0.8 nN (compare figure 2) and positive pressure threshold

for cell cycle entrance (pink curve with a solid diamond shape) are shown. With
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Figure 3. (Continued) increasing outwards-directed active migration force, the

expansion velocity increases and for an active directed migration force of about

1 nN it becomes larger than the reference curve without the directed migration

component. Beyond about 3 nN the cells detach and move freely. Note that

the expansion speed for a directed micro-motility force of 0.8 nN and positive

pressure threshold (= negative normal stress; pink curve) is larger than that for a

directed micro-motility force of 1 nN if the cell cycle entrance is triggered by a

negative pressure (= positive normal stress). The arrow shows the characteristic

bump if cells detach. The bump denotes a regime where Rgyr ∝
√

t and is

characteristic of the free random movement component (see also [63]).

type A. For B-objects we assume in most cases that ζBB = ζAA so that the strength of adhesion

between B-objects is the same as the strength of adhesion between A-cells. Furthermore, unless

stated otherwise, we assume that A-cells and B-objects do not adhere, i.e. ζAB = 0 m−2. The

elastic moduli of A-cells and B-objects are denoted by EA and EB, respectively, and the diffusion

constants for A-cells are denoted by DA and for B-cells by DB. Whereas D0 = 10−12 cm2 s−1

denotes the reference diffusion constant, γ0 denotes the reference effective friction constant for

cells with the substrate.

We started our simulations with a single cell of type A embedded in about 104–106 particles

of the granular medium or model cells of type B. We used the number of embedding objects to

control the initial density of the environmental objects. All elements of the embedding material

were randomly arranged (isotropic homogeneously distributed) within a circular environment

(figure 4) that was enclosed by a circular impermeable wall mimicking a virtual Petri dish. The

initial placement of the B-objects on a regular square lattice was found to lead to symmetry

artifacts in the emerging growth pattern. The shape of the impermeable wall fed back to the

final shape of the growing aggregate (this was also experimentally observed in [1] for cell

populations growing in a tube filled with agarose gel, see also figure 15), which is why we

chose a circular border. The total area was held constant and was the same in all simulations.

During the simulations, the growing population of cells of type A pushed away and compressed

the surrounding objects. Figure 4 shows that a directed active migration component according to

case 2 does not affect the growth speed of the expanding cell population as long as the directed

force component is insufficient to cause detachment of cells from the expanding monolayer cell

population.

For this reason, below we only consider pushing-type movement. We also consider the case

when cell cycle entrance occurs only if ptot
i > 0. First we study growth without apoptosis and

then include apoptosis with subsequent cytolysis.

Figure 5 shows the growth scenario with the reference parameter set.

3.2.1. Variation of the friction and motility of embedding objects. As a first step we analyzed

the impact of varying the friction and micro-motility of the embedding objects of type B on the

morphology of the expanding cell clone A.

As explained above, embedding granular objects are characterized by DB = 0, while

embedding cells are characterized by DB > 0. For cells, the diffusion constant DB and the

friction coefficient γ BS can be varied independently. A fluctuation dissipation theorem linking
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Figure 4. (A–F) Growth scenario for a directed active force of 1.5 nN after

6 (A), 8 (B), 10 (C), 12 (D), 13 (E) and 14 days (F). (G–I) Morphologies of

corresponding populations for t = 12 days simulated with directed forces of

3 nN (H) and 8 nN (I) or no directed force (G). The embedding B-objects are

colored gray, while proliferating A-cells are colored black and quiescent A-

cells are colored white. Plot: growth scenarios (population diameter based on

the radius of gyration). Note there is no difference as long as the active force

is below the rupture force (blue curve with circle symbols and red curve with

triangle symbols). Only if the active force is above the rupture force (green curve

with square symbols and orange curve with diamond symbols), is the growth

moderately accelerated and the saturation diameter elevated. As A-type cells are

in an environment of B-type objects, not all cells are able to detach even if the

directed active movement force amplitude F0 is above the rupture force. Rather,

the probability of rupture increases, leading to an increase of growth speed with

increasing F0. However, the differences in growth speed are far below that of

a free monolayer (compare figures 2 and 3). In all simulations in this figure,

γ AS = γ BS = γ AA = γ BB = γO.

strictly diffusion (fluctuation) with dissipation (friction) by a (thermal) temperature does not

exist even though a formal analogy has been proposed [56]. Variations of the diffusion constant

reflecting the micro-motility, an active motion component of the cell, may be caused by, for

example, molecular changes in the complex coordinated cytoskeletal actions that are required

for active cell movement [64]. Cell-substrate friction may be influenced by modification of the

ECM, the liquid medium, or the covering of the dish surface.

For objects B of the embedding tissue, either the cell diffusion constant DB or the friction

γ BS of cell type B with the substrate is modified.

While we found that a variation of DB has only a negligible impact on the shape of the

expanding multi-cellular population (figures 6(A)–(D)), we found that the variation of γ BS

leads to major changes in both growth velocity and population morphology (figures 6(E)–(H);

figure 8(A) versus (C), figure 8(B) versus (D), figure 8(F) versus (H), figure 8(G) versus (I)).

At sufficiently high friction between B-objects and medium, the border of the A-clone

forms dendrites. With increasing medium friction, the growth velocity of the expanding A-cell

clone decreases (compare, for example, lines A and B in figure 11), and the critical wavelength

(the size at which a domain splits into two branches so that dendrites form) decreases (figures

6(E)–(H)). Effectively such an increase of medium friction of the host tissue increases the
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Figure 5. Illustration of multi-cellular growth embedded in tissue. The figure

shows a growth scenario with the reference parameter set. The coloring of the

growing cell population (cell type A) reveals the distribution of proliferation

activity: cells of white color have divided within the average cell cycle time,

whereas green cells have not divided for two times the average cycle time

(yellow = 4 times, red = 6 times and black = more than 10 times). The coloring

shows that proliferation mainly takes place at the population border. The

embedding tissue (cell type B) is colored light gray. The parameters are:

EA = EB = 450 Pa, νA = νB = 0.4, DA = DB = D0, D0 = 10−12 cm2 s−1, ζm =
1015 m−2, γ AA = γ BB = γ AS = γ0, γ BS = 5γ0, γ0 = 107 Ns m−3, ρB = ρ0 = 5250

cells per mm2, ζAA = 1015 m−2, ζBB = ζAA; ζAB = 0 m−2, lA = lB = l0 = 15 µm.

NB = 20 078. See movie 1, available at stacks.iop.org/NJP/14/055025/mmedia.3

viscosity of the tumor micro-environment, which is reminiscent of a Saffman–Taylor-like

instability [65], a viscous fingering.

The additional cell mass generated by cell proliferation generates a pressure gradient

moving one ‘fluid’ (the expanding cell clone) against another ‘fluid’ (the extracellular objects).

If the friction of the external objects with the dish (or a medium between the objects) is too

large, they cannot move away with the same speed as the growth front. So cells of the growing

clone expand and form fingers into small holes emerging by chance. At the tip of the dendritic

fingers the local stress is smaller than that in the interior (figure 8(E)).

Another argument supporting the view of a viscous fingering instability is that simulation

results of dividing isolated cell clones (not embedded in an external medium of B-objects)

with the single-cell-based model used in this paper could be mimicked within a continuum

description using mass conservation with a pressure-controlled growth term, ∂tn + ∇ · (nv) =
nH(p0 − p)/τ in combination with Darcy’s law [66], v = −(k/η)∇ p [66]. Here, n(r,t) is the

local cell density, H the Heaviside step function, v the velocity of the expanding front at the

border of the A-cell clone, τ the effective cell cycle time that depends also on the shape of the

cycle time distribution [53], p the local pressure (probably better referred to as normal stress), k

the permeability and η the viscosity. As the simulation results with the single-cell-based model

3 A higher resolution version can be found at http://msysbio.com/videos njp.
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Figure 6. Impact of host tissue motility. (A–D) Compact tumor monolayers

in 2D. (A) DB = 0 (host tissue = granular medium), γ BS = γ0, (B) DB =
0.1D0, γ BB = γ0, (C) DB = D0, γ BS = γ0, (D) DB = 10D0, γ BS = γ0. (E–H)

Increasingly dendritic tumor monolayers in 2D. (E) DB = D0, γ BS = 5γ0, (F)

DB = D0, γ BS = 10γ0, (G) DB = D0, γ BS = 20γ0 (see movie 2, available at

stacks.iop.org/NJP/14/055025/mmedia)4, (H) DB = D0, γ BS = 50γ0, ζBB = 0. (I)

Pressure pA (see the legend) exerted on A-cells in population C. (J) pB in

population C. (K) pA in population H. (L) pB in population H. The right inset

shows NA(t). With increasing friction of the embedding B-type objects with the

substrate, the growth speed of population A decreases.

in [66] suggested a step function-like cell density profile dropping sharply at the population

border, accompanied by a less sharp decrease of the pressure p towards the population border,

the state equation n(p) looked to be a step-like function of n with a jump from zero density to the

bulk density as p > 0 so n(p) did not need to be considered explicitly. The adhesion between

cells of the expanding clone (of cell type A) generates a cohesive force term, which can be

related to a sort of surface tension σ . The friction between B-objects and the substrate is larger

than between A-cells and the substrate. So the growing cell clone may be interpreted similarly

to a radial Hele–Shaw cell in which a (less viscous) fluid is injected into a more viscous fluid,

4 A higher resolution version can be found at http://msysbio.com/videos njp.
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Figure 7. Quantitative analysis of morphology for varying friction. The number

of dendritic fingers (A) and the mean branch size (B) at a specific distance R from

the center of mass of the tumor cell population for the growth pattern in figures

6(E)–(H). DB = D0, ζBB = 0. Red lines (see figure 6(E)): γ BS = 5γ0; blue lines

(see figure 6(F)): γ BS = 10γ0; yellow line (see figure 6(G)): γ BS = 20γ0; green

line (see figure 6(H)): γ BS = 50γ0.

the two fluids being constrained by two parallel plates. This is known to generate a viscous

fingering instability (see, e.g. [34]).

Further support for this view emerges from an analysis of the branching pattern, which we

exemplify for the simulations shown in figures 6(E)–(H) (see figure 7). In figure 7(A), we draw

the number of branches with increasing distance to the center of mass, given by Rcm =
∑N

i=1 r i .

At too large distances, approximately R > 50, the number of branches decreases again as then

the population of A-cells come close to the border. Up to this value, the mean branch width is

approximately constant even for a single realization of the growth process (figure 7(B)).

Either by dividing the circumference at a distance R, given by U = 2pR by the number of

branches using the data in figure 7(A), or using the branch size from figure 7(B), one obtains

a measure proportional to the domain size λcrit at which an instability occurs. From a classical

Saffman–Taylor instability, one would expect λcrit ∝ 1/[v(ηBS − η0)]
1/2 where η0 is the viscosity

of a fluid of small viscosity expanding in another fluid with higher viscosity ηBS. v is the growth

velocity of the expanding fluid usually noted as dR/dt . In order to test this relationship for

growing cell populations, we replaced the difference of viscosities by the difference of the

friction coefficients of cell-substrate friction for A-cells and B-objects (γ BS − γ0) assuming

ηBS ∝ γ BS, η0 ∝ γ0. We estimated v from v ∝ d
√

N/dt as a measure of the velocity of a

growing front which can be calculated from the data on N(t) presented in figure 6. However,

we found that the current data are insufficient to confirm the classical relation for λcrit even

though the scenarios in figures 6(A)–(H) and the findings in figure 7 show the same qualitative

tendencies as for a Saffman–Taylor instability. If one replaces the observed expansion velocity

v by the intrinsic velocity v0 of the expanding monolayer in the absence of the embedding

B-objects, then we find approximately λcrit ∝ 1/(γ BS − γ0)
1/2. However, further simulations

with larger systems and more realizations are necessary for identifying the precise relationships.

These are very time consuming as the present simulations already took several weeks’

simulation time.

After the instability has occurred, growth occurs almost only in the tip of the dendrites,

even though a change in the width of the proliferating rim with increasing γ BS could not be
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Figure 8. Impact of initial cell density and elasticity of tumor host tissue.

Snapshots at the same time of the growth process for different parameter settings.

DB = DA = D0. (A) Simulation of a monolayer growing embedded in tissue

(colored gray) of decreased initial cell density (ρB ∼ 3500 cells per mm2). (B)

Tissue of increased density (ρb ∼ 7000 cells per mm2). (C) The same setting as

(B) only with additionally increased medium friction of the embedding cells

(γ BB = 20γ0). (D) The same as (A) but with increased host tissue medium

friction (γ BS = 20γ0). (E) Alternative coloring of a section of (F) where tumor

cells were colored black and embedding cells were colored according to the

pressure exerted on them (black/red = high, yellow = medium, green = low).

(F) Monolayer (E = 450 Pa) growing into the host tissue of lowered elasticity

(EB = 300 Pa). (G) The same as (F) with increased embedding tissue elasticity

(EB = 1000 Pa). (H) The same setting as (G) with additionally increased

host tissue medium friction (γ BS = 20γ0). Red framed inset: magnification of

embedding tissue: the adhesion between B-cells leads to a local spontaneous

clustering. (I) The same setting as (F) with increased host tissue medium friction

(γ BS = 20γ0). The coloring of tumor cells (A–D, F–I) shows their proliferation

activity and corresponds to the description in the caption of figure 5. ζBB = ζAA.

observed (figure 8(A) versus figure 8(C), figure 8(B) versus figure 8(D), figure 8(F) versus

figure 8(H), and figure 8(G) versus figure 8(I)). Due to the limitation of growth to the tip of the

fingers, the total number of proliferating cells is reduced. Accordingly, the growth velocity of

the expanding clone decreases with increasing friction of the embedding B-type objects with the

medium, γ BS (figure 11), as this leads to more branches (figures 6(E)–(H)). On the other hand,

dendritic populations show a significant (+50%) increase of the radius of gyration at saturation

compared to compact cell aggregates of A-type, reflecting that a dendritic structure results in a

larger radius of gyration compared to a compact circular cell distribution at equal numbers of

cells (compare also the growth curves for Rgyr and N in figure 11).
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3.2.2. Variation of the host tissue cell density. In a further step, we varied the initial density

of B-type objects by varying the number of B-type objects seeded around the A-type start cell.

This is a relevant situation, as both in vitro and in vivo the average cell density varies from

cell line to cell line and also depends on environmental factors, for example the local nutrient

concentration or cytotoxic substances [67–69].

We studied initial cell densities (ρB) between 3500 and 7000 cells per mm2, which

encompasses the cell densities in many cell lines. The reference cell density (ρ0) (see figure 5)

was 5250 cells per mm2.

An increase of the initial cell density in the host tissue (ρB = 7000 cells per mm2) led to

a significantly reduced expansion velocity of the growing monolayer, an earlier saturation of

growth at a smaller diameter and a proliferating rim of smaller width during growth (figures 8(B)

and 11).

Additionally, we studied the impact of the host tissue in case ρB and γ BS were

simultaneously varied. We found the influence of the discussed variations of ρB to be consistent,

regarding the expansion velocity (figure 11), saturation size and width of the proliferating rim

(figures 8(C) and (D)), with those reported above. The growth of a cell population embedded

in host tissue of both increased medium friction (γ BS = 20γ0) and increased initial cell density

(ρB = 7000 cells per mm2) is highly inhibited (figure 8C).

On the other hand, comparison of figure 8(A) with (B) and of figure 8(D) with (C) indicates

that only a moderate effect on the viscous fingering instability is caused by variations of the

initial density (figure 8(D)) even though the critical wavelength λcrit may be slightly smaller at

higher densities of B-objects.

3.2.3. Variation of host tissue elasticity. Another important property of the tumor host tissue

is its elasticity. For example, it has been found that tumors and their associated stroma have a

lower elasticity (higher Young’s modulus) than normal tissue [70] which enables them to more

effectively compress and eventually collapse blood and lymphatic vessels in their vicinity [71]

even though cancer cells themselves are usually softer than cells of the tissue they originate

from [72].

In general, cell elasticity is largely determined by the biophysical properties of the

cytoskeleton, a complex and dynamic cross-linked protein network anchored to the inner

surface of the fluid lipid bilayer. Experiments suggest that cellular elasticity can be influenced

by substances that depolymerize the cytoskeleton [73]. Furthermore, cellular elasticity is as

closely coupled to dynamic cell behavior as cell movement, cell shape changes or cell division.

However, the highly nonlinear elastic properties of a living cell are difficult to study and a

detailed, experimentally validated model remains elusive. Nevertheless, the elasticity of the

cytoskeleton can be measured by an increasing number of experimental techniques such as bulk

rheology, traction force microscopy or atomic force microscopy [74–76].

In the simulations above, Young’s modulus of the embedding objects EB was chosen to be

the same as Young’s modulus EA of the growing monolayer (type A) for which we assumed

a Young’s modulus of elasticity EA = E0 = 450 Pa [77, 78]. A decrease of Young’s modulus

from EB = 450 Pa to EB = 300 Pa leads to an increase of the proliferating rim and to a smaller

critical wavelength (figure 8(F)), while an increase of Young’s modulus of the embedding

B-type objects (to EB = 1000 Pa in figure 8(G)) leads to a decrease of the proliferating rim

and a larger critical wavelength. Furthermore, a decrease of Young’s modulus also leads to
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increased growth velocity of the tumor accompanied by saturation at an increased population

size (figure 11), reflecting that the resistance of the embedding objects is reduced.

If, in addition to the variation of EB, the medium friction of the host tissue is increased

(γ BS = 20γ0), we observe an amplification of the described influence (figures 8(H) and (I)).

In case elasticity was decreased (EB = 1000 Pa) and the medium friction in the tumor micro-

environment was simultaneously increased (γ BB = 20γ0), the growth of the tumor monolayer

was found to be highly inhibited (figure 8(H)). Apparently, in this case the critical pressure

threshold above which cells are not able to enter the cell cycle is reached quickly.

3.2.4. Variation of host tissue adhesivity. We further studied the impact of differential cell–cell

adhesion [79, 80]. We consider changes of the adhesion strength of cells of the same type as

well as between cell type A- and B-type objects. In general, intercellular adhesion is mediated by

transmembrane proteins (selectins, cadherins and the immunoglobulin (Ig) superfamily). Except

for the last, all of them require Ca2+ and Mg2+. Therefore, many adhesive interactions are Ca2+

or Mg2+ dependent [69]. Moreover, in tumor spheroids, a significantly increased adhesion was

found for CoCl2-induced hypoxia, while ionizing radiation had an inverse effect [81]; hence

adhesion is subject to changes.

In recent decades, many techniques have been developed to measure cellular adhesion;

for example, Benoit et al [82] used a modified version of atomic force microscopy to measure

adhesion forces between living cells and surfaces at the molecular level.

In our model the strength of the adhesive forces was determined by the density ζm of

the corresponding receptors on the cell surface. As introduced before, we have usually chosen

ζAA = ζBB = 1015 m−2 [83, 84] and ζAB = 0 m−2. Adhesion among B-type objects leads to the

formation of patches with empty spaces in between if the density of B-type objects ρBB is

not space-filling (figure 9(I), inset). The comparison of simulations without and with adhesion

among B-type objects suggests a greater tendency towards finger formation if B-type objects

adhere among each other (figures 9(A)–(C)) as the formation of fingers is facilitated in the free

spaces between the patches. If the adhesion between A-cells and B-objects is stronger than A–A

cell or B–B object adhesion, then inclusions of B-objects are observed in the expanding A-cell

population (figure 9(F)). The adhesion between A-cells and B-objects, moreover, reduces the

stress at the A–B interface compared to purely repulsive (Hertz) forces as in figure 9(D).

3.2.5. Variation of the average cell size of the host tissue. In the preceding sections the size

(diameter) lA of the growing tumor cells (type A) and the size lB of the elements of the

embedding tissue (B-type objects) were assumed to be identical (lB = lA). However, cell size

is known to vary significantly between different cell types and tissues. Most eukaryotic cells

have an average size (diameter) of 10–25 µm. However, the average cell size is not constant. It

can be influenced by various factors, for example, cytotoxic substances [69] or genes involved

in growth control [85]. The cell size of a specific cell line or tissue can, in general, be measured

with bright field and laser scanning microscopy. In experiments using granular objects, the size

of the objects can easily be varied. For these reasons, in this section we study the influence of

the size of embedding B-type objects on the expanding A-type clone by varying the size of the

B-type objects covering the range of typical eukaryotic cell sizes from 7 to 30 µm.

We find a decreasing tendency to form an instability with increasing object size

(figures 10(A)–(D)). Perhaps, small objects can be more easily re-arranged than large objects.
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Figure 9. Impact of adhesion of the tumor host tissue. White cells: proliferating.

Gray cells: quiescent. (A) ζAA = 1015 m−2, ζBB = ζAB = 0 m−2. Blue encodes the

pressure. Dark blue: low; light blue: high pressure. (B) Reference situation ζAA =
ζBB = 1015 m−2, ζAB = 0 m−2 (i.e. selective adhesion in host tissue). Colors

denote pressure. (C) ζBB = 2ζAA = 2 × 1015 m−2, ζAB = 0 m−2. In (A–C), EA =
450 Pa. Lower three: (D–F) further variation of adhesion; (D) ζAA = ζBB =
ζAB = 0; (E) ζAA = ζBB = ζAB = 1015 m−2; (F) ζAA = ζBB = 0, ζAB = 2 ×
1015 m−2. The simulation time is the same in each figure. In (D–F), EA = 450 Pa.

Here, NB = 45 180 in an environment of diameter 2.4 mm.

Figure 10. Impact of cell size in the embedding tissue. (A) lB = 7 µm;

(B) lB = 10 µm; (C) lB = 15 µm; (D) lD = 30 µm. The number of cells has been

calculated such that the space filling fraction is the same as that in the reference

case (e.g. in figure 5) for all B-object sizes. ζBB = ζAA.

Furthermore, we found that larger embedding objects resulted in a slightly decreased

expansion velocity, whereas smaller embedding objects led to a slightly increased growth

velocity (not shown). In both situations, the width of the proliferating rim and the saturation

size of the growing population remained unchanged. This can be explained by the larger finger

formation if B-type objects are larger: as the A-type population grows mainly at the tip of the

fingers, more (and smaller) fingers as found with increasing the size of B-type objects lead to

an overall smaller number of proliferating cells, thereby reducing the expansion speed of the

A-type cell clone. However, the effect of a stronger finger formation at smaller B-object size is

surprising, because for infinitely small objects one might not expect a tendency towards stronger

fingering. Further computational studies have been started to study this limit.
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3.2.6. Apoptosis with cytolysis of apoptotic cells. Cytolysis, which is also designated as

osmotic lysis, is a degenerative cellular process that involves the destruction of the outer cell

membrane. This causes excess water to move into the cell and ultimately leads to the dissolution

of the affected cell. Neighbor cells are able to phagocytize a dead cell. A majority of current

assays for measuring cytolysis are based on the detection of changes in plasma membrane

permeability and either the subsequent leakage of components (e.g. cytoplasmic enzymes) or

uptake of dyes that are normally not able to enter the cell (e.g. Trypan blue or propidium iodide).

In our model, we introduced cytolytic processes to validate the robustness of our findings

from preceding sections in a more dynamic and regenerative environment.

In order to model cytolysis, we assumed that after a certain time 1tcl, apoptotic tumor cells

are completely dissolved. In comparison with the preceding sections, where the main fraction

of cell proliferation took place at the borders of the population, the introduction of cytolysis

led to much more complex and highly dynamic proliferation activity patterns (figures 12(A)

and (B)). Snapshots shown in figures 12(A) and (B) reveal proliferating regions (colored white)

even in the interior of the tumor cell cluster. In this situation of constant cell renewal, no tumor

cells remained arrested in G0 for a long time (as for example those colored red or black in

figure 12). The reason for this was that densely packed cells in G0 became apoptotic and then

were removed by cytolysis after 1tcl. Thereafter surviving tumor cells in the vicinity of recently

dissolved cells (black in figures 12(A) and (B), see arrows) were able to migrate into the free

space and re-enter the cell cycle because of temporarily lowered cell density and thus lowered

pressure (figures 12(E) and (F)). Cytolysis largely destroys (figures 12(C) and (D)) the typical

layered proliferation pattern (e.g. figure 5) of growing cell populations.

Furthermore, the constant cell renewal introduced oscillations into the growth kinetics

(figure 11, lines L). Importantly, the radius of gyration remains largely the same as for the

corresponding simulations without cytolysis (figure 12, upper part). Moreover, we found no

further changes of any of the previously described biomechanical influences of the tumor

host tissue on the morphologies and growth dynamics of tumor cell populations. We therefore

consider the results presented in previous sections to be robust and especially not depending on

cell proliferation to be confined to the border of a multi-cellular population.

3.2.7. Growth and apoptosis in the expanding clone and host tissue. Finally, we considered

the case of embedding cells capable of proliferation and apoptosis as for the expanding clone

testing the idea of a homeostatic pressure proposed in [15]. We model this process in several

steps. Firstly, the A-type clone was grown in the embedding medium of B-type cells suppressing

cell proliferation and death until the A-type clone had a size of about N = 10 000 cells, which

was the case at a gyration radius of about 950 µm (figure 13). Then we introduced a relaxation

phase (blue curve in figure 13). At about t = 15 days we restarted the simulation with now

both the A-type cells and the embedding B-type cells proliferating and undergoing apoptosis.

Both, cell cycle entrance and cell apoptosis, were triggered by a pressure threshold. At the

first pressure threshold, a cell becomes quiescent, and at the second pressure threshold that

was larger than the first threshold, it becomes apoptotic. We consider two cases. Firstly, we

assume that the thresholds are pairwise the same for A- and B-type cells (p
quiesc

A = p
quiesc

B =
300 Pa; p

apopt

A = p
apopt

B = 400 Pa). This leads to a homeostatic situation (figure 13, green line).

If, however, the apoptosis pressure threshold for B-cells is below the apoptosis pressure

threshold for A-cells (p
quiesc

A = 300 Pa; p
apopt

A = 400 Pa; p
quiesc

B = 200 Pa; p
apopt

B = 300 Pa), the

A-cell population slowly eliminates the B-cell population (orange line in figure 13). In this
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Figure 11. Comparison of growth kinetics in 2D. Top panel: the A-cell

population size; middle panel: the population diameter L = 2
√

2Rgyr; bottom

panel: R2
gyr versus N . (A) Curve ‘A’ (red line, empty circle symbol): the reference

simulation. DB = D0, γ BS = γ0, ρB = ρ0 = 5250 cells per mm2, E = 450 Pa,

EB = 450 Pa, no selective adhesion was assumed and no cytolysis occurred.

Curve ‘B’ (light blue line, empty up triangle symbol): increased host tissue

medium friction (γT = 20γ0). Curve ‘C’ (green line, empty square symbol):

increased initial cell density in the embedding tissue (ρB ≈ 7000 cells per mm2).

Curve ‘D’ (black line, no symbol): decreased initial cell density in the host tissue
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Figure 11. (Continued) (ρB ≈ 3500 cells per mm2). Curve ‘E’ (gray line, empty

down triangle symbol): increased host tissue elasticity (EB = 300 Pa). Curve ‘F’

(dark blue line, solid up triangle symbol): decreased host tissue elasticity (EB =
1000 Pa). Curve ‘G’ (dark red line, solid diamond symbol): increased initial cell

density and increased medium friction (ρB ≈ 7000 cells per mm2, γ BS = 20γ0).

Curve ‘H’ (light green line, solid square symbol): decreased initial cell density

and increased medium friction (ρB ∼ 3500 cells per mm2, γ BS = 20γ0). Curve

‘I’ (magenta line, solid down triangle symbol): increased host tissue elasticity

(EB = 300 Pa) and medium friction (γ BS = 20γ0). Curve ‘K’ (dark yellow line,

empty diamond symbol): decreased host tissue elasticity (EB = 1000 Pa) and

increased medium friction (γ BB = 20γ0). Curve ‘L’ (orange line, no symbol): the

reference simulation (A) with cytolysis. ζBB = ζAA. The differences in the order

of the saturation size between the radius of gyration and the number of cells for

the same parameters result from the shape of the cell aggregates. Dendritic cell

populations have a larger gyration radius at the same cell population size than

compact circular cell populations. (C) The largest deviations from a circular

shape are for curves B, I, H for which γ BS = 20γ0, and for which significant

finger formation could be observed.

way, our model simulation results are compatible with the concept of a homeostatic pressure

introduced in [15].

3.3. Growing multi-cellular spheroids in an embedding medium

In this section, we consider the growth of multi-cellular spheroids in a B-type object

environment. We assume that cells secrete ECM in which they are able to anchor and move.

This line of argument is supported by the observation in SK-MES-1 multi-cellular spheroids

which show the presence of collagen V in the region of the tumor spheroid. The equations of

motion for this case are adapted to three dimensions. Our studies in this section are inspired by

the findings of Helmlinger et al [1].

We again observe a fingering instability if the friction coefficient between B-type objects

and matrix is much larger than for A-type cells and matrix, γ BS ≫ γ AS = γ0 (figure 14).

We calibrated the initial density and size of the flask to mimic the modified degree of

agarose by different initial densities of B-type objects. We made a comparison with the

experimental growth curves of Helmlinger et al [1] for LS174T cell populations and of Galle

et al [60] for WiDr cells.

(We find that the initial density of B-type objects determines the saturation size, while

the size of the flask influences the slope.) The density of B-type objects at saturation is in

each case about 6 × 105 B-objects per mm. The idea of this study was not to mimic in detail the

constitutive relation of agarose but rather to demonstrate that the pressure-mediated cell cycle

control mechanism is able to reproduce the kinetics of growing cell populations in media of

different mechanical properties. The inset in figure 14 shows that removal of B-objects, resulting

in a release of external mechanical stress on the A-cell population, leads to a continuation of

growth of the A-cell population as observed experimentally in [1]. Our findings about the tumor

growth kinetics are consistent with those found in a multi-phase continuum model of Chen
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Figure 12. Impact of cytolytic cell renewal. (A) Tumor cell popu-

lation growing into host tissue (gray) of increased medium friction

(γ BS = 20γ0) with cytolysis after 1tcl = 12 h. See movie 3, available at

stacks.iop.org/NJP/14/055025/mmedia.5 (B) Simulation as in figure 5 (γ BS =
5γ0) but with cytolysis. Black patches indicate areas where recently cells were

dissolved and the empty space had not yet been filled by growing cells (black

arrows). The coloring is equivalent to figure 5. See movie 4, available at

stacks.iop.org/NJP/14/055025/mmedia.5 (C/D) Alternative stainings of (A/B)

where the host tissue is colored red, proliferating cells are colored ocher, qui-

escent cells are gray, apoptotic cells (before cytolysis) are black and the empty

space remains white. (E/F) Alternative stainings of (A/B) where cells are colored

according to their compression (red = high and green = low compression).

et al [20] already introduced above. However, assuming spherical symmetry the authors studied

the time dependence of the radial coordinate. Moreover, also the experimentally observed effect

of the shape of the flask on the spatial shape of the growing A-cell population can be reproduced

(figure 15). Growth occurs in the direction which minimizes pressure.

4. Discussion

As pointed out in [61, 62], isolated monolayers show linear growth kinetics after an initial

exponential growth phase. In previous work [24], we have shown that the linear growth kinetics

of dense monolayers can be explained by cell proliferation as the main trigger for the movement

of cells towards the monolayer edge and thereby for expansion of the monolayer. In that model

the entrance of a cell into the cell cycle could occur only if that cell was not subject to too strong

deformation. Proliferation-triggered movement leads to a pushing-type movement of cells.

5 A higher resolution version can be found at http://msysbio.com/videos njp.
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Figure 13. Growth and apoptosis of expanding clone and embedding medium.

If the growth and apoptosis pressure thresholds are equal in the expanding

A-type cell clone and the B-type embedding cells, the average size of both

clones remains equal (black curve), while if the pressure at which B-cells

undergo apoptosis is below the pressure at which A-cells undergo apoptosis, then

the A-clone outcompetes the embedding B clone (green curve). The pressure-

controlled cell cycle entrance and apoptosis mechanism thereby provides a

possible representation of the concept of homeostatic pressure introduced in [15].

However, recent findings in [46] suggest that cell micro-motility may not be uniformly

distributed but instead is directed towards the outwards-pointing normal of the monolayer border

leading to traction of the cells. Cell proliferation was observed but the trigger of cell proliferation

has not been studied. In order to probe key aspects of these observations, we studied in this

paper an outwards-oriented active component of micro-motility modeled as a constant drift

force on border cells in combination with three different growth control mechanisms: (i) a

cell can only enter the cell cycle if the pressure on it is below a critical positive threshold.

(ii) A cell can only enter the cell cycle if the total pressure is negative. (iii) A cell can

enter the cell cycle only if it is stretched into the direction of at least one of its neighbor

cells. We mimicked different mechanisms and found that the growth characteristics are very

robust with regard to the qualitative dynamics, but the growth speed varies depending on the

strength of the directed migration force component. Generally, a directed component in the

micro-motility speeds up the monolayer expansion as the movement generates space for the

dividing cells. In the case of control mechanism ((i); rule 2 in figure 1), even local patches

of cells under tension (negative pressure) could be observed if the directed movement was

sufficiently large; in the absence of such a force the cells are all under compression, so

the pressure is positive. For the control mechanism ((ii); rule 3 in figure 1) the pressure is

further reduced as only negative pressure is able to trigger cell cycle entrance. For the control

mechanism ((iii); rule 4 in figure 1) the movement is a pulling movement: only if cells are

stretched, are cells able to enter the cell cycle, leading to a further reduction of the local

pressure. In both (ii) and (iii), the pressure at the border was negative. However, if entrance

into the cell cycle occurs only if cells experience tension (case (ii)), or if they are stretched
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Figure 14. (A, B) Typical growth pattern in three dimensions for (A) γ BS =
γ AS and (B) γ BS = 20γ AS. See movie 5(A) and movie 6(B), available at

stacks.iop.org/NJP/14/055025/mmedia.6 (C) Experimental data of Helmlinger

et al [1] for LS174T spheroids: 1.0% agarose gel (filled black circles), 0.8%

agarose gel (filled red triangles), 0.5% agarose gel (filled blue diamonds) and

0.3% agarose gel (filled green squares). Model simulation referring to LS174T

spheroids using ρ0 = 611 × 103 cells mm−3 and a flask diameter of 500 µm

(green line) and 207 × 103 cells mm−3 (red line) and a flask diameter of 500 µm.

Experimental data of Galle et al [60], WiDr spheroids: 5.0% agarose gel (red

squares) and 2.5% agarose gel (blue circles). Blue line: model simulation

referring to WiDr spheroids, ρ0 = 225 × 103 cells mm−3 with a flask diameter of

250 µm. Inset: experimental data on growth alleviation by Helmlinger et al [1]

for 0.7% agarose gel (symbols) and model simulation (line) using ρ0 = 215 ×
103 cells mm−3, a flask diameter of 500 µm and removal of embedding cells at

t = 30 days. For all simulations in (C), γ BS = γ AS.

(case (iii)), this slows down the monolayer growth speed compared to a re-entrance as long as

cells are not too much compressed (case (i)).

In the second part of the paper, we considered a growing population of cells embedded in

a population of either granular objects or cells in order to study the emerging growth pattern.

In this case, a directed movement had almost no consequence as long as the directed force

component did not lead to rupture of the cell–cell contacts of the expanding cell clone.

We calculated until the growing clone enclosed by other objects had a population size of

about 30 000 cells and varied the parameter values of the model over physiologically reasonable

ranges. At this population size we could observe a viscous fingering instability which was

particularly pronounced if the friction of the B-objects with the substrate was much larger than

the friction between A-cells and the substrate. With increasing friction, the critical wavelength

decreased. Moreover, the fingering pattern was moderately increased with increasing object

size of the external medium as well as for increasing adhesion with between B-type objects.

The micro-motility of the external objects has no detectable influence on the instability, and

the density of B-type objects seem to only influence the growth speed and the saturation size

6 A higher resolution version can be found at http://msysbio.com/videos njp.
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Figure 15. Impact of a flask shape on the shape of growing population.

(A) 2D monolayer population growing in a rectangular area of embedding

cells; the coloring of the cells is the same as in figure 2 (see

movie 7, available at stacks.iop.org/NJP/14/055025/mmedia)7; (B) cylindrical

environment (diameter = 1 mm) inducing non-uniform stress; (C) 3D multi-

cellular spheroid of 2.5 × 105 with modulated (asymmetric) shape grown in

(B). (D) Cross-section of (C) showing pressure exerted on cells (red = high

pressure and green=low). (E) Cell vitality status (white = actively in cell cycle,

gray = cell in G0 phase and black = apoptotic area). (F) Proliferation activity,

the coloring of the cells is the same as in figure 6.

of the population but not the fingering pattern. Moderate changes of Young’s modulus from

300–1000 Pa mainly reduce the expansion speed of the growing clone. Even apoptosis, triggered

if the local pressure overcomes a critical value, almost does not change the growth pattern.

Instead, dying cells are quickly replaced by dividing neighbor cells.

We compared the relation for the critical wavelength of the instability with that of the

Saffman–Taylor instability. Despite good qualitative agreement, larger systems will have to

be studied to determine the quantitative dependence of the critical wavelength on the model

parameters. These simulations are currently being performed, but they are very time consuming

with one simulation running over several weeks to several months.

Recently, Basan and co-workers [43] considered the undulations at the interface between

the epithelial tissue layer and the underlying stroma often observed in skin or mucosa. Epithelial

cells flow towards the free surface from where they desquamate. Proliferation may trigger

an instability as a consequence of shear between adjacent regions that becomes important as

differences in the local epithelium height cause differences in the epithelial flow in adjacent

regions. Higher proliferation, a higher local thickness of the proliferating layer and a higher

epithelium viscosity each increase shear between adjacent regions, while, for example, a higher

stroma viscosity stabilizes the interface. The latter is in contrast to our findings where higher

viscosity in the environmental material facilitates the formation of fingers. Lowengrub et al [39]

discuss an elastically induced splitting instability in which an elastic particle splits under

deviatoric applied stress. They find that the onset and direction of the splitting instability

7 A higher resolution version can be found at http://msysbio.com/videos njp.
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depends on the magnitude of both the misfit strain and applied stress as well as the details

of the applied stress, the elastic constants and the initial shape of the particle. The results in

figure 10 show that the size of the embedding objects affects the instability. Figure 9 shows that

the strength of adhesion also matters. Hence it seems likely that the instability observed goes

beyond the classical Saffman–Taylor instability despite the most prominent effect of the friction

of A-cells and B-objects with the substrate.

In a next step, we considered birth and death in both the inner expanding clone and the

embedding material, hence mimicking a competition process involving birth and death in the

inner and the enclosing cell population. If we assume that the pressure threshold for birth in both

populations is equal and the pressure threshold for death is equal, then the average population

size of both populations remains the same, mimicking tissue homeostasis. If, however, the

pressure threshold at which cells of the inner clone are still able to enter the cell cycle is equal

to or larger than the pressure at which the embedding cells undergo apoptosis, then the inner

cell population outcompetes the outer cell population. This observation is compatible with the

recently proposed concept of a homeostatic pressure [15].

Finally, we considered d = 3 dimensions. Firstly, we noted that the fingering instability

occurring with increasing friction of B-objects with the substrate can again be observed. Then

we tested the impact of the initial B-object density on the growth kinetics and found that the

growth kinetics corresponds to that found in [1] and [60] for cell clones growing in agarose gel.

We conclude that mechanical stress or strain-controlled cell cycle entrance mechanisms are

able to explain many features of the growth pattern in monolayers and multi-cellular phenotypes

both in the absence of a viscous or visco-elastic embedding medium and in its presence.

The model predicts a fingering instability in a granular embedding medium which becomes

particularly pronounced when the friction between the embedding objects and the medium

between the embedding objects (the substrate) is increased.
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[17] Fritsch A, Höckel M, Kiessling T, David Nnetu K, Wetzel F, Zink M and Käs J A 2010 Are biomechanical

changes necessary for tumour progression? Nature Phys. 6 730–2

[18] Blanchard G B, Kabla A J, Schultz N L, Butler L C, Sanson B, Gorfinkiel N, Mahadevan L and Adams

R J 2009 Tissue tectonics: morphogenetic strain rates, cell shape change and intercalation Nature Methods

6 458–64

[19] Chaplain M A J, Graziano L and Preziosi L 2006 Mathematical modelling of the loss of tissue compression

responsiveness and its role in solid tumour development Math. Med. Biol. 23 197–229

[20] Chen C Y, Byrne H M and King J R 2001 The influence of growth-induced stress from the surrounding

medium on the development of multicell spheroids J. Math. Biol. 43 191–220

[21] Gartner M F, Fearns C, Wilson E L, Campbell J A and Dowdle E B 1992 Unusual growth characteristics of

human melanoma xenografts in the nude mouse: a model for desmoplasia, dormancy and progression Br.

J. Cancer 65 487–90

[22] Vaage J 1992 Fibrosis in immune control of mammary-tumor growth Int. J. Cancer 51 325–8

[23] Gordon V D, Valentine M T, Gardel M L, Andor-Ardó D, Dennison S, Bogdanov A A, Weitz D A and
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[68] Johansson N and Granéli E 1999 Influence of different nutrient conditions on cell density, chemical

composition and toxicity of Prymnesium parvum (Haptophyta) in semi-continuous cultures J. Exp. Mar.

Biol. Ecol. 239 243–58

[69] Alberts B, Johnson A, Walter P, Lewis J, Raff M and Roberts K 2008 Molecular Biology of the Cell 5th edn

(London: Taylor and Francis)

[70] Gieni R S and Hendzel M J 2008 Mechanotransduction from the ECM to the genome: are the pieces now in

place? J. Cell. Biochem. 104 1964–87

[71] Padera T P, Stoll B R, Tooredman J B, Capen D, di Tomaso E and Jain R K 2004 Pathology: cancer cells

compress intratumour vessels Nature 427 695

[72] Cross S E, Jin Y-S, Tondre J, Wong R, Rao J and Gimzewski J K 2008 Afm-based analysis of human

metastatic cancer cells Nanotechnology 19 384003

[73] Safran S A, Gov N, Nicolas A, Schwarz U S and Tlusty T 2005 Physics of cell elasticity, shape and adhesion

Physica A 352 171–201

[74] Guck J et al 2005 Optical deformability as an inherent cell marker for testing malignant transformation and

metastatic competence Biophys. J. 88 3689–98

[75] Wottawah F, Schinkinger S, Lincoln B, Ebert S, Müller K, Sauer F, Travis K and Guck J 2005 Characterizing

single suspended cells by optorheology Acta Biomater. 1 263–71

[76] Webb H K, Truong V K, Hasan J, Crawford R J and Ivanova E P 2011 Physico-mechanical characterisation of

cells using atomic force microscopy—current research and methodologies J. Microbiol. Methods 86 131–9

[77] Davidson L A, Koehl M A R, Keller R and Oster G F 1995 How do sea urchins invaginate? Using bio-

mechanics to distinguish between mechanisms of primary invagination Development 121 2005–18

[78] Lekka M, Laidler P, Gil D, Lekki J, Stachura Z and Hrynkiewicz A Z 1999 Elasticity of normal and cancerous

human bladder cells studied by scanning force microscopy Eur. Biophys. J. 28 312–6

[79] Takeichi M 1987 Cellular and molecular basis for tissue construction: role of cadherins in selective cell

adhesion Seikagaku 59 1–9

[80] van der Linden P J 1996 Cell adhesion, cell adhesion molecules and their functional role in the human

endometrium Early Pregnancy 2 5–14

[81] Indovina P, Ferrante A, Rainaldi G and Santini M T 2006 Hypoxia and ionizing radiation: changes in

adhesive properties and cell adhesion molecule expression in mg-63 three-dimensional tumor spheroids

Cell Commun. Adhes. 13 185–98

[82] Benoit M, Gabriel D, Gerisch G and Gaub H E 2000 Discrete interactions in cell adhesion measured by

single-molecule force spectroscopy Nature Cell Biol. 2 313–7

[83] Chesla S E, Selvaraj P and Zhu C 1998 Measuring two-dimensional receptor-ligand binding kinetics by

micropipette Biophys. J. 75 1553–7

[84] Piper J W, Swerlick R A and Zhu C 1998 Determining force dependence of two-dimensional receptor-ligand

binding affinity by centrifugation Biophys. J. 74 492–513

New Journal of Physics 14 (2012) 055025 (http://www.njp.org/)

http://dx.doi.org/10.1103/PhysRevLett.81.4008
http://dx.doi.org/10.1016/S0006-3495(03)74715-8
http://dx.doi.org/10.1103/PhysRevLett.99.248101
http://dx.doi.org/10.1096/fj.08-113266
http://dx.doi.org/10.1098/rspa.1958.0085
http://dx.doi.org/10.1007/s00285-008-0212-0
http://dx.doi.org/10.1111/j.1365-2184.1993.tb00004.x
http://dx.doi.org/10.1016/S0022-0981(99)00048-9
http://dx.doi.org/10.1002/jcb.21364
http://dx.doi.org/10.1038/427695a
http://dx.doi.org/10.1088/0957-4484/19/38/384003
http://dx.doi.org/10.1016/j.physa.2004.12.035
http://dx.doi.org/10.1529/biophysj.104.045476
http://dx.doi.org/10.1016/j.actbio.2005.02.010
http://dx.doi.org/10.1016/j.mimet.2011.05.021
http://dx.doi.org/10.1007/s002490050213
http://dx.doi.org/10.1080/15419060600734153
http://dx.doi.org/10.1038/35014000
http://dx.doi.org/10.1016/S0006-3495(98)74074-3
http://dx.doi.org/10.1016/S0006-3495(98)77807-5
http://www.njp.org/


37

[85] Saucedo L J and Edgar B A 2002 Why size matters: altering cell size Curr. Opin. Genet. Dev. 12 565–71

[86] Vintermyr O K and Døskeland S O 1987 Cell cycle parameters of adult rat hepatocytes in a defined medium.

A note on the timing of nucleolar DNA replication J. Cell Physiol. 132 12–21

[87] Mahaffy R E, Shih C K, MacKintosh F C and Käs J 2000 Scanning probe-based frequency-dependent

microrheology of polymer gels and biological cells Phys. Rev. Lett. 85 880–3

[88] Alcaraz J, Buscemi L, Grabulosa M, Trepat X, Fabry B, Farre R and Navajas D 2003 Microrheology of human

lung epithelial cells measured by atomic force Biophys. J. 84 2071–9

New Journal of Physics 14 (2012) 055025 (http://www.njp.org/)

http://dx.doi.org/10.1016/S0959-437X(02)00341-6
http://dx.doi.org/10.1002/(ISSN)1097-4652
http://dx.doi.org/10.1103/PhysRevLett.85.880
http://dx.doi.org/10.1016/S0006-3495(03)75014-0
http://www.njp.org/

	1. Introduction
	2. The model
	2.1. Cell shape and cell--cell interaction
	2.2. Cells and the enclosing medium
	2.3. Cell growth and division
	2.4. Cell migration

	3. Results
	3.1. Reference situation: growing monolayers without an embedding medium
	3.2. Growing monolayers in an embedding medium
	3.3. Growing multi-cellular spheroids in an embedding medium

	4. Discussion
	Acknowledgments
	References

