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Abstract. In this paper, we explore how potential biomechanical influences
on cell cycle entrance and cell migration affect the growth dynamics of cell
populations. We consider cell populations growing in free, granular and tissue-
like environments using a mathematical single-cell-based model. In a free
environment we study the effect of pushing movements triggered by proliferation
versus active pulling movements of cells stretching cell-cell contacts on the
multi-cellular kinetics and the cell population morphotype. By growing cell
clones embedded in agarose gel or cells of another type, one can mimic aspects
of embedding tissues. We perform simulation studies of cell clones expanding
in an environment of granular objects and of chemically inert cells. In certain
parameter ranges, we find the formation of invasive fingers reminiscent of
viscous fingering. Since the simulation studies are highly computation-time
consuming, we mainly study one-cell-thick monolayers and show that for
selected parameter settings the results also hold for multi-cellular spheroids.
Finally, we compare our model to the experimentally observed growth dynamics
of multi-cellular spheroids in agarose gel.

Online supplementary data available from stacks.iop.org/NJP/14/055025/
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1. Introduction

Most in vivo tumors expand into the surrounding tissue. To do so, a growing tumor must
overcome mechanical barriers by either exerting mechanical stress on the host tissue (the tumor
micro-environment) or secreting matrix-degrading enzymes that modify the local environment
by cutting fibers such that the macroscopic mechanical resistance is lowered.

Biomechanically induced interactions are increasingly discovered to play an important
role in the growth control of tissues and tumors [1-17]. Biomechanical interactions can serve
as morphogenetic regulators [3] and permit cells to compare and adjust their growth rate to
surrounding cells [5], help cells to choose their orientation according to their environment [6]
or to adjust their growth rate to a local geometric property such as tissue curvature; this has
led to the conjecture that sometimes functions follow form [7]. Morphogenetic strain rates, cell
shape change and intercalation have been demonstrated to be interlinked [18].

Tumors have been observed to grow slower when their embedding medium is stiffer,
and their shape may reflect the geometrical constraints of their environment [1, 14]. Chaplain
et al [19] studied this situation in a multi-scale, multi-phase model considering tumor cells,
the extracellular matrix (ECM) and the host tissue including molecular factors controlling the
growth. Momentum balance was mimicked by an approach of the Darcy type, hence assuming
the tumor behaves as a porous medium. They find an exponential growth for small tumors
saturating at large stress. Helmlinger et al [1] showed the influence of the biomechanical
properties of the tumor micro-environment by growing tumor spheroids embedded in agarose
gels of different levels of concentration and thus rigidity. Regardless of the host species and
the tissue of origin, increased mechanical stress led to significantly decreased maximal tumor
spheroid sizes, which for example in human colon carcinoma decreased from a diameter of
400 um (in 0.5% agarose) to 50 um (in more rigid 1% agarose). Chen et al [20] studied the
saturation of growth within a multi-phase model of a growing tumor in external poroelastic
material in spherical coordinates to explain the Helmlinger experiment. The tumor was modelled
as a two-phase solid—liquid material similar to a porous material where the volume fraction of
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the interstitial liquid was assumed to decrease upon compression of the tumor. They found
saturation after a certain time, as it was observed in the experiments and linear growth if the
poroelastic gel was removed. More recently, another group demonstrated that also the shape
of tumor spheroids is dictated by the shape of the solid stress field by using agarose gels
and co-embedding fluorescent micro-beads [14]. Further analysis revealed that one reason for
this observation was suppression of proliferation and induction of apoptosis in regions of high
mechanical stress. A number of hypotheses have been proposed on the question of how and to
what extent the physical interaction of tumor and host tissue influences tumor morphology and
growth kinetics during cancerogenesis [21, 22]. Nevertheless, many aspects of these complex
interactions remain to be experimentally elucidated [23].

Comparisons of experiments with mathematical models have shown that the increase
of the cell population diameter as well as of the cell proliferation pattern, in both growing
monolayers [24, 25] and growing multi-cellular spheroids [24-27], could largely be explained
by a biomechanical form of contact inhibition, controlled by a force threshold, a pressure
threshold or a deformation threshold, above which cells become quiescent. For example, a
careful analysis of EMT6/Ro multi-cellular spheroids revealed that the size of a multi-cellular
spheroid is almost unaffected even when the external glucose concentration is varied by a
factor of 20 from 0.8 to 16.5mM, while at the same time the cell population sizes varied
significantly. The glucose medium concentration only affected the size of the necrotic core, but
not the tumor size. Even the growth kinetics of well-vascularized xenografts of human NIH3T3
cells subcutaneously injected into mice could be explained by the same form of biomechanical
growth control [28].

These examples clearly indicate that biomechanical effects have a potentially important
role in growth and form.

However, unlike physical particles, biological cells have the capability to change their
physical properties by intracellular control processes and thereby modify their phenotype.
A prominent example is the epithelial-mesenchymal transition (EMT; see, e.g. [29]) in cancer
where the tissue phenotype changes from an epithelium-type phenotype to a mesenchymal
phenotype by active intracellular regulation facilitating cell detachment [30-32]. Another
example is that cells are able to enter blood vessels by a process called intravasation involving
cancer-cell-induced src activation, leading to the degradation of contacts among endothelial
cells, and thereby decrease the mechanical resistance of the blood vessel walls against cancer
cell invasion [33]. Cell birth and death may facilitate cell movement in tissues which on short
time scales appear as elastic material [16].

These examples suggest that there is a complex interplay of mechanical and active
regulative components during different stages of tumor growth, development and invasion.
To find out the contributions of different active versus passive components it is important to
examine how far the cancer phenotype can be explained by physical effects alone. Otherwise,
morphotypes may be erroneously attributed to active regulatory behavior of cancer cells.
Invasive fingers, for example, can also be triggered purely by physical effects as known
from viscous fingering [34] or other instabilities known from non-equilibrium physics (see,
e.g. [35, 36]). Examples are the Mullins—Sekerka instability of a growing crystal in a super-
cooled melt driven by undercooling at the solid-liquid interface (see, e.g. [37, 38]), and an
elasticity-driven growth instability as a consequence of an applied stress [39], a buckling
instability driven by the competition of cell proliferation and stabilizing effects such as bending
or shear (see, e.g. [8, 40—42]), or an undulation stability as it may occur at the epithelial stromal
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interface again driven by cell proliferation ([43]; see also text below). Different morphotypes
have observed bacterial growth which could be explained by different types of instabilities [44].

In this paper, we explore how far physical properties of the embedding medium of a
growing cell clone affect the emerging spatial-temporal growth pattern. For this purpose we
consider two situations, namely a growing clone of cells in a granular medium and a growing
clone in an environment of inert cells. Within our model the main difference between the two
situations is that for cells we assume an active component of the movement, the cell micro-
motility, whereas for the granular objects we do not. We do not take into account the active
regulation mechanisms for cells as reported in, for example [30, 33]. We mimic each biological
cell individually within the framework of ‘agent-based models’. Our model is based on an earlier
approach where cells have been mimicked as adhesive homogeneous isotropic elastic objects
capable of active migration, growth and division of particles. This model has permitted us to
explain the growth pattern of monolayers and multi-cellular spheroids [24-27] and predicted a
subsequently validated order principle in the regenerating liver [45].

We consider a growing monolayer as the reference situation. Recent experiments in [46]
suggest, for expanding monolayers of MDCK (Madin—Darby canine kidney) cells, an active
migration into the direction of the outwards-pointing normal of the cell population border. The
cell density as well as the cell traction has been reported to increase from the border to the
middle of the monolayer. This suggests a pulling type of movement—perhaps in combination
with an increasing contraction of the cell projection area from the border to the center [47]. In a
recent paper [45], we could show that active directed cell movement is necessary for explaining
the regeneration of a CCl-induced tissue lesion in mouse liver. Passive movement triggered by
cell proliferation alone was insufficient. However, in both cases the cell populations were not
constrained by the strong resistance of other cells or a capsule.

In contrast, in liver regeneration after partial hepatectomy, the growth of a cell population
must occur against the resistance of a capsule enclosing the liver lobes. Hence, growth in such
an environment must occur against mechanical resistance.

The above-reported observations [45, 46] suggest that both types of movement may exist:
(1) pushing-type fronts if cell division leads to local mechanical stress pushing neighbor cells
into the direction of minimal mechanical compression. (ii) Pulling-type movement may be
triggered by the emergence of a border, resulting in active cell migration into the free zone. For
this reason we compare the effect of a biased micro-motility with the existence of an un-biased
micro-motility. In [24-27] we had only considered the case of an un-biased (i.e. uniformly
distributed) micro-motility.

We first consider growing monolayers with a free border and briefly discuss cell movement
triggered either by cell division (‘pushing-type movement’) or by an active outwards ‘pulling-
type movement’ of cells.

For growing clones embedded in tissues or tissue-like media, a free cell population border
does not exist. Instead, an external medium exerts a pressure on the expanding clone resembling
a carcinoma located in an organ (such as e.g. a liver carcinoma) or a population of hepatocytes
enclosed by a capsule rather than a tumor expanding in free space or in a soft tissue environment.
In such a situation a pulling-like movement of the tumor cells seems unlikely to occur prior to
the EMT.

So, in summary, the main purpose of this paper is to explore the growth and invasion pattern
of biological cells in a minimum model mimicking cells as homogeneous isotropic elastic, sticky
particles capable of self-reproduction and migration.
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In section 2, we present the basic model and its variants used in this paper.

Then we consider pushing- and pulling-type expansion of monolayers in a liquid
environment. We then study monolayers expanding in external media of different properties,
namely granular objects and cells of different types. We mainly consider simulations in two
dimensions noting, however, that in three dimensions the results should be equivalent as long as
glucose or oxygen do not become limiting, which seems to hold over a wide range of glucose
and oxygen concentrations [24]. We demonstrate this by simulations of multi-cellular spheroids
embedded in granular objects in three dimensions.

2. The model

We model each individual cell by an isotropic, elastic and adhesive object. The model cells are
capable of active migration, growth and division and are defined by cell-kinetic, biophysical and
cell-biological parameters that can be experimentally measured. Model cells interact with each
other, with other cells and with the underlying substrate.

2.1. Cell shape and cell-cell interaction

In particular, epithelial-derived tumor cells and epithelial cells may reveal a largely spherical
shape in isolation as shown in [45] (see supporting information in that reference). In culture at
high cell densities they adopt a polygonal shape.

When a cell gets into touch with another cell it can form an adhesive cell-cell contact.
With decreasing distance between cells (e.g. upon compression), the contact area between
them, and with it the number of adhesive bonds, increases, resulting in increasing attractive
interaction. On the other hand, if cells in isolation are spherical, an increasing contact area is
accompanied by an increasing deformation, which results in a repulsive interaction. Hence, the
preferred distance of a pair of interacting cells is where adhesive and repulsive forces balance.
If adhering cells are pulled from each other they reveal a hysteresis effect: they elongate and
stick beyond the distance at which they had come into contact. At the rupture point they still
have a finite interaction area. These observations had led the authors of [24] to approximate
the interaction forces between cells by the Johnson—Kendall-Roberts (JKR) model. The same
model has independently been shown in [48] to apply to pairwise interacting S180 cells using
micro-pipette experiments. The JKR model mimics the force between a pair of interacting sticky
homogeneous isotropic spherical objects. It directly includes adhesion and relates the contact
area to the elastic material properties and the adhesion strength and therefore gives in the limit
studied in [48] a proper quantitative description.

The JKR force F/f® =|F"(d;;)|, where d;; is the distance between the centers of two
interacting spheres i and j that is calculated from two implicit equations [49]:

a’ 2w ya
s=2 _ [Fre (1)
R E;
s_ 3R r,a s 5 B IKR 5 B2
a’=—|F; +3nyR+\/6nyRFij +@BryR)* |, (2)
where a is the contact radius. The effective radius R is defined by R~' = R;' + R}, where

R; is the radius of cell i. d;j = R; + R; — § is the distance between the centers of model cell
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Figure 1. The force Fj; as a function of the distance d;; for two interacting
spheroidal cells i, j according to the JKR model for three different elastic moduli,
E; = E; =300, 450 and 1000 Pa. The dashed red lines illustrate different cell-
cycle entrance control conditions that we tested. Rule 1 assumes a compression
threshold, assuming that a cell i can only enter the cell cycle if its distance d;;
to its neighbor cell j remains larger than dy,. This rule introduced in [24] is
not considered here. Rule 2 assumes that cells can only enter the cell cycle if
the pressure-like measure p; = ) i Fi i/Aij (A;; is the contact area) is below a
threshold py, > O (the sum is over all neighbors of i; for details see text). Rule
3 assumes that only cells that experience a negative pressure are able to enter
the cell cycle. Rule 4 assumes that only if the cell-cell contact to at least one
neighbor cell is stretched is it able to enter the cell cycle. Inset: cell division in
the program. Cells double their volume in interphase and deform into a dumb-
bell in mitosis. (v; =v; = 0.4, ¢, = 10° m™2))

i and cell j, where § = §; +6; is the sum of the deformations of each cell (upon compression
it is the overlap of the two spheres) along the axis linking the centers of these cells. E; IRy
the composite Young’s modulus defined by E i_jl =1 —v)ES "y (1- vjz.)Ej_l. We approximate
Y~ ¢, Ws. 0, is the density of cell-cell adhesion molecules in the cell membrane, W; the
energy of a single bond. If the density of cell adhesion molecules would differ in two cell i
and j in contact, then g,, = min(g;, ¢;). In our simulations we assume the same cell adhesion
molecule density for each cell. Equation (2) has to be solved implicitly to obtain a(E.JjKR). The
value of a is then inserted into equation (1) to give 8(a), dij = R+ R; —§, d;j(a). F}[*(d))
can be obtained by plotting F; jKR (d;j) versus d;; (figure 1) as the equations (1) and (2) are not
amenable to an explicit solution if 7 > 0. We fitted the resulting plot by a polynomial of degree
three and used this polynomial in the simulations. In this way, were able to avoid a prolongation
of the simulation times, which would occur if the JKR model equations were solved numerically
during the simulation runs with the multi-cellular growth model, and to keep the advantages of
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the JKR force outlined above:
JKR ~ 3 2
F7(dip) = a3 (d;j)” + ax(dij)” + a1 (dy;) + ap. 3)

The force vector denoting the force of cell j on cell i results from
F. = F'XR¢gq.. ﬁ
Zij ij ( U)lﬁi_ﬁjl

Certainly, although the JKR-force model seems to be a plausible approximation for the
interaction between cells, it neglects inhomogeneities of the cell material, deviations of the cell
shape from a spherical shape prior to deformation and plastic deformations that are expected to
occur on longer time scales as a consequence of re-organization processes of the cytoskeleton.
Moreover, the force calculated by the JKR model is a two-body force and neglects forces
that may emerge from multi-body interactions. However, in [26] we have shown that multi-
cellular growth phenomena in liquid suspension or monoclonal monolayers show only moderate
differences if the interaction force model is varied, for example, by using an extended Hertz
model or a linear spring-like interaction force between cells. From this we would not expect
any qualitative impact from replacing the JKR-force model by a more detailed description of
interaction forces even though we consider it as an important challenge in the future, as far as
quantitative experiments permit a more detailed measurement of the forces to allow increasingly
quantitative model predictions. On the other hand, we consider it useful to take the JKR force
instead of a cruder interaction force, as it is parameterized in measurable quantities and is
expected to be correct for sufficiently fast deformations.

We here consider perfect one-cell-thick monolayers. They can experimentally be realized
in two ways. As we have shown earlier [25], cells seeded on a flat substrate do not detach from
the substrate if their growth is contact inhibited and if at the same time the cell-substrate forces
are sufficiently strong to ensure that the cells enter the cell cycle rest (Gy-) phase before they
would detach from the substrate. Therefore, contact-inhibited cell lines with sufficiently strong
substrate adhesion would form a one-cell-thick monolayer. Another experimental possibility to
ensure the formation of a perfect one-cell-thick monolayer might be to constrain the monolayer
from above so that cells cannot leave the one-cell-thick layer configuration even if they are not
contact-inhibited. We use the JKR force also for the adhesion between cells and the underlying
substrate.

2.2. Cells and the enclosing medium

The expanding cells can grow and divide as explained below. We consider two types of
environmental objects: non-dividing cells or inert granular objects. We label the cells of the
expanding clone ‘A’ and the enclosing objects ‘B’. Below we refer to the cells of the expanding
clone as ‘A-cells’ and to objects (cells or granular objects) of the enclosing medium as ‘B-
objects’.

2.3. Cell growth and division

During G-, S- and G,-phase we assume that a cell increases its volume by increasing the radius
R in small steps A R < R until it has doubled its initial ‘intrinsic’ volume to Vpy = 2Vinir,
where Vinir is its volume immediately after cell division (figure 1). Here, the intrinsic volume
V; of a model cell i is approximated by V;(R;) = 411R,-3 /3. 1If V; = Vpv (hence Rpy & 1.26 - R)
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the model cell i deforms into a dumb-bell at constant volume. Then it divides into two daughter

cells of radius R. We assume that a cell i in G, switches into a rest phase G if the measure p!

1 b
defined by
AA AB AS
ot = Z i ori—r; N Z Firi—r; +Eis ri—r;
l Aij |r; _£j| Aij |r; _Kj| Ais |r; _Kj|

jNNi jNNi

overcomes a threshold value py. pi*

‘pressure’).
Here, F ’?jA is the JKR force between A-cell i and a neighbor j of type A, F ‘?jB is that between

is a pressure-like measure (hereinafter referred to as

A-cell i and a neighbor j of type B, F% is that between A-cell i and the flat substrate, and A; j
are the corresponding contact areas calculated with the JKR model. In the first sum of the above
relation, j runs over the nearest neighbors of type A, and in the second sum, it runs over the
nearest neighbors of type B. The pressure is calculated directly after the division of a cell. If
it < po, then the cell i enters the cell cycle and passes through the whole cell cycle again. If
the forces on cell i were isotropically distributed, acting uniformly on the whole cell surface,
and if the adhesion strength were zero, the measure is identical to the definition of hydrostatic
pressure on the cell.

The orientation of cell division in the monolayer simulations is assumed to be random
uniformly distributed parallel to the two-dimensional (2D) substrate. During the mitosis phase
we assume that cells adopt for a short time period a dumb-bell shape. Forces on cells at this stage
can lead to a torque. The orientation can change as a consequence of the torque which we take
into account by orientation changes. For simplicity we modeled these by energy minimization
(the Metropolis algorithm) instead of numerically integrating equations for the torques. Energy
minimization provides an alternative to a forced-based single-cell dynamics [26]. Within each
time interval At for each cell a rotation trial around three space-fixed axes by angles §8; with
i=1,2,3,8B; €0, 6Bmax), With §Biax K /2 was performed, using the algorithm of Barker and
Watts as explained in [26]. The probability Py, that the rotation trial is accepted was calculated
by Prec = min(1, e "2Y/F)) where AV =V (t+At) =V (t). V(t+At) = Z[N<, Vij(t + At) is
the total potential energy after the orientation change and V (¢) the total potential energy before
the orientation change. Fr is a reference energy [24]. The energy and force can directly be
linked by F,; = —0dV;;/0r,. The Metropolis algorithm ensures that orientation changes that
lead to a decrease of the energy of the multi-cellular configuration are always accepted, while
those which lead to an energy increase are only accepted with probability e=*"/#T, For spherical
cells we do not consider orientation changes since they do not change the total energy of the
multi-cellular configuration. For the monolayers the cell-substrate forces were assumed to be
strong enough to prevent cells from moving out of the layer.

2.4. Cell migration

First, the modeling framework for monolayers is developed, where cells can crawl on a 2D
substrate. After this, we discuss the difference between monolayers and multi-cellular spheroids,
which are 3D cell aggregates.

Monolayers. In the absence of chemotactic signals, isolated cells in suspension or
culture medium have been observed to perform an active random-walk-like movement in
monolayers [50, 51]. We assume that the random component of the active cell motion, the
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cell micro-motility, can be characterized by the cell diffusion constant D of isolated randomly
moving cells. We used Dy~ 10~">cm?s™! as the reference value. More motile cells are
characterized by a larger D. In our model, D is also used to quantify the micro-motility of
cells in contact with other cells.

While in mechanical contact with other cells, proliferating cells exert a pressure on their
neighbors. The neighboring cells try to escape this pressure by moving against the friction
caused by the other neighbor cells and extracellular material, for example ECM [52]. The
movement could be partly passive, due to pushing, and partly active [9, 46], if cells migrate
into the direction in which they escape the mechanical (or morphogen) stimulus. We simulate
cell migration as a friction-dominated over-damped motion with a stochastic contribution by a
stochastic equation of motion for each cell [26, 45, 53]. Schienbein et al [50] have demonstrated
that the migration of an ensemble of isolated cells in culture subject to an external force can be
mimicked by a Fokker—Planck equation for the single-particle distribution function having a
drift and a diffusion term.

Dickinson and Tranquillo [54, 55] have developed equations of motions for different types
of cell movement from cell receptor dynamics and obtained a stochastic dynamics reminiscent
of the approach of [50]. More recently, in [46], in monolayers of MDCK cells a net traction of
cells perpendicular to the border of the layer was observed, suggesting an active pulling-like
movement to increase the spread of the monolayer. Our equation of motion tries to capture the
main aspects of these observations.

The equation of motion of cell i of the expanding cell type (denoted by the superscript A)
is determined by

st =3 (Q‘.A(yﬁ‘(t) —yé‘<r>>+£t.‘;‘) +EN
— =S =ij

jNNi

+Z( ABB(r) — vi(t))+E’§‘]B) + F2S,

jNNi

In this equation, v%(¢) is the velocity of cell i of type A and v? is the velocity of object i
of type B. gAX with X = {A, B, S} denotes the friction of cell i of type A and (i) cell j of type A

if X = A) or (i1) object j of type B (if X = B) or (iii) the substrate S (if X = S). Generally, the
friction may be decomposed into a perpendicular and a parallel component, so that
SI?,X =y @ui) v L—uy,; @uy).

Here, u;; = ri)/ |r —r ;| with r; denoting the center of cell i of type A (or if
cell i is in m1t051s and has a dumb-bell shape, the position of the closest sphere of the
dumb-bell). r ; denotes the center of object X € {A, B, S} i.e. a cell of type A, an object
of type B, or the substrate S. ‘®’ denotes the dyadic product. F' )ij denotes the JKR force
between cells i and j of type A (X=Y =A), objects i and j of type B (X=Y =B) or
between cell i of type A and object j of type B (X=A, Y=B or X=B, Y=A). E?S
is the JKR-force between cell i of type A and the substrate S. The JKR-forces between
cells A and the substrate and between objects B and the substrate are assumed to be
large enough to prevent detachment and are not explicitly modeled here. We assume the
substrate that the cell crawls on to be flat and denote it by a sphere of infinite radius. [ is
the unity matrix. (z ® u )v, is the projection of v; on u. This can be immediately seen as, after
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some re-writing,
AX AX AX
S V=Y. (Zij ®Zij)2i +Y (l_ﬂij ®Zij)2i
=iy -
AX AX
=V Zij(ﬂijﬂi)"'y” (éyi _Z,‘j(ﬂijyi))~

If, for example, X =S, then u ;; is the unit vector of the line connecting the center of
the sphere of infinite radius representing the substrate k = s and the center of cell i of type A.
(u;, ®u,; )v; then denotes the projection of the velocity component on the connecting line, i.e.
perpendicular to the substrate, and ( —u; ®u, )v, is the velocity component parallel to the

substrate. Accordingly, y”AS denotes the tangential friction coefficient of a cell of type A with
the substrate. Correspondingly, (u; ® u, )v, would contribute to a deformation of a sphere
against inner cell friction characterized by y{**. In general, the friction coefficients y*¥, y*
may differ for cells of type A and objects of type B. We assume here that they are the same
ie. yM=yP? and y =yPP. We further assume throughout this paper that ¥ =0 and
that ¥ oc A;; for two interacting objects i, j of type X, Y (XY = AA, AB, BB, AS or BS).
As we set y*¥ =0, we in the following use the simplified notion y*¥ = yX¥. Assuming that
y*Y o A;; assumes that the density of surface adhesion molecules responsible for the strength
of the friction force is nearly constant. If the number of surface molecules were constant, then
y*Y should be independent of A;;.

F ’;‘JA is the JKR force the cell i of type A experiences from neighbor cell j of type A,

F /?JB is the force that A-cell i experiences from a neighbor j of type B, and F ’?‘Js summarizes
the force A-cell i experiences from the flat substrate, ECM and a possible plate or mesh
preventing movements perpendicular to the substrate. In monolayers, cells are usually attached
to a substrate, usually the culture plate. F°™** is then the active migration force of cell i of
type A from crawling on the substrate.

The equation of motion of the external objects (denoted by the superscript B), either
external medium cells or granular particles, is mimicked by

St b0 = 3 (£ (0 - ) £ ) e

jNNi N

>

& (3() — (1) +£¢>;3) + FPS,
jNNi

:i]

Equivalently, F- ]?jB is the JKR force B-cell i experiences from neighbor cell j of type B, and

F ]?J.S is the JKR force of B-cell i by the flat substrate, extracellular material and a constraining
plate or mesh.

If the B-type objects are granular particles,
migration force of cell B is as defined below.

Beysens et al [56] have proposed an analogue of an ‘Einstein relation’, linking the cell
diffusion constant with an effective temperature. Note, however, that the physics for cells and
colloidal particles is very different. For cells, the effective temperature parameter is controlled
by the cell surface receptor dynamics and not, as for Brownian particles, by collisions with
smaller solvent particles. If the cell motion occurs on a flat substrate, then the random micro-
motility is not isotropic in three dimensions but needs to be split into components parallel and
perpendicular to the substrate.

Factive, B

—1

= 0. For the other cases, the active
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For A-type cells we consider two types of micro-motility which are presented below for a
one-cell-thick monolayer.

Case 1: Unbiased micro-motility. We assume that the micro-motility is isotropic within the
plane of the substrate. In this case, F, acuve Ay = (u,, (1) Qu, (1)) F’ active.A (1) i the random force

=Zis Zis

component perpendicular, and F f‘cltlwe A(t) = —u, (HQu, (1))F; active.A 1) g the random force
component parallel to the substrate. We assume the perpendlcular components to be zero. For
the parallel components, we assume that (F aclt‘we’A) =0, (F lacltlwe ANF f‘cltlwe Ah) = 4y; Dy (1 —

t') in formal analogy with colloidal particles. Moreover, the random force components of
different cells as well as between different vector components of the same cell are uncorrelated.
However, as discussed above the Einstein relation in the case of cells only represents a formal
analogy because unlike colloidal particles cells can control their migratory activity on their own.
Hence the amplitude of the force autocorrelation function generally is a function of cell internal

processes or states.

Case 2: Biased micro-motility. We assume that the active migration is biased into the direction
of minimum stress exerted by A-cells if no embedding medium exists. We found that this
assumption was able to explain the regeneration of the necrotic zone that emerges after
intoxication by CCly in liver lobules [45]. Moreover, recent monolayer experiments with MDCK
cells suggest that cells may actively move towards free spaces and pull other cells behind [46].
We mimic aspects of this type of micro-motility in two alternative ways:

1. By the selection of random force contributions into directions of decreasing local
pressure: F*V* = (1 - O[V p; f a;Cnve’A]) f ‘;C“VC'A, where f jC“VE’A obeys the same relations

as F icme A in case 1 of isotropic micro-motility in the plane of the substrate, i.e.
fjlc‘tllve A factlve A(t)factlve A(l ) 4(VHAS)2D”8(t _ l,), and i?'cjive,A — 0 HCI'C, @(x)

is the Heav1s1de flll’lCthIl Wthh 1s one if x > 0 and is zero otherwise and

ij

is a measure of the stress of A-type cell i by external forces not taking into account the
adhesion of cells. The term mimics the case when cells can distinguish neighbor cells of their
own type from neighbor cells of a different type and move in order to relax the compression
within cells of their own type. If we would consider in the calculation of p?* also forces between
A-type cells and B-type objects, then the effect at the interface between A-type cells and the
B-type object would become negligibly small.

2. By the addition of a constant force term directed into the local outward-normal of the
border of A-cells. In this case, F' i‘-cuve’A f active, A F directed, A

f active.A 5 the random component of the active force obeying the same relations as in case 1.
F diecied A _ —Ypy - Fo with Fy being the deterministic component of the active force, i.e. the cell

= ‘V
moves with a determlmstlc force into the opposite direction of the local pressure gradient.

Some authors (see, e.g., [57]) assume that migrating cells try to adopt a certain target
speed v,,. This can be taken into account by replacing in the first term of the equation of motion
v, = v,(1—v,]?/v]) for [vy| > 0. We will not consider this case here but note that it can be
easily included in our concept.
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For B-type objects we consider two cases: If B-objects are considered to be cells, then
we assume that the active term F“™*®(¢) is mimicked in the same way as for A-type cells in

case 1, i.e. as an unbiased active random movement. If B-objects represent granular particles,
. . t1 ’B
we assume that the active force is zero, F"" () = 0.

Multi-cellular spheroids. In the last part of the paper, we consider multi-cellular spheroids, i.e.
3D cell aggregates. The tissue architecture of (3D) multi-cellular spheroids is usually closer to
the in vivo situation and shows the formation of extensive ECM (see, e.g. [58]). For example,
staining for collagen V in SK-MES-1 cells, a non-small-cell lung cancer cell line shows massive
ECM presence [59]. If this 3D network of ECM is stiff enough, it may allow cells to anchor
and move as described in [51]. In this case the interpretation of the terms remains the same as
that in the monolayer situation. The factor ‘4’ in the autocorrelation function is then replaced
by ‘6’ (= 2d; d is the space dimension) and the diffusion is assumed to be isotropic (we use
diffusion constant D). However, some multi-cellular spheroids show only a very sparse matrix.
In this case, the main component of active migration occurs from forces exerted from a cell on
its neighbor cells (i.e. not on the ECM anymore). Those forces are balanced by the respective
reaction forces of the neighbors on that cell. Stochastic forces from one cell on its neighbor cells
may also emerge from fluctuations of the cells’ membranes in which case also momentum is
conserved; hence, the random force terms for neighbor cells have to balance each other. Taking
this into account would modify the equations of motion slightly but the results would not be
expected to show any major changes for the situations presented in this paper. (i) We are here
interested in pattern formation on long time scales compared to the characteristic times of the
stochastic fluctuation terms representing the cell micro-motility and, as the spheroids are em-
bedded in a dense arrangement of granular objects and not swimming in liquid suspension, cells
do not detach and move away as a consequence of the random movement. (i1) For multi-cellular
spheroids we consider below pushing-type movement emerging from cell proliferation. Here
active directed movements are not considered and small fluctuation forces do not play a role.

That the precise form of the noise terms representing the micro-motility does not play a role
is supported by the simulation results at varying micro-motility of the B-objects shown in figures
6(A)—(D), suggesting that the random component in the movement of cells has statistically no
effect on the formed pattern for the situations considered in this paper. However, it might be
worth noting that the movement of the cells in liquid suspension could be mimicked in the same
framework: cell movements due to collisions with fluid particles generate a random Brownian
movement component, usually with smaller amplitude than for active random movement, so in
this case the equations of motions are the same as explained above but with a smaller diffusion
constant.

Overview of simulations. In our simulations below, we consider one-layer-thick monolayers.
For A-type cells the initial number at the start of the simulation at r = 0 is always N(t =0) = 1.

In the first part we investigate the effect of pushing/pulling-type movement on the growth
kinetics of a monolayer not embedded in another external material of B-type objects.

In the second part, we consider an expanding monolayer in an embedding material of
B-type objects (granular objects or cells). We vary the following parameters: (i) motility
(diffusion constant) and mobility (friction constant) of the embedding medium, (ii) density
of the embedding objects, (iii) elasticity of the embedding objects, (iv) adhesion strength of
the embedding objects, (v) object size of the embedding objects and (vi) cytolysis versus
no cytolysis of apoptotic cells of the expanding clone. The reference parameters used in the
simulations are given in table 1.
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Table 1. Reference parameters.

Parameter/symbol ~ Unit Value (range in ~ Source
sensitivity
analysis)
Cell diameter [ um 15 Assumed
Intrinsic cell cycle h 18 [86]
time T
Reference energy  J 1016 [50, 56]
Fr
Young’s modulus Pa 450 (300-1000) [77, 78]
E As EB
Poisson ratio v - 0.4 [87, 88]
Diffusion constant cm?s~! 10712 [56]
D
Receptor surface m~> 105 [83, 84]
density ¢, Saa
Receptor surface m—2 0 [83, 84]
density ¢aB, SBB
Binding energy ~ 25kgT [56]
single bond Wj
Friction coefficient Nsm™> 107 Assumed
14
Diameter of mm 1.6 (0.25-2.4)
environment

In the third part, we consider 3D multi-cellular spheroids in an embedding material of
granular objects and compare our simulation results directly with the findings of Helmlinger
et al [1] and Galle et al [60]. We from now on always use D to denote the diffusion constant.
For monolayers, this corresponds to using the symbol D instead of D.

To quantify our simulation results, we measure the cell population size N (¢), and the radius
of gyration,

1
Reyr = \/ﬁ Zi (r; = Rew)’,

where Rey =+ Y, r; is the position of the center of mass. The sums run over the expanding

(the growing) clone. If the monolayer is compact with a circular border, then R = ﬁngr,
where R is the radius of the monolayer. For this reason, we usually display R or the diameter,
L = 2R, calculated from the radius of gyration. In addition, we store the full spatial-temporal
configuration of cells and objects at different times during the growth process.

3. Results

3.1. Reference situation: growing monolayers without an embedding medium

In [46], the authors found an active migration of cells towards the free edge of an expanding
monolayer culture. Hoehme et al [45] found that an active migration of cells towards a drug-
induced necrotic zone is necessary for explaining regeneration of liver after toxic damage.
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Figure 2. Diameter of the monolayer in the free environment versus time for
different motility models. The black points denote the results experimentally
found for rat astrocytes in [61] denoting an expansion speed in the linear growth
regime of about 6 umh~!. Typical values for the expansion speed of monolayers
for different cell lines span 2-23 umh~' [62]. The red curve (up triangles)
denotes case 1: uniformly distributed micro-motility (with no bias). The full blue
and green lines (diamond and square) result from uniformly distributed micro-
motility plus a directed force term of either 0.8 or 1.6nN. For an explanation
see case 2(ii) for the active cell migration term of A-cells. The black dashed
curve (down triangles) denotes biased micro-motility as defined for case 2(i).
Here, D5 = 3.1D,. Insets: if a cell actively moves into the free space around
the monolayer, the cell density in the surface region is smaller (upper left inset)
than if active migration is purely random (lower right inset). Active migration
accelerates monolayer expansion. In the lower half, white cells are proliferating
and gray cells are in Gy phase.

Figure 2 shows the results of a biased and an unbiased micro-motility in a growing one-
cell-thick dense monolayer. The strength of the bias has been varied up to the size at which cells
detach.

As B-type objects are not considered in this part, and as F f‘ss is approximately constant by
construction, the variable part of the pressure is given by

r

ot,\,z £ Li7r
rl

jNNi ’J |r

The results show an acceleration of growth which can be explained by an increase of the
proliferating rim by the biased cell micro-motility. Due to the active movement towards the
free edge of the monolayer the cell-cell contacts are stretched. This leads to a reduction of cell
compression and thereby facilitates reentrance of cells into the cell cycle. Moreover, the cell
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density close to the border is smaller for biased than for unbiased micro-motility. We conclude
that a bias in the micro-motility promotes the growth of a monolayer. We expect the same result
for multi-cellular spheroids. Transferred to the case of a tumor in the soft tissue environment,
any morphogen that biases micro-motility or an increase of its amplitude or both will promote
the speed of growth of the expanding tumor. Besides this acceleration effect, we observe that
biased micro-motility reduces the random motion of cells inside monolayers because cells in
almost isotropic multi-cellular environments then have a smaller tendency to move. On the
other hand, the micro-motility is larger close to the border.

So far we have used model rule 2 of figure 1 to mimic the cell cycle entrance control.
Rule 1 of figure 1 has been tested in [24]. In figure 3, we test different hypotheses for cell cycle
entrance, namely that the entrance into the cell cycle is triggered if pi** < 0, i.e. if normal stress
—pi® on the cell is positive (rule 3 in figure 1), and that cell cycle entrance only occurs if a
cell is under stretch (rule 4 in figure 1). Note that for rule 4 it is sufficient if at least a single
contact is stretched (i.e. d;; — (R; + R;) > 0 for at least one j € {j}) even if other contacts are
under compression. It is not necessary that the cell is overall stretched into all directions (i.e.
Zj dij — (R; + R;) > 0) or stretched into each direction (i.e. d;; — (R; + R;) > 0, V).

We again find that an increase of the active migration pulling force accelerates the growth.
Above a certain pulling force (see the curve for 3nN), cells detach and actively migrate
into the environment. This is reflected in the radius of gyration versus time curve by the
characteristic bump at about 2-3 days, indicating free migration (arrow in figure 3). However,
the condition that cell entrance is possible only if a cell is under tension (positive normal stress)
implies smaller growth velocities as for active directed migration forces and a positive pressure
threshold (compression; implying negative normal stress) for the cell cycle entrance.

Interestingly, the largest and smallest growth speeds are observed for rule 3. The growth
speed is largest for pulling forces of 1 nN or more and smallest in the absence of pulling forces.
For rule 4, stochastic force fluctuations are able to trigger the overstretching of a single cell—cell
contact for a moderate pulling force, resulting in a larger monolayer expansion speed than for
rule 3.

In summary, the growth curve without any embedding medium shows that: (1) a directed
force into the direction of the outwards-pointing interface normal leads to acceleration of
growth compared to random uniformly directed micro-motility, (ii) a growth control mechanism
permitting growth entrance only if a cell experiences a negative force slows down the growth
speed for small pulling forces but accelerates it for large pulling forces, and (iii) a growth control
mechanism that permits only cell cycle entrance for stretched cells leads to a smaller (larger)
growth speed than for negative force control for large (small) pulling forces.

3.2. Growing monolayers in an embedding medium

In the following, the term ‘embedding material’ encompasses both the B-type cells and the
B-type non-cellular objects. A distinction is made only if necessary.

Compared to earlier studies (see, e.g. [24, 26]), the introduction of an embedding material
is an important step towards a modeling of the in vivo situation. We systematically modified the
properties of the embedding material by varying the motility, initial density, elasticity, adhesion
properties and average cell size of the embedding objects (B-type). We assumed the growing
cells and the embedding material to be differentially adhesive with &, = ¢aa = 10" m~2, where
Caa denotes the density of adhesion molecules in the case of an interaction between two cells of
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Figure 3. Square root of population size (top plot) and population diameter
(L = 2«/§ngr, see above) (bottom plot) if cells move actively into the direction
of the free edge according to the migration rule in case 2(ii) and different variants
of cell cycle entrance control rules. (1) (Green triangles; blue open squares; light
brown diamonds; up triangle brown/green; full black circles with brown lines;
blue triangle with light green line; full blue square with blue line): cell division
entrance occurs only if the force is attractive (negative; see rule 3 in figure 1).
(i) (Brown up triangle with brown line; dashed pink line; dashed black line):
cell cycle entrance occurs only if the cell is stretched (see rule 4 in figure 1). For
details see text. For comparison, the reference curve for a uniformly undirected
active migration force (case 1) and positive pressure threshold for cell cycle
entrance (red, hollow circles, see rule 2 in figure 1) as well as the curve with a
directed active force of 0.8 nN (compare figure 2) and positive pressure threshold
for cell cycle entrance (pink curve with a solid diamond shape) are shown. With
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Figure 3. (Continued) increasing outwards-directed active migration force, the
expansion velocity increases and for an active directed migration force of about
I nN it becomes larger than the reference curve without the directed migration
component. Beyond about 3nN the cells detach and move freely. Note that
the expansion speed for a directed micro-motility force of 0.8 nN and positive
pressure threshold (= negative normal stress; pink curve) is larger than that for a
directed micro-motility force of 1nN if the cell cycle entrance is triggered by a
negative pressure (= positive normal stress). The arrow shows the characteristic
bump if cells detach. The bump denotes a regime where Rgy, J/t and is
characteristic of the free random movement component (see also [63]).

type A. For B-objects we assume in most cases that {gg = {aa SO that the strength of adhesion
between B-objects is the same as the strength of adhesion between A-cells. Furthermore, unless
stated otherwise, we assume that A-cells and B-objects do not adhere, i.e. {45 = 0m~2. The
elastic moduli of A-cells and B-objects are denoted by E, and Eg, respectively, and the diffusion
constants for A-cells are denoted by D, and for B-cells by Dg. Whereas Dy = 1072 cm?s™!
denotes the reference diffusion constant, ), denotes the reference effective friction constant for
cells with the substrate.

We started our simulations with a single cell of type A embedded in about 10*~10° particles
of the granular medium or model cells of type B. We used the number of embedding objects to
control the initial density of the environmental objects. All elements of the embedding material
were randomly arranged (isotropic homogeneously distributed) within a circular environment
(figure 4) that was enclosed by a circular impermeable wall mimicking a virtual Petri dish. The
initial placement of the B-objects on a regular square lattice was found to lead to symmetry
artifacts in the emerging growth pattern. The shape of the impermeable wall fed back to the
final shape of the growing aggregate (this was also experimentally observed in [1] for cell
populations growing in a tube filled with agarose gel, see also figure 15), which is why we
chose a circular border. The total area was held constant and was the same in all simulations.
During the simulations, the growing population of cells of type A pushed away and compressed
the surrounding objects. Figure 4 shows that a directed active migration component according to
case 2 does not affect the growth speed of the expanding cell population as long as the directed
force component is insufficient to cause detachment of cells from the expanding monolayer cell
population.

For this reason, below we only consider pushing-type movement. We also consider the case
when cell cycle entrance occurs only if p® > 0. First we study growth without apoptosis and
then include apoptosis with subsequent cytolysis.

Figure 5 shows the growth scenario with the reference parameter set.

3.2.1. Variation of the friction and motility of embedding objects. As a first step we analyzed
the impact of varying the friction and micro-motility of the embedding objects of type B on the
morphology of the expanding cell clone A.

As explained above, embedding granular objects are characterized by Dg =0, while
embedding cells are characterized by Dg > 0. For cells, the diffusion constant Dg and the
friction coefficient ¥ can be varied independently. A fluctuation dissipation theorem linking
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