
HAL Id: hal-00779194
https://hal.archives-ouvertes.fr/hal-00779194

Submitted on 21 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Partial orders and logical concept analysis to explore
patterns extracted by data mining

Peggy Cellier, Sébastien Ferré, Mireille Ducassé, Thierry Charnois

To cite this version:
Peggy Cellier, Sébastien Ferré, Mireille Ducassé, Thierry Charnois. Partial orders and logical con-
cept analysis to explore patterns extracted by data mining. International Conference on Conceptual
Structures, 2011, Derby, United Kingdom. pp.77-90, �10.1007/978-3-642-22688-5_6�. �hal-00779194�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49826221?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00779194
https://hal.archives-ouvertes.fr


Partial Orders and Logical Concept Analysis

to Explore Patterns Extracted by Data Mining

Peggy Cellier1, Sébastien Ferré2, Mireille Ducassé1, and Thierry Charnois3

1 IRISA/INSA Rennes
2 IRISA/University of Rennes

Campus Beaulieu, F-35043 Rennes Cedex, France,
firstname.lastname@irisa.fr
3 GREYC/University of Caen

Campus Côte de Nacre, F-14032 Caen cedex, France,
thierry.charnois@unicaen.fr

Abstract. Data mining techniques are used in order to discover emerg-
ing knowledge (patterns) in databases. The problem of such techniques
is that there are, in general, too many resulting patterns for a user to
explore them all by hand. Some methods try to reduce the number of
patterns without a priori pruning. The number of patterns remains, nev-
ertheless, high. Other approaches, based on a total ranking, propose to
show to the user the top-k patterns with respect to a measure. Those
methods do not take into account the user’s knowledge and the depen-
dencies that exist between patterns. In this paper, we propose a new
way for the user to explore extracted patterns. The method is based on
navigation in a partial order over the set of all patterns in the Logical
Concept Analysis framework. It accommodates several kinds of patterns
and the dependencies between patterns are taken into account thanks to
partial orders. It allows the user to use his/her background knowledge
to navigate through the partial order, without a priori pruning. We il-
lustrate how our method can be applied on two different tasks (software
engineering and natural language processing) and two different kinds of
patterns (association rules and sequential patterns).

Keywords: data mining, partial order, selection of patterns, logical con-
cept analysis, formal concept analysis

1 Introduction

Knowledge Discovery in Databases (KDD) [FPSS96] can be seen as a process
in three steps: preparation of data, data mining and exploitation of extracted
patterns. In the second step of the KDD process, data mining techniques are
used in order to discover emerging knowledge (patterns) in databases. That step
highlights regularities and tendencies which can give important information to
a user about the data. The problem for a practical use is that, in general, too
many patterns are generated. It is not easy for a user to explore by hand a large
amount of patterns. The problem is not specific to one kind of patterns. Indeed,



II

a huge amount of association rules [AIS93] but also sequential patterns [AS95]
or graph patterns can be extracted with data mining techniques.

In order to address this problem, some methods try to reduce the num-
ber of patterns without a priori pruning, for example condensed representa-
tion [PBTL99,PC09] or constraints [PHL01]. The number of patterns remains,
nevertheless, high. Other approaches, based on a total ranking [KB10], propose
to show to a user the top-k patterns with respect to a specific measure. User’s
knowledge and dependencies between patterns are not taken into account by
that kind of methods.

In this paper we propose an application of Logical Concept Analysis
(LCA) [FR04] to build a generic framework to explore patterns extracted by
data mining techniques. The framework is based on a data structure which or-
ganizes the set of patterns, and provides operations on that structure, namely
navigation in the set of patterns, selection of patterns of interest and pruning
off patterns without interest. The data structure is given in the form of Hasse
diagram [DP90], exploiting the fact that patterns are naturally partially ordered.
Indeed, some patterns are sub-patterns of others. The operations take advantage
of the power of LCA. As LCA can be applied to any ordering, its navigation
capabilities can be re-used as such. Furthermore, the operations of selection of
patterns of interest and pruning off patterns without interest can be straightfor-
wardly implemented on top of its updating capabilities. We illustrate how our
framework can be instantiated on two different tasks (natural language process-
ing (NLP) and fault localization) and two different kinds of patterns (sequential
patterns and association rules). The tasks had ad hoc formalizations [CDFR08]
[CC10] which are unified and generalized by the framework proposed in this
paper.

The contribution of the paper is twofold. Firstly, as opposed to existing ap-
proaches, users can benefit from their background knowledge to navigate through
the patterns until their goal(s) have been reached, without a priori pruning. Sec-
ondly, the framework is generic, there is no constraint on the kind of patterns
and it can accommodate several kinds of tasks. The genericity is mainly due
to the power of LCA. Indeed, LCA can be applied to any ordering of patterns.
Whereas Formal Concept Analysis (FCA) [GW99] can also be used on partial or-
dering, it is tied to sets of attributes ordered by inclusion. Furthermore, in LCA
partial orders can be combined with other logics allowing a rich description of
patterns. For example, the extracted patterns often have some information about
statistical measures such as a support value or a confidence value.

In the remaining of the paper, Section 2 presents the case studies. Section 3
gives background knowledge about LCA. Section 4 defines the proposed approach
and Section 5 discusses related work.

2 Case Studies

In this section, we describe two different tasks. Those case studies are used in
the paper to illustrate the theory (Section 4).



III

2.1 Natural Language Processing Task

The first application is a Natural Language Processing (NLP) task [CC10]. Some
linguistic patterns are automatically extracted from a corpus. The linguistic pat-
terns have to recognize appositive qualifying phrases in French texts. Some exam-
ples of appositive qualifying phrases are: “En bon père de famille,” (“As a good
father,”), “, connu pour sa cruauté,” (“, known for his cruelty,”). Several parts
of different sentences representing appositive qualifying phrases are collected to
build a training corpus. In the training corpus, each appositive qualifying phrase
is replaced by a sequence where each word is associated to part-of-speech in-
formation. For example, 〈(en en PRP ) (bon bon ADJ) (père père NOUN)
(de de PRP ) (famille famille NOUN)〉 is a sequence4.

From the training corpus, patterns are extracted. The patterns are closed se-
quential patterns under constraints. For instance, 〈(champion NOUN)(PRP )〉
is a sequential pattern that describes phrases starting by a noun whose lemma
is “champion” and followed by a preposition (PRP ). The support of a sequen-
tial pattern S in a corpus is the number of sequences of the corpus matching
S. The frequent sequential patterns are the sequences with a support greater
than a threshold. An extracted sequential pattern, S1, is closed if there is
no other extracted sequential pattern, S2, such that S1 is included in S2 and
sup(S1) = sup(S2). The advantage of closed sequential patterns is the reduction
of redundancy. A preliminary automatic filtering is done with the application of
two constraints in order to keep only closed sequential patterns that are relevant
for the task: no gap in patterns (i.e. between itemsets of sequential patterns)
and patterns represent the beginning of the appositive qualifying phrases. The
number of patterns is high (1 789 patterns). The goal of the user is to identify
interesting linguistic patterns among extracted sequential patterns.

2.2 Fault Localization Task

The second application is a fault localization task [CDFR08]. When the result
of a program execution is not the same as the expected one, that execution is
called a failure. Fault localization is a software engineering task that tries to find
an explanation to the failures by examining information from the executions. To
each execution is associated an execution trace that contains information about
the execution: the executed lines and the verdict of the execution (Pass when
the result of the execution is the same as the expected one, otherwise Fail).

From the execution traces of different executions of a given program, par-
ticular association rules are computed where the conclusion is set to Fail. For
example, the rule “r2 = 78, ..., 81, 84, 87, 90 → Fail” means that “when the lines
78, ..., 81, 84, 87 and 90 are executed, most of the time it implies a failure”.
In order to measure the relevance of the rules, the support and the lift values
are also computed. The support measures the number of execution traces that

4 Each word is replaced by three elements : the word itself, its lemma and gram-
matical information. Sometimes the word and its lemma are identical. ADJ means
“adjective” and PRP means “preposition”.



IV

execute the lines of the premise of the rule and fail. The lift value measures how
the observation of the premise in an execution trace increases the probability
that this execution fails. Some rules are identified as “failure rules”. A rule r is a
failure rule if there exist some failed executions that contain the whole premise
of r in their trace but not the whole premise of rules more specific than r.

The number of extracted rules can be high. The goal of the user is to give at
least one explanation for each failure.

3 Logical Concept Analysis (LCA)

Logical Concept Analysis (LCA) is defined in [FR04]. It is a general theory allow-
ing extensions of Formal Concept Analysis (FCA) [GW99] to be easily specified
in a formal way. In LCA the description of an object is a logical formula instead
of a set of attributes as in FCA. Pattern structures [GK01] are an equivalent
alternative to LCA, where “patterns” are used instead of formulas.

3.1 Logic and Partial Order

Definition 1 (logic). A logic is a lattice L = (L,⊑,⊓,⊔,⊤,⊥) where

– L is the language of formulas,

– ⊑ is the subsumption relation (the order on the formulas),

– ⊓ and ⊔ are, respectively, the lower bound and the upper bound,

– ⊤ and ⊥ are, respectively, the top and the bottom of the lattice.

Let f and g be two formulas, i.e. f , g ∈ L, if f ⊑ g and g ⊑ f then f and g are
said logically equivalent. It is denoted by f ≡ g. Some logics are partially defined,
partial logic, namely the lower and upper bounds are not always defined. The
definition of a logic is left very abstract. This makes it possible to accommodate
non-standard types of logics. For example, Lbase is the logic that describes base
domains, e.g. support = 3 ⊑ support ≥ 2. The subsumption relation also allows
the terms of a taxonomy to be ordered (see line attributes in the fault localization
illustration in Section 4.5).

We define a partial order, P, as a couple (P,≤) where P is a set and ≤ is a bi-
nary relation on P that is reflexive, anti-symmetric and transitive [DP90]. In the
LCA framework, we can define a logic associated to a partial order thanks to logic
functors (see [FR04] for details). There are several logic functors. FPOSET (P) is
the functor that builds a partial logic from a partial order, P = (P,≤), such that
p1 ⊑ p2 if p1 ≤ p2. FUNION , also denoted by ∪, is the functor that combines
several logics into a logic, potentially partial. FLIS is the functor that builds
a well-defined logic from a partial logic by adding boolean connectors (“and”,
“or” and “not”) and the closed world assumption. Indeed, the “and” and “or”
connectors guarantee the lower and upper bound of the logic.



V

3.2 Logical Context

Definition 2 gives the definition of a logical context in the LCA framework.
Definition 3 defines the logical versions of extent and intent. The extent of a
logical formula f is the set of objects in O whose description is subsumed by f .
The intent of a set of objects O is the most precise formula that subsumes all
descriptions of objects in O. Definition 4 gives the definition of a logical concept.

Definition 2 (logical context). A logical context is a triple (O,L, d) where
O is a set of objects, L is a logic and d is a mapping from O to L that describes
each object by a formula.

Definition 3 (extent, intent). Let K = (O,L, d) be a logical context. The
definition of the extent is: ∀f ∈ L , ext(f) = {o ∈ O | d(o) ⊑ f }. The definition
of the intent is: ∀O ⊆ O, int(O) =

⊔
o∈O d(o).

Definition 4 (logical concept). Let K = (O,L, d) be a logical context. A log-
ical concept is a pair c = (O, f) where O ⊆ O, and f ∈ L, such that int(O) ≡ f

and ext(f) = O. O is called the extent of the concept c, i.e. extc, and f is called
its intent, i.e. intc.

The set of all logical concepts is ordered and forms a lattice: let c and c′ be two
concepts, c ≤ c′ iff extc ⊆ extc′ . Note that c ≤ c′ iff intc ⊑ intc′ . Concept c is
called a sub-concept of c′.

4 The Proposed LCA Framework to Navigate into the
Set of Extracted Patterns

In this section, we present the general framework and show how it can be instanti-
ated for the case studies presented in Section 2. Firstly, some pre-requisite to use
the method are presented (Section 4.1). Secondly, the logical context is defined
and an example with the NLP task is given (Section 4.2). Thirdly, the user ac-
tions are presented (Section 4.3) and a stopping criterion is defined (Section 4.4).
Then a complete example is given with the fault localization task (Section 4.5).
Finally, there is a discussion about the proposed approach (Section 4.6).

4.1 Preliminaries

In our method there are three important parameters: the patterns, the user and
the goal of the user. The first hypothesis is that the patterns are already ex-
tracted. We do not make any assumption about the kind of patterns or about
the extraction technique. The only one pre-requisite is the definition of a partial
order over the set of patterns. Note that there is a natural order between pat-
terns: the inclusion order. The second hypothesis is that the user is a domain
expert. This means that he/she can judge the relevance of any individual pat-
tern with sufficient information. The proposed method is designed to help a user



VI

<(NOUN)(PRP)>

<(champion NOUN)(PRP)> <(NOUN)(du PRP det)>

<(champion NOUN)(du PRP det)(NOUN)>

...

Fig. 1. Excerpt of the partial order on the patterns extracted from a corpus. The most
general patterns are at the top.

to understand patterns using his/her background knowledge. If the user is not
an expert, the method cannot provide much help. The last hypothesis is that
the goal of the user is clearly expressed as a subset of patterns that have to be
identified. This hypothesis is important to define a relevant stopping criterion
(see Section 4.4).

4.2 A Logical Context to Explore Extracted Patterns

Partial Order. The patterns are naturally partially ordered. Indeed, some
patterns are more general than others: sub-patterns. Note that constraints can
provide other, possibly more relevant, partial orders.

For example, Definition 5 gives the partial order on the patterns, Pseq, for the
NLP task. As mentioned in Section 2.1, the patterns used for that task are closed
sequential patterns under two constraints. Figure 1 shows a part of that partial
order. We see that 〈(champion NOUN)(PRP )〉 is more specific than pattern
〈(NOUN)(PRP )〉. Indeed, all phrases that match 〈(champion NOUN)(PRP )〉
also match 〈(NOUN)(PRP )〉, but the converse is not true. The phrase “Cham-
pion du monde” (“Champion of the world”) matches both patterns, but “Gagnant
du concours” (“Winner of the contest”) only matches 〈(NOUN)(PRP )〉. From
that partial order, a logic is derived Lseq = FPOSET (Pseq).

Definition 5 (Pseq). Let Pseq be a couple (Pseq,≤seq) such that:

– Pseq is all extracted closed sequential patterns that check the constraints,
– Let l = 〈I1...In〉 and l′ = 〈J1...Jm〉 be two patterns of Pseq then l ≤seq l′ if

m ≤ n and ∀i ∈ 1..m Ji ⊆ Ii.

Pattern Context. From the extracted patterns and their associated partial
order, a logical context is defined. That context is called pattern context. Def-
inition 6 defines pattern contexts by instantiating Definition 2. In this context
the objects are identifiers of the extracted patterns. Each pattern is described
by the pattern itself. That part of the description is unique for each pattern and
mandatory. In addition, the pattern description can contain additional optional
information, for example statistical measures (e.g., support, lift). The concept



VII

lattice of a pattern context represents the search space for exploring the infor-
mation about patterns.

Definition 6 (pattern context). Let P = (P,≤) be a partial order over the
pattern set. The associated Pattern Context is a triple K(P) = (Op,Lp, dp) where

– Op are the identifiers of the patterns of P ,
– Lp = FLIS(FPOSET (P) ∪ Lbase),
– Let p ∈ P , the description of p is a conjunction (defined in FLIS) of p and

optional additional information about p (defined in Lbase).

Pattern ID Pseq Add. information: support

p1 〈(NOUN)(PRP )〉 805
p2 〈(champion NOUN)(PRP )〉 106
p3 〈(NOUN)(du PRP det)〉 187
p4 〈(champion NOUN)(du PRP det)(NOUN)〉 94
. . .

Table 1. Excerpt of pattern context for the natural language processing task.

Table 1 gives an example of Pattern Context for the NLP task. The objects are
the identifier of frequent closed sequential patterns. Each line describes a pattern
(in Pseq) and the associated support value (in Lbase). The support values come
from a previous data mining step.

4.3 User Actions: Navigation and Updating

The lattice defined in the previous section can be very large and cannot be
displayed. We propose to navigate through the lattice thanks to a LCA tool such
as Camelis5 [Fer09] and Abilis6 [AFR10]. They allow a user to navigate in logical
contexts and to update them. They do not compute the whole lattice a priori
but compute parts of the lattice on demand when relevant to the navigation.
Figure 2 shows Camelis with the NLP context 7.

In LCA tools, the interface has three main parts. At the top, the query view
displays the current query. In Figure 2 the query is “support >= 2”, it means
that only patterns whose support is greater than 2, are displayed. At the bottom
left hand part, the navigation tree displays the features of the navigation (the
patterns themselves and additional information). The number next to a feature is
the number of patterns that have that feature in their description. For example,
198 patterns have the feature 〈(NOUN)(PRP )〉 in their description, namely
198 patterns are more specific than the pattern 〈(NOUN)(PRP )〉 . We see the
patterns from the excerpt of Pseq of Figure 1 (underlined patterns). On the right
hand part, the pattern view displays all patterns whose description is subsumed
by the query. With respect to the query view, only patterns having a support
equal or greater than 2 are shown there.

5 http://www.irisa.fr/LIS/ferre/camelis
6 http://ledenez.insa-rennes.fr/abilis/
7 Annotations in bold red have been added for this paper.



VIII

Fig. 2. Camelis with the NLP context.

Navigation. The user can navigate through different kinds of attributes (pat-
terns and additional information). The flexibility in the navigation comes from
the logics. Indeed, thanks to the combination of logics (logic functors), the user
can create queries that mix elements of the partial order and additional infor-
mation such as support values.

For the NLP task, the user explores the patterns from the most general
ones, which are matched by a lot of phrases (e.g., 〈(champion NOUN)(PRP )〉
matched by 805 phrases), to the most specific patterns, that are matched by
less phrases (e.g., 〈(champion NOUN)(du PRP det)(NOUN)〉8 matched by
94 phrases). The partial order over the set of patterns is highlighted in the
navigation tree. Note that behind the so called navigation tree, there is not a
tree structure but a partial order (Pseq). It explains the fact that the pattern
〈(champion NOUN)(du PRP det)(NOUN)〉 appears twice in the navigation
tree. Indeed, it is the same pattern that has two parents.

Context Updating to Select and Prune Patterns. When exploring the
patterns the user may add some information about the patterns by adding some
features to their description. The two main advantages are that it permits to
build a result set with selected patterns and to prune patterns without interest,
i.e. patterns already selected or patterns not interesting for the purpose. If a
pattern p is selected, all more specific patterns than p do not have to be explored,

8 det means “determiner”



IX

they are subsumed by p. In the same way, if a pattern p is away from the point,
all more specific patterns than p are away from the point and do not have to be
explored. Therefore, when a pattern is tagged, all more specific patterns are also
tagged and the search space is pruned. To facilitate the navigation and to reduce
the search space, we propose to create a taxonomy of tags. All tags required to
update the descriptions of patterns are subsumed by a general tag: Tags. When
navigating, the user adds to the query not Tags in order to eliminate patterns
already tagged from the views.

For instance, for the NLP task there are two tags in Tags:
LinguisticPattern and NotLinguisticPattern. Those tags are used in two
cases. The first case is when the user finds a pattern, p, really interesting to recog-
nize appositive qualifying phrases. The user selects p and the query becomes “p”.
In the pattern view, all patterns that are more specific than p are thus displayed.
Then the user adds the tag LinguisticPattern to all patterns displayed. Thus,
p and all more specific patterns than p are tagged as LinguisticPattern, i.e.
they belong to the resulting set of linguistic patterns. In order to avoid to explore
those patterns again, the user has just to add not Tags to the current query. The
second case is when the user finds a pattern, p, clearly not relevant to recognize
appositive qualifying phrases. The user selects p and the query becomes “p”. In
the pattern view, all patterns that are more specific that p are thus displayed.
Then the user adds the tag NotLinguisticPattern to all patterns displayed.
Thus, p and all more specific patterns are tagged as NotLinguisticPattern.
As previously, thanks to the “not Tags” query, the patterns already labelled are
pruned from the navigation space of the user.

4.4 Stopping Criterion

When the user can clearly define a goal as a set of patterns to label, Pgoal, a
stopping criterion is provided (Property 1). The user specifies his/her goal by
adding a specific feature to the description of the goal patterns.

Property 1. Let P be a set of patterns. Let Pgoal ⊆ P be the user goal. The
process stops when all elements of Pgoal are labelled.

Let goal be the feature that enables to tag a pattern as being in the user goal.
Assuming (hypothesis 2) that the user is competent, every time he identifies a
pattern in the goal he tags it accordingly. When query “not Tags and goal”
has no answer, the process ends. The advantage is that users constantly know
without any effort how much of the information they still have to investigate;
another advantage is that users do not need to explore the whole set of patterns
even if the goal is the whole set of patterns.

4.5 The Fault Localization Example

As presented in Section 2.2, the goal of the fault localization is to understand
why a program fails. In this section, we show how the proposed approach can
be instantiated to that task.



X

Partial Order. The first step is the definition of the partial order over the
association rules extracted from execution traces (Definition 7). All association
rules have the same conclusion: Fail. The partial order is thus derived from the
inclusion on the premise of the rules. A rule, r, is more specific than another
one, r′, if the premise of r′ is included into the premise of r. For example,
r1 = 81, 90, 93 → Fail ≤ar r2 = 81, 93 → Fail.

Definition 7 (Par). Let Par =(Par,≤ar) be a partial order where:

– Par is the set of extracted association rules;
– Let r = L → Fail and r′ = L′ → Fail be two association rules of Par then

r ≤ar r′ if L′ ⊆ L.

Pattern Pattern Add. Information
ID support lift Failure line inv_line

81 90 93 101 . . . 81 90 93 101 . . .

r1 81, 90, 93, ... → Fail 60 1.48 X X X . . . X . . .
r2 81, 93, ... → Fail 112 1.42 X X . . . X X X . . .
r3 81, 93, 101, ... → Fail 52 1.36 X X X . . . X . . .
r4 93, ... → Fail 112 1.35 X . . . X X X X . . .
. . .

Table 2. Excerpt of pattern context for the fault localization task.

Pattern Context. Table 2 gives an excerpt of a pattern context for the fault
localization task. The pattern context associated to the fault localization task,
describes each rule, r, by: (1) r, the rule itself; (2) the support value and (3)
the lift value that are computed during the data mining step; (4) the Failure

attribute if r is a failure rule; (5) the lines that belong to the premise of the rule
(line); (6) the lines that belong only to the premise of r or more specific rules
than r (inv_line).

The elements of line form a taxonomy on the lines. That taxonomy is de-
scribed by the partial order defined in Definition 8. At the top of the taxonomy,
there are the lines that are specific to the most general rules. At the bottom,
there are the lines that are specific to the most specific rules. The elements of
inv_line form the inverted taxonomy of line, Pinv_line =(Pline,≥line). The
logic of the pattern context can thus be summarized by:

Lp = FLIS(FPOSET (Par) ∪ FPOSET (Pline) ∪ FPOSET (Pinv_line) ∪ Lbase).

Definition 8 (Pline). Let Pline be a couple (Pline,≤line) such that:

– Pline is all lines of the program;
– Let l and l′ be two lines of Pline then l ≤line l′ if all association rules that

contain l′ also contain l.

For instance, r2 which is not a failure rule, represents the 112 failed executions
that execute lines 81, 93, ... of the program. r1 ≤ar r2 and r3 ≤ar r2, r2 has thus



XI

Fig. 3. Camelis with the fault localization context.

the specific lines of r1 and r3 in its inverted line description, i.e. 90 and 101, plus
its specific line 81. Figure 3 shows Camelis with the fault localization context
and highlights the different elements of rule descriptions.

Navigation. In order to understand the behaviour of the program when it fails,
the user starts by checking the lines that are specific to failure rules. When this
is not sufficient to understand why the program fails, the user checks specific
lines of a more general rule and so on. It means that the user checks the lines of
the patterns in the order of the inverted line taxonomy.

In order to navigate from the lines that specifically belong to the failure rules,
the user can select Failure in the navigation tree. Then only failure rules appear
in the pattern view. The user can then choose one rule among them and display
the intent of the rule which is its description. The query is now the description
of the selected rule. That description shows the most specific lines describing the
rule. The user can select one of those lines as the starting point of the navigation
and explore the lines through the inverted order (inv_line).

Updating. For the fault localization task, there is only one tag: Explained (7).
The user explores the lines in the reverse order (inv_line). When the user
sees a line, inv_line:l, which allows him/her to understand a failure, he/she



XII

adds the attribute Explained to all rules that have line:l in their description.
Consequently, those rules are no more interesting for the exploration, they are
explained by l. The user can add not Tags in the query to avoid seeing the
association rules that are already “explained”.

User Goal and Stopping Criterion. For the fault localization task, the
user goal is to label all failure rules. The exploration thus stops when there is
one explanation by failure rule, namely when all failure rules are labelled by
Explained.

4.6 Discussion

The proposed approach does not depend on the type of patterns. The only
requirement is a partial order on the patterns. There is always a natural order
between patterns: the inclusion order of their cover in the original database. But
constraints may introduce other more relevant orders.

There are several advantages to use the LIS framework. The first advantage
is when the number of patterns is high and thus the size of the lattice is also
high. LIS tools do not compute the whole lattice a priori but parts of the lattice
on demand when it is relevant for the navigation. The second advantage is that
the patterns are organized as a lattice. It allows to highlight the dependencies
between them whereas other existing approaches, such as total ranking, do not
provide that information. In addition, thanks to the logics, the patterns can have
a rich description (e.g., integer values, partial order, taxonomy). Finally, when
exploring, the user can add information in order to prune the search space and
to be helped in its exploration.

The definition of a user goal is not a requirement, indeed, the user may want
to navigate through patterns. But when the user has a clear goal, it is important
to specify it with care. Indeed, the user goal defines the stopping criterion.

5 Related Work

The method that we propose in this paper can be applied after methods that
reduce the number of patterns (e.g., condensed representation [PBTL99]), when
the set of patterns remains too large to be explored by hand. In addition, unlike
top-k ranking methods, our method takes into account the user’s knowledge and
highlights the dependencies between patterns. There are some methods that
reduce more drastically the number of patterns. Recursive mining [CSK+08]
gives control over the number of patterns, but some information is lost, indeed
the data are summarized. In order to reduce the number of patterns, one can
compute the stable concepts [Kuz07]. That method is interesting when the goal is
to compute a general overview of the data with respect to group behaviours, for
example [JKN08]. If the user is interested in patterns that are less frequent, the
number of patterns remains high. The approach proposed in this paper does not
a priori filter out patterns, but gives a data structure (the lattice) to facilitate



XIII

the exploration of the patterns. In addition, thanks to the updating step and
the stopping criterion, the number of patterns that are really explored by the
user should be lower than the number of the whole set of patterns. In [CG05],
Garriga proposes to summarize sequential patterns thanks to partial orders;
in [MOG09], the authors propose to explore association rules thanks to rule
schemas; in [MG10], they propose to improve the method by integrating the
user knowledge with an ontology. Unlike those methods, our approach is generic
and can be applied on sequential patterns but also on association rules. The
only requirement is the definition of the partial order on patterns. Richards et
al. [RM03] have proposed to display the specific rules (Ripple-Down rules) in a
lattice thanks to formal concept analysis (FCA) [GW99]. They create an artificial
hierarchy over the rules in order to display them in a lattice. Note that to scale
up, they have to filter out some nodes of the hierarchy, whereas our method does
not a priori prune patterns. Visual data mining [Kei02,SBM08] provides users
with a visualization of the patterns in a graphical way. That method is useful
when little is known about the data and the exploration goals are vague. The
goal of that kind of methods is not the same as the goal of our method. Indeed,
our method is used when a lot of patterns are generated and the user has a
specific goal and wants accurate details.

6 Conclusion

In this paper we have presented a new way to interactively explore patterns
extracted with data mining techniques. The method is based on navigation in
a partial order over the set of all patterns. It accommodates several kinds of
patterns and the dependencies between patterns are taken into account. It al-
lows users to use their background knowledge to navigate through the partial
order until their goal(s) have been reached, without a priori pruning. In addi-
tion, the updating features allows the user to be helped by the reduction of the
search space while exploring. We have formally defined our approach in the LCA
framework, and we have illustrated our method on two different tasks and two
different kinds of patterns.

References

[AFR10] P. Allard, S. Ferré, and O. Ridoux. Discovering functional dependencies
and association rules by navigating in a lattice of OLAP views. In Concept
Lattices and Their Applications, pages 199–210. CEUR-WS, 2010.

[AIS93] R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules be-
tween sets of items in large databases. In P. Buneman and S. Jajodia,
editors, Int. Conf. on Management of Data. ACM Press, 1993.

[AS95] R. Agrawal and R. Srikant. Mining sequential patterns. In Int. Conf. on
Data Engineering. IEEE, 1995.

[CC10] P. Cellier and T. Charnois. Fouille de données séquentielle d’itemsets pour
l’apprentissage de patrons linguistiques. In Traitement Automatique des
Langues Naturelles (short paper), 2010.



XIV

[CDFR08] P. Cellier, M. Ducassé, S. Ferré, and O. Ridoux. Formal concept analysis
enhances fault localization in software. In Int. Conf. on Formal Concept
Analysis (ICFCA), volume 4933 of LNCS. Springer, 2008.

[CG05] G. Casas-Garriga. Summarizing sequential data with closed partial orders.
In SIAM International Data Mining Conference (SDM), 2005.

[CSK+08] B. Crémilleux, A. Soulet, J. Klema, C. Hébert, and O. Gandrillon. Dis-
covering Knowledge from Local Patterns in SAGE data. IGI Publishing,
2008.

[DP90] B. A. Davey and H. A. Priestly. Introduction to Lattices and Order: second
edition 2001. Cambridge University Press, 1990.

[Fer09] S. Ferré. Camelis: a logical information system to organize and browse a
collection of documents. Int. J. General Systems, 38(4), 2009.

[FPSS96] U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining to
knowledge discovery: an overview. In Advances in knowledge discovery and
data mining. American Association for Artificial Intelligence, 1996.

[FR04] S. Ferré and O. Ridoux. An introduction to logical information systems.
Information Processing & Management, 40(3):383–419, Elsevier, 2004.

[GK01] B. Ganter and S. O. Kuznetsov. Pattern structures and their projections.
In Proc. of the Int. Conf. on Conceptual Structures: Broadening the Base,
ICCS ’01, pages 129–142. Springer-Verlag, 2001.

[GW99] B. Ganter and R. Wille. Formal Concept Analysis: Mathematical Founda-
tions. Springer-Verlag, 1999.

[JKN08] N. Jay, F. Kohler, and A. Napoli. Analysis of social communities with
iceberg and stability-based concept lattices. In Int. Conf. on Formal Concept
Analysis (ICFCA), volume 4933 of LNCS. Springer, 2008.

[KB10] K. Kontonasios and T. De Bie. An information-theoretic approach to finding
informative noisy tiles in binary databases. In Proc. of the SIAM Int. Conf.
on Data Mining, pages 153–164, 2010.

[Kei02] D. A. Keim. Information visualization and visual data mining. IEEE Trans.
Vis. Comput. Graph., 8(1):1–8, 2002.

[Kuz07] S. O. Kuznetsov. On stability of a formal concept. In Annals of Mathematics
and Artificial Intelligence. Springer Netherlands ACM, 2007.

[MG10] C. Marinica and F. Guillet. Knowledge-based interactive postmining of
association rules using ontologies. IEEE Trans. Knowl. Data Eng., 2010.

[MOG09] C. Marinica, A. Olaru, and F. Guillet. User-driven association rule mining
using a local algorithm. In Int. Conf. on Enterprise Information Systems
(ICEIS) (2), pages 200–205, 2009.

[PBTL99] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent
closed itemsets for association rules. In Int. Conf. on Database Theory,
pages 398–416. Springer-Verlag, 1999.

[PC09] M. Plantevit and B. Crémilleux. Condensed representation of sequential
patterns according to frequency-based measures. In Int. Symp. on Advances
in Intelligent Data Analysis, LNCS(5772). Springer, 2009.

[PHL01] J. Pei, J. Han, and L. V. S. Lakshmanan. Mining frequent itemsets with
convertible constraints. In Int. Conf. on Data Engineering. IEE computer
society, 2001.

[RM03] D. Richards and U. Malik. Mining propositional knowledge bases to discover
multi-level rules. In Mining Multimedia and Complex Data, volume 2797 of
LNCS, pages 199–216. Springer Berlin / Heidelberg, 2003.

[SBM08] S. J. Simoff, M. H. Böhlen, and A. Mazeika, editors. Visual Data Mining.
Springer-Verlag, Berlin, Heidelberg, 2008.


