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Proof Pearl:

Abella Formalization of λ-Calculus Cube
Property

Beniamino Accattoli

INRIA and LIX (École Polytechnique) - Palaiseau, France
Carnegie Mellon University - Pittsburgh, PA, USA

Abstract. In 1994 Gerard Huet formalized in Coq the cube property
of λ-calculus residuals. His development is based on a clever idea, a
beautiful inductive definition of residuals. However, in his formalization
there is a lot of noise concerning the representation of terms with binders.
We re-interpret his work in Abella, a recent proof assistant based on
higher-order abstract syntax and provided with a nominal quantifier. By
revisiting Huet’s approach and exploiting the features of Abella, we get
a strikingly compact and natural development, which makes Huet’s idea
really shine.

1 Introduction

The confluence or Church-Rosser theorem of λ-calculus has been formalized
in several proof assistants, and it is probably the theorem with the highest
number of formalized proofs [26,31,21,32,27,30,17,5,16]. In [17] Huet formalizes
in Coq also a deeper result, the cube property of λ-calculus residuals (due to
Jean-Jacques Lévy [20,4]). This paper presents a new, simple formalization of
this result, developed in Abella [9,8], a recent proof-assistant based on higher-
order abstract syntax (HOAS) [7,23] and provided with a nominal quantifier
[13,12,11,24,10,2].

Residual systems are a standard tool in rewriting [20,18,19,22,15,3,34]. In par-
ticular, they are at the basis of the advanced rewriting theory of λ-calculus and
orthogonal rewriting systems (standardization, neededness, Lévy’s families and
optimality, inside-out reductions, see [20,18,19,3,34]). Roughly, one first intro-
duces a mechanism to track redexes along reductions (typically using positions
or underlinings), so that it is possible to say which are the residuals of a redex
r after another redex. Then, one shows that any given span u2 ← t → u1 can
be closed by simply reducing on both sides the residuals of one redex after the
other. The idea is that residuals refine confluence providing a minimal closure
of confluence diagrams. The abstract theory of residual systems—which is in-
dependent from λ-calculus—is based on three axioms, the cube property plus
two other minor axioms (see [34], Chapter 8.7). The development in this paper
essentially proves that λ-calculus admits a residual system, but we will not enter
into the details of the abstract theory.
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A delicate point is how to define residuals for a given calculus. In [17] Huet
presents an elegant and compact solution for λ-calculus: he uses a simple ternary
relation over terms with underlinings, defined by induction on the structure of the
first term. However, Huet represents (marked) λ-terms using de Bruijn indexes,
and a relevant part of his development deals with the properties of indexes,
substitution and lifting.

Initially, we repeated Huet’s development to see how much Abella—being a
proof assistant based on HOAS—could help in simplifying Huet’s work. All the
troubles about indexes, lifting and substitution disappear, this was expected.
However, along the way we realized that other simplifications were possible (the
first two are independent from Abella):

1. Marks : Huet underlines applications, which requires to introduce a notion of
well-formed term (regular terms in [17]) and to show that various operations
preserve well-formedness. According to common practice we rather mark
redexes (as in [3], for instance), so that any marked term is well-formed, and
some lemmas disappear.

2. Rewriting: by analyzing inductions and dependencies between lemmas we
simplify the statements and the number of lemmas required to prove the
cube property. In particular, Huet recognizes the so-called prism property as
more fundamental than the cube property, but we show that the direct proof
of the cube property is not harder than the proof of the prism property. This
also agrees with the clean abstract theory in [34] (which did not exist at the
time of [17]), where there are examples of residual systems enjoying the cube
property but not the prism property. Actually, we show that for λ-calculus
it is possible to prove both properties with the same induction.

3. Contexts : in HOAS-based proof assistants α-equivalence and substitution
are primitive notions, but induction usually requires to consider predicates
inside contexts of local assumptions (called worlds in Twelf [28], schemas
in Beluga [29,6]) and prove properties about them. With respect to the
untyped λ-calculus these contexts are artifacts, since they do not belong
to the informal theory. The nominal quantifier ∇ (nabla) of Abella, not
available in other HOAS settings, allows to formalize the untyped λ-calculus
circumventing the use of contexts.

The final result is quite striking: we formalize a property subsuming both the
cube and prism properties using only two definitions and one auxiliary lemma.
Moreover, the development follows exactly the informal, pen-and-paper rea-
soning: there is no need to care about indexes, α-equivalence, substitution or
contexts.

The next section contains an introduction to residuals and the way Huet rep-
resents them. In Section 3 we present the formal development, also explaining
the representation of λ-terms. Section 4 discusses some variations over our de-
velopment.

The sources of the development can be found on-line [1].
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2 The Diamond and Cube Properties, Informally

The diamond property. A rewriting system (S,→) is confluent when for any
s ∈ S:

s2
∗← s→∗ s1 implies ∃t s.t. s1 →∗ t ∗← s2

The corresponding diagram is in Fig. 1.a (solid arrows denote the reductions
in the hypothesis, dashed arrows denote the reductions in the conclusion). A
stronger notion is the diamond property (Fig. 1.b):

s2 ← s→ s1 implies ∃t s.t. s1 → t ← s2

The diamond property implies confluence, but not the converse. Unfortu-
nately, β-reduction does not enjoy the diamond property (because of dupli-
cations/erasures). The standard technique (due to Tait and Martin-Löf) for
proving confluence of β-reduction is to use a parallel reduction. The idea is
to extend β-reduction to a reduction ⇒ so that:

1. ⇒ enjoys the diamond property, and thus confluence;
2. confluence of ⇒ implies confluence of →β .

a) Confluence: b) Diamond: c) Parallel moves: d) Cube:

s s1

s2 t

*

* * *

s s1

s2 t

s s1

s2 t

P

R

P/R

R/P

Q Q′

Q′′ S

P

R

P/R

R/P

Fig. 1. Diagrams

The parallel reduction ⇒ is defined as follows1:

⇒-varx⇒ x
t⇒ t′ ⇒-λ

λx.t⇒ λx.t′

t⇒ t′ u⇒ u′ ⇒-@
t u⇒ t′u′

t⇒ t′ u⇒ u′ ⇒-β
(λx.t) u⇒ t′{x/u′}

The proof of confluence for →β is in two parts. The first part is to prove that
⇒ has the diamond property. The second part is to deduce confluence of →β

1 There is a subtlety: sometimes (in [34] for instance) parallel reduction denotes
the reduction which reduces in parallel disjoint redexes only, while the reduction
presented here (which may reduce nested redexes using rule ⇒-β, for instance
(λx.x)((λy.y)z) ⇒ z) is called simultaneous or multi-step reduction. Often, how-
ever, the two concepts are not distinguished and the simultaneous reduction is called
parallel (in [33] for instance). We follow this second tradition.
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from the diamond property for ⇒. Clearly, one has →β⊆⇒⊆→∗
β, which implies

→∗
β⊆⇒∗⊆→∗

β , i.e. →∗
β=⇒∗. A straightforward induction shows that the dia-

mond property of ⇒ implies the diamond property of ⇒∗, which is nothing but
confluence of →β.

The first part of the confluence proof uses structural induction over terms with
binders, and it is related to the cube property for residuals, so we shall focus
on it. The second part is based on the so-called strip lemma, it mostly involves
first-order reasoning, and its formalization in Abella does not differ much from
the other developments of confluence in the literature (for instance [17,27]), and
thus it will be omitted2.

The proof of the diamond property requires a substitution lemma:

Lemma 1 (substitutivity of ⇒). If t ⇒ t′ and u ⇒ u′ then t{x/u} ⇒
t′{x/u′}.
Proof. By induction on t⇒ t′. Two base cases (rule⇒-var): x⇒ x, which gives
x{x/u} = u⇒ u′ = x{x/u′}, and y ⇒ y (with y 	= x) for which y{x/u} = y ⇒
y = y{x/u′}. The cases ⇒-λ and ⇒-@ follow immediately from the i.h.. The
case ⇒-β: if t = (λy.s)v and t′ = s′{y/v′} then by i.h. s{x/u} ⇒ s′{x/u′}
and v{x/u} ⇒ v′{x/u′}, then by ⇒-β we get r = (λy.s{x/u})v{x/u} ⇒
s′{x/u′}{y/v′{x/u′}} = r′. We conclude, since r = t{x/u} and r′ = t′{x/u′}
Then (both proofs are formalized in Section 3, Figure 5, page 182):

Theorem 1 (diamond property of ⇒). s2 ⇐ s ⇒ s1 implies ∃t s.t. s1 ⇒
t⇐ s2.

Proof. By induction on s ⇒ s1 and case analysis of s ⇒ s2, using Lemma 1. If
s = x⇒ x = s1 then s2 can only be x and there is nothing to prove. The⇒-λ case
follows by the i.h.. Both⇒-@ and⇒-β cases have two subcases, corresponding to
s⇒ s2 being⇒-@ or⇒-β. In every subcase one has to use the i.h., and whenever
one of the hypothesis is⇒-β it is necessary to apply Lemma 1.

Residuals. The diamond property of ⇒ can be strengthened with information
about which redexes are reduced. First, one needs to introduce a mechanism for
tracing redexes through reductions.

Let us stress that we need to trace sets of redexes. Indeed, consider the fol-
lowing reductions, where I = λz.z:

(λx.xx) (II)→β (II)(II) (λx.y) (II)→β y

The redex II may be duplicated, getting two residuals in the reduct, or erased,
having no residual. By the way, this is also the reason why β-reduction does not
enjoy the diamond property.

2 The second part has nonetheless been formalized in Abella, it can be found in [1].
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Consider a term s and two sets of redexes R and P in s. If s⇒ v by reducing
the redexes in P then there must be a way of describing what is left in v of the
redexes in R after the reduction of P , i.e. of describing the set of residuals of R
after P , noted R/P .

Now, assume to know how to define and trace residuals, and to have a refined

notion of reduction s
R⇒ v, which reduces the set R of redexes in s. The diamond

property enriched with residuals—usually called the parallel moves property—
is in Fig. 1.c. The refinement essentially says that residuals allow to close the
diagram in a minimal way3.

The point is now how to define residuals and their reduction. Huet uses a
brillant method, but unfortunately in [17] his idea does not shine as it could,
because of too many technical details. One of the aims of this paper is to bring
to the fore the elegance of Huet’s approach.

First of all, one needs to represent sets of redexes. This can easily be done
introducing a new constructor (λx.s)v for marked redexes and say that a set of
redexes R in a term t is the term with marks T obtained from t by marking the
redexes in R. So we switch to the following grammar of marked terms:

R ::= x | λx.R | RR | (λx.R)R

For instance the four possible sets of redexes of (λx.(II))I are:

(λx.(II))I (λx.(II))I (λx.(II))I (λx.(II))I

In [17] the marks are on applications, which may not be redexes. Marking
applications requires a notion of well-marked term (regular terms in [17])
which comes with various annoying complications. The choice of marking
redexes is our first simplification (which is standard, we are not claiming origi-
nality).

Huet’s contribution is the definition of residuals. For a marked redex R let its
support be the λ-term obtained by removing all underlinings. Given a term t we
want to define R/P , the residuals of the redexes in the set R after the reduction
of another set P of redexes of t. Note that both R and P are terms, and that
they share the same support t. A first step towards the definition of R/P is to
forget t and consider R, which is t plus the information about the redexes we
want to track. The idea is to see R/P simply as the target R′ of a reduction step

R
P⇒ R′. Of course, now the point is how to define R

P⇒ R′. What is particularly
nice is that it can be defined by a simple structural induction over R, exploiting
the fact that R and P have the same support:

3 This minimality can be stated mathematically as the existence of pushouts in a
certain category of reductions sequences, but its precise formulation requires to in-
troduce permutation equivalence, which is beyond the scope of this paper.
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x
x⇒ x

R
P⇒ R′

λx.R
λx.P⇒ λx.R′

R
P⇒ R′ S

Q⇒ S′

RS
PQ⇒ R′S′

R
P⇒ R′ S

Q⇒ S′

(λx.R)S
(λx.P )Q⇒ (λx.R′)S′

R
P⇒ R′ S

Q⇒ S′

(λx.R)S
(λx.P ) Q⇒ R′{x/S′}

R
P⇒ R′ S

Q⇒ S′

(λx.R)S
(λx.P )Q⇒ R′{x/S′}

An example: if R = (λx.xx) (II) and P = (λx.xx) (II) then R/P is the marked

term R′ = (II)(II), because one easily derives:

(λx.xx) (II)
(λx.xx) (II)⇒ (II)(II)

Now, we have all the ingredients to prove the parallel moves property. However,
a stronger property—the cube property, due to Jean-Jacques Lévy [20,4]—can
now be expressed. Note that in Fig. 1.c the starting term is a λ-term s. Observe
that any λ-term s is a marked term: it represents the empty set of redexes of s.
By simply replacing s with a generic set of redexes, i.e. a marked term Q, we get
the cube property (see Fig. 1.d). The cube enriches the parallel moves property
with a sort of contextual coherence: the two sides of the diagram give the same
term and act in the same way on any other set of redexes in the starting term.

By repeating Huet’s development in Abella and then analyzing the structure
of the formal proof we realized that the cube property can be proved exactly
as the diamond property of ⇒. One needs to first prove the following lemma
(called commutation lemma in [17]):

Lemma 2 (substitutivity of
P⇒). If R

P⇒ R′ and S
Q⇒ S′ then

R{x/S} P{x/Q}⇒ R′{x/S′}.

The proof is a simple induction on R
P⇒ R′ (analogously to Lemma 1). Then

one gets4:

Theorem 2 (cube property of
P⇒). Q′ P⇐ Q

R⇒ Q′′ implies ∃S s.t. Q′ R/P⇒
S

P/R⇐ Q′′.

The proof is by induction on Q
P⇒ Q′ and case analysis of Q

R⇒ Q′′, using Lemma
2 (their formalization is in the last page, after the bibliography).

The prism property. In [17] Huet argues that the cube property follows from
a more primitive property, the prism property. We need a definition: given two

4 The more accurate but less readable statement is: Q′ P⇐ Q
R⇒ Q′′ implies ∃S,R′, P ′

s.t. P
R⇒ P ′, R P⇒ R′, and Q′ R′⇒ S

P ′⇐ Q′′.
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�

�

�

�

x ≤ x
R ≤ R′

λx.R ≤ λx.R′
R ≤ R′ S ≤ S′

RS ≤ R′S′

R ≤ R′ S ≤ S′

(λx.R)S ≤ (λx.R′)S′
R ≤ R′ S ≤ S′

(λx.R)S ≤ (λx.R′)S′

x∪x = x
R∪P = Q S∪T = U

RS∪PT = QU

R∪P = Q S∪T = U

(λx.R)S∪(λx.P )T = (λx.Q)U

R∪P = Q

λx.R∪λx.P = λx.Q

R∪P = Q S∪T = U

(λx.R)S∪(λx.P )T = (λx.Q)U

R∪P = Q S∪T = U

(λx.R)S∪(λx.P )T = (λx.Q)U

Fig. 2. The order (≤) and the union operation (∪) for sets of redexes/marked terms

a) Prism 1: if P ≤ R b) Prism 2: if P ≤ R c) Prism 1-2: if P ≤ R d) Prism-Cube:

Q Q′

Q′′

P

R
R/P

Q Q′

Q′′

P

R
R/P

Q Q′

Q′′

P

R
R/P

Q Q′

Q′′ S

P

R

P/R

R/P

R∪P

Fig. 3. Prism diagrams

marked terms R and S with the same support, let R ≤ S hold if S has all the
marks in R and possibly more (see Fig. 2 for an inductive definition). Then the
prism property is given by the two implications in Fig. 3.a-b. The idea is that
the prism gives one half of the cube property, which then follows by a symmetry
argument (actually one needs only Fig.3.a).

By looking closely at the formalized proofs we realized that both parts of the
prism property can be proved by induction on P ≤ R. So that it should rather
be stated as in Fig.3.c. The point is that the cube property essentially follows
from the same induction.

Let us clarify this point. Given marked redexes R and S sharing the same
support, let R∪S be the marked term with all the marks of R and all the marks
of S (see Fig. 2). If R ≤ S then there is P s.t. R ∪ P = S. So doing induction
on R ≤ S is essentially equivalent to inducting on R ∪ P . The cube property in
Fig. 1.d can be proved by induction on R ∪ P . Therefore, the same induction
also proves the diagram in Fig. 3.d, which puts together the prism and the cube

property. Last, induction on R ∪ P can be replaced by induction over Q
P⇒ Q′

and case analysis of Q
R⇒ Q′′. We then get:

Theorem 3 (Prism-cube property of
P⇒). Q′ P⇐ Q

R⇒ Q′′ implies ∃S s.t.

Q′ R/P⇒ S
P/R⇐ Q′′ and Q

R∪P⇒ S.



180 B. Accattoli

In the theory of abstract residuals systems [34] (Chapter 8.7) the cube property
is one of the axioms while the prism property (there called triangle property) is
not required to hold, and in fact there are examples of residual systems where
it fails ([34], 8.7.29, page 440, or the rewriting system obtained orienting the
associativity rule, see also [22]).

As for the cube property, it is possible to refine the diamond property into
the prism-diamond property: if s2 ⇐ s ⇒ s1 then ∃t s.t. s1 ⇒ t ⇐ s2 and also
s ⇒ t. Actually, it is this enriched property—proved exactly as the diamond
property—that we have formalized in Abella.

3 The Diamond and Cube Properties, Formally in Abella

Abella. Abella is an interactive theorem prover developed by Andrew Gacek [9,8],
and based on the logic G developed by Gacek, Miller, and Nadathur [13,12,11].
Abella uses the higher-order abstract syntax (HOAS) approach to binders [7,23]
and it is provided with a nominal quantifier ∇ (nabla) [13,12,11,24,10,2] (which
has a subtle proof theory that shall not be treated here). Being based on HOAS,
Abella provides a primitive handling of α-equivalence and capture-avoiding sub-
stitution. By exploting ∇, Abella is also able to mix inductive and co-inductive
reasoning.

Many domains in which Abella has been used involve reasoning about typing
judgements. In order to facilitate the treatment of such judgements, a second
logic is defined within Abella. This second logic, a small intuitionistic specifica-
tion logic, can be used to directly treat a range of typing judgments; this is what
is sometimes called the two-levels approach [14]. A key property is that the spec-
ification logic satisfies cut-elimination. This fact allows to use cut-elimination as
a tactic, and derive substitution lemmas for free. For instance, subject-reduction
proofs can often be written very cleanly.

If one uses Abella to reason on specifications that do not involve typing judge-
ments, then the built-in specification logic is not needed. For example, many
properties of the untyped π-calculus have been proved using ∇, induction, and
co-induction, without using the two-level logic architecture of Abella [25]. Since
our subject here is the untyped λ-calculus, we shall similarly find no need for
Abella’s second level of logic.

λ-terms. The encoding of λ-terms we use is standard (for HOAS). The encoding
of marked terms extends the encoding of λ-terms (whose constructors are now
renamed mabs and mapp) with mredex R S, which represents the marked redex
(λx.R)S. The two sets of terms have type tm and mtm (standing for term and
marked term) and are in Fig. 4.

There is no explicit constructor for variables. This point is a bit delicate.
Let us try to explain it. The free variables are handled by the nabla quantifier
(see the example in the next paragraph). The bound variables are provided by
the HOAS-approach to binders, which codes binders as functions from terms
to terms. For instance the term λx.xx is represented as abs x\ app x x, i.e.
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kind tm type.
type app tm -> tm -> tm.
type abs (tm -> tm) -> tm.

kind mtm type.
type mapp mtm -> mtm -> mtm.
type mabs (mtm -> mtm) -> mtm.
type mredex (mtm -> mtm) -> mtm -> mtm.

Fig. 4. Definition of λ-terms and marked λ-terms in Abella

it is obtained by applying the abs constructor to the function x → app x x

(which maps the generic term x to the term app x x), coded in Abella with
x\ app x x. In particular, mabs M and mredex M N are both of type mtm, but
their subexpression M is not a term of type mtm, but rather a term of type
mtm->mtm.

Finally, given a β-redex app (abs M) N representing (λx.M)N , the reduct
M{x/N} is denoted by M N, i.e. the application of the function M to N (application
is given by juxtaposition). The user can forget any trouble with α-equivalence
and substitution: Abella takes care of them.

An example. Suppose that we want to write the predicate tm M which isolates
terms without marked redexes in the larger set of marked terms. In Abella it
can be written as follows:

Define tm : mtm -> prop by

nabla x, tm x;

tm (mabs M) := nabla x, tm (M x);

tm (mapp M N) := tm M /\ tm N.

It corresponds exactly to the common way of defining λ-terms. The first line
reads: if x is a fresh variable then x is a term. The second line: mabs M is a
term if given a fresh variable x the term obtained by applying the function M to
x is a term. Informally, one would simply ask that M is a term. What we used
is nothing but its HOAS formulation, which has to adapt the informal approach
because M itself is not of type mtm (but mtm->mtm). The third line: mapp M N is
a term if both M and N are terms.

Prism-diamond property. Figure 5 contains the development of the prism-
diamond property, where parallel reduction is the predicate pred.

Look at the second and the fourth cases of the definition of pred. There, T
and T’ are functions representing the binders associated to the corresponding
abstractions. In the hypothesis of the two rules they are applied to x, in order
to get a term. Moreover, the fourth case contains T’ U’, the application of the
function T’ to U’: it is where β-reduction and substitution take place.

The substitution lemma follows, proved by simple induction on T ⇒ T ′. Note
that T is assumed to be a function, since in the conclusion we want to substitute
U in T (and U’ in T’). This is why the first assumption contains (T x), and x is
bound by ∇ (nabla). The commands induction on 1, intros, and case H1 are
the Abella code to start an induction on the first hypothesis. Then every line is
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Define pred : tm -> tm -> prop by
nabla x, pred x x;
pred (abs T) (abs T’) := nabla x, pred (T x) (T’ x);
pred (app T U) (app T’ U’) := pred T T’ /\ pred U U’;
pred (app (abs T) U) (T’ U’) := nabla x, pred (T x) (T’ x) /\ pred U U’.

Theorem pred_sub : forall T T’ U U’, nabla x,
pred (T x) (T’ x) -> pred U U’ -> pred (T U) (T’ U’).
induction on 1. intros. case H1.

search.
search.
apply IH to H3 H2. search.
apply IH to H3 H2. apply IH to H4 H2. search.
apply IH to H3 H2. apply IH to H4 H2. search.

Theorem prism-diamond : forall T U1 U2,
pred T U1 -> pred T U2 -> exists V, pred U1 V /\ pred U2 V /\ pred T V.
induction on 1. intros. case H1.

case H2. search.
case H2. apply IH to H3 H4. search.
case H2.

apply IH to H3 H5. apply IH to H4 H6. search.
case H3. apply IH to H4 H6. apply IH to H7 H5.

apply pred_sub to H12 H9. search.
case H2.

case H5. apply IH to H3 H7. apply IH to H4 H6.
apply pred_sub to H8 H11. search.

apply IH to H3 H5. apply IH to H4 H6. apply pred_sub to H7 H10.
apply pred_sub to H8 H11. search.

Fig. 5. Abella development of the prism-diamond property for t ⇒ t′ (called
pred T T’)

a case of the induction. The search tactic attempts to prove the current goal by
an automatic simple search. Clearly, apply IH applies the inductive hypothesis.

The diamond property is proved by induction on the first hypothesis and case
analysis of the second (note that each subcase starts with case H2). The proof
uses only the i.h. and the substitution lemma, and it is the same proof which
appears in [27], which also contains the only complete proof of confluence for
λ-calculus based on HOAS of which we are aware.

Prism-cube property. The development for the prism-cube property is in the last

page, after the bibliography, where R
P⇒ R′ is represented with res R P R’.

As we explained in Section 2 it follows exactly the same pattern used for the
diamond property (plus the additional definition for the union of marked terms).
The third component (R’ S’) of the last two cases defining res is where β-
reduction and substitution are used.

Beyond Huet’s original paper [17], the cube property has also been formalized
in [31,35]. Our development is the first one using HOAS, and it is sensibly simpler
and shorter than the others. Indeed, it fits—in full—into one single page. We
believe that this is quite remarkable.
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4 Beyond the Pearl

This section contains a few observations and variations over our developments,
others can be found in [1].

Confluence by developments. The (complete) development t◦ of a term t is the
result of the parallel step which reduces all the redexes in t. The development t◦

can easily be described by induction on t, as follows:

x◦ = x (tu)◦ = t◦u◦ if t 	= λx.t′

(λx.t)◦ = λx.t◦ ((λx.t′)u)◦ = t′◦{x/u◦}
Developments enjoy the following property, which is a sort of maximal prism
property: if t ⇒ u then t ⇒ t◦ and u ⇒ t◦. By specializing the prism-diamond
property to complete developments, one gets the following development property:
s2 ⇐ s⇒ s1 implies s1 ⇒ s◦ ⇐ s2 and s⇒ s◦.

The proof of confluence by developments consists in showing the diamond
property by proving the development property. This approach is dual to the use
of residuals. Indeed, developments give a sort of maximum closure of any span
u2 ← t→ u1, while residuals give the minimum.

The development property can be proved in Abella essentially as the prism-
diamond property (see [1] for details). The formal proof (2 lemmas) is a sensible
simplification of the one in Abella by Randy Pollack (18 lemmas), or of the
similar one done in Twelf by Dan Licata. They can be found on the websites
of the respective proof assistants, and both are based on Takahashi’s proof [33]
(see also [30]).

Using the specification logic. We now describe the impact of the specification
logic provided by Abella on our developments. Let us come back to the toy
tm predicate of Section 3, which isolates terms among marked terms. At the
specification level it takes the following form (the syntax of the specification
level is different, an explanation follows):

tm (mabs R) :- pi x\ tm x => tm (R x).

tm (mapp M N) :- tm M, tm N.

where pi x\ means ∀x, and tm M, tm N stays for tm M and tm N. There are
two main differences. The first is that there is no case for free variables. This is
due to the fact that ∇ is not in the weaker specification logic. It means that we
can only represent bound variables, i.e. only closed terms. This fact induces the
second difference: the first line of the definition says that for proving that abs R

is a term we need to prove that R x is a term under the assumption that x is a
term. This new under the assumption part has a consequence at the reasoning
level: it forces to annotate every use of a predicate involving binders with a
context, i.e. the set of current assumptions under which the predicate holds.
Such contexts are what allows to deal with open terms in this weaker setting
without nabla. The idea is that to prove tm (abs R) we now need to be able to
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prove the judgement tm x |- tm (R x) (where |- is the concrete notation for
the turnstile �), i.e. tm (R x) in the context of assumptions tm x.

The presence of contexts usually requires to prove some properties about
them, to introduce relations between contexts, and to generalize the statements
of lemmas and theorems. In [1] we also recast our developments at the speci-
fication level. The structure of the proofs is the same, but some complications
(i.e. additional definitions and lemmas) about contexts arise. Such complications
are typically raised by statements having more than one predicate on the same
term: the contexts of these predicates have to be related because they refer to
the same binding structure. Indeed, the prism-diamond property (which uses
only ⇒) requires less reasoning on contexts than the development and prism-
cube properties (both using two predicates); this is also why in [27] worlds (the
analogous of contexts in Twelf) do not require much attention, while they do
require it in the proof of the development property by Dan Licata.

One of the aims of this paper is to show that in untyped frameworks the
combined use of ∇ and HOAS gets formalizations which are extremely faithful
to common pen-and-paper reasoning. Some of the examples dealing with the
untyped λ-calculus on Abella website have been lifted from the specification
to the reasoning logic, getting quite simpler and more readable formalizations,
see [1]. It has to be said, however, that there are some untyped specifications
that are of an intrinsic closed nature. For instance, the examples equivalence
of terms based on paths and determinism of translation between HOAS and de
Bruijn representations on the Abella website do not lift in a natural way to the
reasoning level.

Substitution lemmas. In our developments we prove explicitly substitution lem-

mas for ⇒ and
P⇒. One of the features of the specification logic is that it allows

to get substitution lemmas for free. One would then expect that switching to
the specification logic such lemmas disappear, and the formalizations get even
shorter. Interestingly, this is not the case. Let us focus on ⇒, which is simpler.
The clause involving abstractions is:

pred (abs U) (abs V) :- pi x\ pred x x => pred (U x) (V x).

This implies that the contexts for pred contains assumptions of the form

pred x x. The substitution lemma provided by Abella then says that if t ⇒ t′

then t{x/u} ⇒ t′{x/u}. This is not Lemma 1, because the second term should

be t′{x/u′} (with u⇒ u′). But the assumption pred x x forces u′ = u. Unfor-

tunately, this simpler lemma cannot be used to prove the diamond property. It

seems that it is enough to define pred as follows:

pred (abs U) (abs V) :- pi x\ pi y\ pred x y => pred (U x) (V y).

One gets indeed the right substitution lemma. But now it is necessary to prove
the reflexivity of pred (which before followed implicitly by the definition), which
is non-trivial with assumptions of the form pred x y.
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Summing up, the substitution lemmas for free provided by the specification
level do not help in any way in the development under study.
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Define res : mtm -> mtm -> mtm -> prop by
nabla x, res x x x;
res (mabs R) (mabs P) (mabs R’) := nabla x, res (R x) (P x) (R’ x);
res (mapp R S) (mapp P Q) (mapp R’ S’) := res R P R’ /\ res S Q S’;
res (mredex R S) (mapp (mabs P) Q) (mredex R’ S’) :=

nabla x, res (R x) (P x) (R’ x) /\ res S Q S’;
res (mapp (mabs R) S) (mredex P Q) (R’ S’) :=

nabla x, res (R x) (P x) (R’ x) /\ res S Q S’;
res (mredex R S) (mredex P Q) (R’ S’) :=

nabla x, res (R x) (P x) (R’ x) /\ res S Q S’.

Define res_union : mtm -> mtm -> mtm -> prop by
nabla x, res_union x x x;
res_union (mabs R) (mabs P) (mabs Q) := nabla x, res_union (R x) (P x) (Q x);
res_union (mapp R S) (mapp P T) (mapp Q U) :=

res_union R P Q /\ res_union S T U;
res_union (mredex R S) (mredex P T) (mredex Q U) :=

nabla x, res_union (R x) (P x) (Q x) /\ res_union S T U;
res_union (mapp (mabs R) S) (mredex P T) (mredex Q U) :=

nabla x, res_union (R x) (P x) (Q x) /\ res_union S T U;
res_union (mredex R S) (mapp (mabs P) T) (mredex Q U) :=

nabla x, res_union (R x) (P x) (Q x) /\ res_union S T U.

Theorem res_subst : forall R P R’ S Q S’, nabla x,
res (R x) (P x) (R’ x) -> res S Q S’ -> res (R S) (P Q) (R’ S’).
induction on 1. intros. case H1.

search.
search.
apply IH to H3 H2. search.
apply IH to H3 H2. apply IH to H4 H2. search.
apply IH to H3 H2. apply IH to H4 H2. search.
apply IH to H3 H2. apply IH to H4 H2. search.
apply IH to H3 H2. apply IH to H4 H2. search.

Theorem prism_cube : forall Q P R Q’ Q’’,
res Q R Q’’ -> res Q P Q’ -> exists P’ R’ RunionP S,
res P R P’ /\ res R P R’ /\ res Q’ R’ S /\
res Q’’ P’ S /\ res Q RunionP S /\ res_union P R RunionP.
induction on 1. intros. case H1.

case H2. search.
case H2. apply IH to H3 H4. search.
case H2.

apply IH to H3 H5. apply IH to H4 H6. search.
case H3. apply IH to H4 H6. apply IH to H7 H5.

apply res_subst to H16 H10. search.
case H2.

apply IH to H3 H5. apply IH to H4 H6. search.
apply IH to H3 H5. apply IH to H4 H6. apply res_subst to H9 H15. search.

case H2.
case H5. apply IH to H3 H7. apply IH to H4 H6.

apply res_subst to H11 H17. search.
apply IH to H3 H5. apply IH to H4 H6. apply res_subst to H9 H15.

apply res_subst to H10 H16. search.
case H2.

apply IH to H3 H5. apply IH to H4 H6. apply res_subst to H10 H16. search.
apply IH to H3 H5. apply IH to H4 H6. apply res_subst to H9 H15.

apply res_subst to H10 H16. search.
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