
HAL Id: hal-00780748
https://hal.inria.fr/hal-00780748

Submitted on 24 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multifor for Multicore
Imèn Fassi, Philippe Clauss, Matthieu Kuhn, Yosr Slama

To cite this version:
Imèn Fassi, Philippe Clauss, Matthieu Kuhn, Yosr Slama. Multifor for Multicore. IMPACT 2013,
Third International Workshop on Polyhedral Compilation Techniques, Armin Grösslinger, Louis-Noël
Pouchet, Jan 2013, Berlin, Germany. pp.37-44. �hal-00780748�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49824828?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00780748
https://hal.archives-ouvertes.fr

Multifor for Multicore

Imèn Fassi
Dpt of Computer Science

Faculty of Sciences of Tunis
University El Manar
1060 Tunis, Tunisia

fassi.imen@gmail.com

Philippe Clauss
Team CAMUS, INRIA

University of Strasbourg
boulevard S. Brant

67400 Illkirch, France
philippe.clauss@inria.fr

Matthieu Kuhn
Team ICPS, LSIIT lab.

University of Strasbourg
boulevard S. Brant

67400 Illkirch, France
kuhn@unistra.fr

Yosr Slama
Dpt of Computer Science

Faculty of Sciences of Tunis
University El Manar
1060 Tunis, Tunisia

yosr.slama@gmail.com

ABSTRACT

We propose a new programming control structure called
“multifor”, allowing to take advantage of parallelization mod-
els that were not naturally attainable with the polytope
model before. In a multifor-loop, several loops whose bodies
are run simultaneously can be defined. Respective iteration
domains are mapped onto each other according to a run
frequency – the grain – and a relative position – the off-
set –. Execution models like dataflow, stencil computations
or MapReduce can be represented onto one referential it-
eration domain, while still exhibiting traditional polyhedral
code analysis and transformation opportunities. Moreover,
this construct provides ways to naturally exploit hybrid par-
allelization models, thus significantly improving paralleliza-
tion opportunities in the multicore era. Traditional polyhe-
dral software tools are used to generate the corresponding
code. Additionally, a promising perspective related to non-
linear mapping of iteration spaces is also presented, yielding
to run a loop nest inside any other one by solving the prob-
lem of inverting “ranking Ehrhart polynomials”.

Categories and Subject Descriptors

D.3.4 [Programming Languages]: Processors

General Terms

Performance

Keywords

programming control structure, parallel programming, poly-
tope model

1. INTRODUCTION
We have definitely entered a new era in programming.

Parallelism is everywhere, from the many-core processor ar-
chitectures that are from now on fitting mainstream com-
puters, to the software applications that are now mixing
intensive computations, specialized routines, network com-
munication and multi-threading. Many researches focus in
proposing new languages supposed to facilitate program-
ming inside this complex environment [8, 10, 11, 13], or in

proposing hardware or software support like transactional
memory systems [6, 14, 15], supposed to prevent incorrect
computations while still providing good performance. How-
ever, all these proposals face intractable issues. Most pro-
posed languages imply to change drastically programmers
habits and have weak chances to be adopted by the soft-
ware industry [4]. Moreover, even if they offer interesting
constructions to express parallel tasks, they are not solving
the fundamental problem of correct and efficient parallelism
extraction, which induces dependency analysis, data local-
ity optimization, task grain adjustment, etc. Performance is
also strongly dependent of their implementation, i.e. of their
compilers or runtime systems. On the other hand, hardware
or software support does not either result in hiding paral-
lelization complexity to the user. And overall, these mech-
anisms are of high complexity by themselves, which mostly
often make them unrealistic for a real usage [3].

Nevertheless, parallel programming has already a long his-
tory, where gradual extensions have been proposed. Some
of them were pretty successful and are still current. For ex-
ample, directive-based languages, as OpenMP [2], are ex-
tensions to mainstream languages. The use of their in-
structions is not mandatory when inserted in a source code,
and they can be discovered and adopted progressively by
any developer. They are not breaking the programming
habits, while offering efficient parallelization opportunities.
Although they are not solving either the fundamental com-
plexity of parallelization, they nicely open the door of high
performance computing to anyone.

At the same time, a lot of relevant transformation tech-
niques have been discovered in order to exhibit parallelism or
to optimize code, particularly on loops, as software pipelin-
ing, loop unrolling, tiling, skewing, etc [1, 16, 12]. These
are applied either by experienced programmers, or auto-
matically by compilers or optimization tools. In the par-
allelism era, compilers and runtime systems have to accel-
erate their progresses in automatic parallelization, but at
the same time, programmers have to be brought to become,
at least, who we called “experienced programmers” ten or
twenty years ago.

We argue that a good way to achieve such an emancipa-
tion to parallel programming is to gradually extend main-
stream languages with new programming control structures

that are derived from already existing ones. Our idea is that
many well-known optimizing and parallelizing code transfor-
mations should now be applied naturally by developers, but
only in their minds, while using a control structure translat-
ing their enriched algorithmic reasonings. The existence of
such control structures will condition them to enlarge their
way of reasoning while programming. In the same way that
it is currently natural to express the repetition of code blocks
by using loops, or to abstract parametrized code by using
functions, it should now be natural to bring closer instruc-
tions that are using the same operands, or to arrange code
snippets in vertical and horizontal directions to express si-
multaneity, sequencing and overlapping.

Following this idea, we propose a new control structure
called Multifor, which can be seen as an extension of for-
loops to multiple for-loops running at the same time, whose
respective instructions are run sequentially inside one loop
body as a traditional for-loop, but run in any interleaved
order, or in parallel, between the bodies. Additionally to
traditional parameters as indices, bounds and steps, we pro-
pose to introduce a grain and an offset, allowing to mix loops
of different execution frequencies and of different starting
positions. Such programming construction translates natu-
rally to code transformations as loop fusion, loop pipelining
or loop partitioning. Moreover, it facilitates many code op-
timizations as data locality improvement or parallelization.
It can be seen as an extension of for-loops from “vertical” to
“horizontal” programming.

The second motivation of this proposal is related to the
parallel programming models that are covered by the poly-
tope model. Traditional application of this model does not
allow to naturally express parallel programming models as
task parallelism, dataflow or MapReduce. We show that
the multifor construct allows to schedule loop nest processes
by mapping together their respective iteration domains. A
multifor code can be represented geometrically by a partic-
ular union of polyhedra, each being previously dilated, com-
pressed or translated, either entirely or partially, according
to transformation factors defined by constants or affine func-
tions.

This new programming structure implies interesting im-
plementation challenges for a compiler, from its front-end to
its backend. We show that, as it is already the case with
for-loops, the polytope model is quite well adapted to ana-
lyze, optimize and translate multifor constructs into efficient
code.

Finally, as a promising perspective, we also propose a non-
linear mapping of the iteration domains guided by the ranks
of the iterations. This approach opens the possibility of
mapping any iteration domain onto any other domain with-
out being constrained by their shapes. It leads to solve the
general problem of executing any loop nest by any other
loop nest of the same trip count. Mathematically speaking,
the general solution to this problem is based on inverting
“ranking Ehrhart polynomials” [5, 9].

The paper is organized as follows. In the next section,
syntax and semantics of multifor loops are described, illus-
trated with a few examples of multifor headers and graphical
representations. We also highlight the code parallelization
and transformation schemes that are possible with multifor-
loops. In Section 3, we discuss the main issues related to
the implementation of multifor constructs and their corre-
sponding code generation. Several real and representative

code examples are presented in Section 4, highlighting the
interesting contributions of this new control structure. The
promising perspective of non-linear iteration space mapping
is the topic of Section 5, where a solution for inverting rank-
ing Ehrhart polynomials is proposed. Finally, conclusions
and further perspectives are given in Section 6.

2. SYNTAX AND SEMANTICS
In this paper, we describe the initial syntax and seman-

tics for the multifor construct. However, they can be ex-
tended in many ways in the future. We first present the
case of one unique multifor construct, as the case of nested
multifor-loops present some specificities which are presented
afterwards.

2.1 Non-nested multifor-loops
The multifor syntax is defined by:

multifor (index1 = expr, [index2 = expr, ...] ;
index1 < expr, [index2 < expr, ...] ;
index1+ = cst, [index2+ = cst, ...] ;
grain1, [grain2, ...] ;
offset1, [offset2, ...]) {
prefix : {statements}

}

where [...] denotes optional arguments, indexi denotes the
indices of the loops composing the multifor, expr denotes
affine arithmetic expressions on enclosing loop indices, or
constants, cst denotes an integer constant, grain and offset
are positive integers, grain ≥ 1, offset ≥ 0, and prefix is
a positive integer associating each statement to a given for-
loop composing the multifor-loop, according to the order in
which they are defined (0 for the first loop, 1 for the second
loop, etc.). Without loss of generality, we consider in the
following that the index steps, cst, always equal one, since
the general case can be easily deduced.

Each for-loop composing the multifor behaves as a tradi-
tional for-loop, but all are mapped on a same global “virtual
referential” domain, which can also be seen as a template.
The way iterations of the for-loops are mapped is defined
by their respective offset and grain. The grain defines the
frequency in which the associated loop has to run, relatively
to the referential. For instance, if the grain equals 2, then
one iteration of the associated loop will run over 2 iterations
of the referential. The offset defines the gap between the
first iteration of the referential and the first iteration of the
associated loop. For instance, if the offset equals 3, then the
first iteration of the associated loop will run at the fourth
iteration of the referential loop.

The size and shape of the referential is deduced from the
for-loops composing the multifor-loop. Geometrically, it is
defined as the disjoint union of the for-loop domains, where
each domain has been previously shifted according to its off-
set and dilated according to its grain. The disjoint union is
the union of adjacent convex domains, each being scanned
by a referential for-loop. The relative positions of the it-
erations of the for-loops composing the multifor-loop inside
the referential depends of the overlapping of their respec-
tive domains. It means that on domains where only one
for-loop iterations are run, the grain becomes a compression
factor. In general, the greatest common divisor of the grains
of all the for-loops overlapping on a same referential domain

is used as the factor for compressing the points of this ref-
erential domain, according to the lexicographic order. On
domains where several for-loops iterations are run, these are
run in interleaved fashion, or simultaneously.

Let us illustrate this definition with a few examples. Con-
sider the following multifor-loop header:

multifor (i1 = 0, i2 = 10; i1 < 10, i2 < 15; i1++, i2++; 1, 1; 0, 2)

In this example, the offset of index i1 is zero, and the one of
index i2 is 2. Thus, the first iteration of the i1-loop will run
immediatly, while the first iteration of the i2-loop will run
at the 3rd iteration of the multifor, but with i2 = 0. This
behavior is illustrated by the figure below:

i1

i2

i

Notice that the index values have no effect on the relative
positions of the for-loops bodies, which are uniquely deter-
mined by the grain and the offset. Another example is:

multifor (i1 = 0, i2 = 10; i1 < 10, i2 < 15; i1++, i2++; 1, 4; 0, 0)

Now, the i1-grain is 1 and the i2-grain is 4. In such a case,
for one iteration of the i2-loop, four iterations of the i1-loop
will be run on the domain on which they overlap. The second
domain is compressed by a factor of 4, since only the i2-loop
is run, as it is illustrated below:

i1

i2

i

2.2 Nested multifor-loops
Nested multifor-loops present some particularities and spe-

cific semantics has to be described. Without loss of gener-
ality, let us consider two nested multifor-loops composed of
two for-loop nests:

multifor (index1 = expr, index2 = expr;
index1 < expr, index2 < expr;
index1+ = cst, index2+ = cst;
grain1, grain2;
offset1, offset2) {
prefix : {statements}

multifor (index3 = expr, index4 = expr;
index3 < expr, index4 < expr;
index3+ = cst, index4+ = cst;
grain3, grain4;
offset3, offset4) {
prefix : {statements}

}
prefix : {statements}

}

Such a nest behaves as two for-loop nests, (index1, index3)
and (index2, index4) respectively, running simultaneously in
the same way as it is for one unique multifor-loop. The
grain of the inner multifor-loop introduces a delay for the
associated for-loop, since the same reasoning as with the
non-nested case is applied at each loop depth. The lower
and upper bounds are affine functions of the enclosing loop
indices of the same for-loop1. Let us consider some examples
of nested multifor headers.

1Notice that this restriction could be evicted for some amaz-
ing extensions.

multifor (i1 = 0, i2 = 0; i1 < 10, i2 < 5; i1 ++, i2 ++; 1, 1; 0, 2)
multifor (j1 = 0, j2 = 0; j1 < 10, j2 < 5; j1 ++, j2 ++; 1, 1; 0, 2)

The second for-loop nest has a 2-offset at each loop depth.
Hence it is delayed in each dimension of the referential do-
main:

i
j

:itérations (i1,j1)
:itérations (i1,j1) and (i2,j2)

multifor (i1 = 0, i2 = 0; i1 < 10, i2 < 3; i1 ++, i2 ++; 1, 4; 0, 0)
multifor (j1 = 0, j2 = 0; j1 < 10, j2 < 3; j1 ++, j2 ++; 1, 4; 0, 0)

The second for-loop nest has a 4-grain at each loop depth.
Hence its iterations are spaced by 4 in each dimension of the
referential domain:

i
j

:itérations (i1,j1)
:itérations (i1,j1) and (i2,j2)

multifor (i1 = 0, i2 = 0; i1 < 6, i2 < 6; i1 ++, i2 ++; 1, 1; 0, 1)
multifor (j1 = 0, j2 = 0; j1 < 6− i1, j2 < 6; j1 ++, j2 ++; 1, 1; 0, 0)

In this example, the upper bound of the inner loop of the
first loop nest is an affine function.

i
j

:itérations (i1,j1)

:itérations (i1,j1) and (i2,j2)

:itérations (i2,j2)

2.3 Multifor-loop parallelization and code trans-
formations

The multifor construct exhibits a straightforward paral-
lelization strategy which is to run, at each iteration, the
loop bodies of the defined for-loops in parallel. This model
of parallelization provides new opportunities to the poly-
tope model, since it enables the expression of parallel pro-
gramming models that were unattainable before, as dataflow
computing or fixed-depth MapReduce, as it will be shown
on code examples in Section 4.

Nevertheless, the multifor construct still allows OpenMP-
like loop parallelization for each for-loop of the multifor, thus
providing hybrid parallelization strategies.

Moreover, each for-loop, or for-loop nest, of a multifor, can
be transformed using any well-known polyhedral transfor-
mation. However, in the context of a multifor, these trans-
formations may be guided by the interactions between the
for-loops, in order to achieve better performance or better
data locality for instance. Another opportunity is the trans-
formation of imperfect loop nests into multifor-loop nests of
perfectly nested loops.

3. IMPLEMENTATION ISSUES

3.1 Reference domain
Consider one multifor-loop level. The referential for-loops

cadencing the multifor execution have the constraint of scan-
ning a sufficient number of iterations. Let us denote by f
the number of for-loops. By computing the disjoint union of
all for-loops iteration domains, we obtain a set of adjacent
domains Di on which some of the f loops overlap. Let us
denote by lbi, ubi, graini and offseti, i = 1..f the parame-
ters characterizing each for-loop in the multifor header. Let
us set nlbi = offseti and nubi = (ubi − lbi + 1)× graini +
offseti, which define the lower and upper bounds of each
loop in the referential domain, since the computation of nlbi
consists in translating the domain and the computation of
nubi in dilating the domain by a factor which equals the
grain. The disjoint union of Di’s is computed using these
latter bounds. The initial index value of the referential do-
main is MINi=1..f (nlbi). Hence, the total number of itera-
tions in the referential domain, before compression, is:

MAXi=1..f (nubi)−MINi=1..f (nlbi) + 1

In order to generate the referential for-loops for each domain
Di, the last step consists in compressing each Di by a factor
defined by lcm(grainj), for all loops j overlapping on Di.

More generally for any multifor-loop nest, the computa-
tion of the referential domain is performed in three steps.
First, each iteration domain associated to one for-loop nest
composing a multifor-loop nest is translated from the origin
according to its offsets, and dilated according to its grains
in every dimension. Notice that values actually taken by
the indices of the for-loop nests are not defining their posi-
tions in the referential domain. Second, a disjoint union is
computed and resulting in a union of adjacent convex do-
mains Di. Third, each Di may be compressed according to
the greatest common divisor of the grains of the associated
for-loop nests, and according to the lexicographic order.

3.2 Code generation
When considering sequential code, there are two dual ways

to generate the code corresponding to a multifor-loop nest.
A first way is to generate loop nests scanning the referential
domains through a minimal set of convex domains, and to in-
sert guards in their bodies in order to execute the convenient
instructions at each iteration. The number of these guards
can be optimized by computing their common sub-domains.
The second way is to scan each Di using a dedicated loop
nest with a constant loop body, without guards.

Both solutions can be generated automatically using poly-
tope model tools like PolyLib or CLooG, and by inserting
phases to compute the translated and dilated domains, or
to compress parts of the resulting referential domains.

If for-loops of given depth of a multifor-loop nest have to
be run in parallel, each for-loop has to be run in a sepa-

for (i = 0; i < K; i++)
for (j = 0; j < N ; j ++)
a[i][j] = ReadImage();

for (i = 1; i < K − 1; i++)
for (j = 1; j < N − 1; j ++){
Sbl[i][j] = Sobel(a[i− 1][j − 1], a[i][j − 1], a[i+ 1][j − 1],

a[i− 1][j], a[i][j], a[i+ 1][j],
a[i− 1][j + 1], a[i][j + 1], a[i+ 1][j + 1]);

WriteImage(Sbl[i][j]);
}

Figure 1: Sobel edge detection code

multifor (i1 = 0, i2 = 1; i1 < K, i2 < K − 1;
i1 ++, i2 ++; 1, 1; 0, 3)

multifor (j1 = 0, j2 = 1; j1 < N, j2 < N − 1;
j1 ++, j2 ++; 1, 1; 0, 3) {

0 : a[i1][j1] = ReadImage();
1 : {Sbl[i2][j2] = Sobel(a[i2 − 1][j2 − 1], a[i2][j2 − 1],

a[i2 + 1][j2 − 1], a[i2 − 1][j2],
a[i2][j2], a[i2 + 1][j2],
a[i2 − 1][j2 + 1], a[i2][j2 + 1],
a[i2 + 1][j2 + 1]);

WriteImage(Sbl[i2][j2]); }
}

Figure 2: Sobel edge detection multifor code

rated thread and all threads have to be synchronized at the
multifor-loop completion. Notice that this could be enriched
by providing OpenMP-like options as NOWAIT.
Original indices of the multifor (i1, i2, j1, ...) have to be

retrieved at the beginning of each loop body, by being com-
puted from the referential loop indices. These computations
consists in subtracting offsets, or in adding modulos of the
referential loop indices relatively to grains, or in multiplying
by grains in case of compressed domains.

4. EXAMPLES
Sobel edge detection: We first consider the code for per-
forming Sobel edge detection of an image shown in Figure
1. The first loop nest of this program reads the input im-
age, while the second loop nest performs the actual edge
detection and writes out the output image.

Note that nine neighboring elements have to be read be-
fore its resulting pixel can be computed and written. Hence
both loop nests can be naturally overlapped by writing the
code using the multifor construct exhibiting a data-flow model
of computation, shown in Figure 2. The associated referen-
tial domain is shown in Figure 3.

Red-Black Gauss-Seidel: The second example is the Red-
Black Gauss-Seidel algorithm composed of two phases. The
first phase consists in updating the red elements of a grid,
which are one point over two in the i and j directions of the
grid, starting from the first bottom left corner, using their
North-South-East-West (NSEW) neighbors, which are black
elements. The second phase consists obviously in updating
the black elements from the red ones. For a 2D N×N prob-
lem, the usual code, is of the form shown in Figure 4 (the
border elements initialization has been omitted).

On the iteration domain and at each phase, a different

i
j

:itérations (i1,j1)

:itérations (i1,j1) and (i2,j2)

:itérations (i2,j2)

Figure 3: Sobel edge detection referential domain

// Red phase
for (i = 1; i < N − 1; i++)
for (j = 1; j < N − 1; j ++)
if ((i+ j) % 2 == 0)
u[i][j] = f(u[i][j + 1], u[i][j − 1], u[i− 1][j], u[i+ 1][j]);

// Black phase
for (i = 1; i < N − 1; i++)
for (j = 1; j < N − 1; j ++)
if ((i+ j) % 2 == 1)
u[i][j] = f(u[i][j + 1], u[i][j − 1], u[i− 1][j], u[i+ 1][j]);

Figure 4: Red-Black Gauss-Seidel code

lattice of iterations is active. Moreover, the NSEW depen-
dencies prevent any linear parallel schedule. This code can
be translated into a multifor-loop nest where the red and
black phases each yield two for-loop nests with convenient
grains and offsets as shown in Figure 5.

The referential initial domain of the multifor code is repre-
sented in Figure 6 on the left, also showing the transformed
dependency vectors which are now allowing a linear sched-
ule. On the right in Figure 6, the final iteration domains,
after compression, are represented.

This example shows that the multifor construct allows to
exploit different kind of parallelism – the so-called wavefront
parallelism in this case – since the traditional parallelization
consists in parallelizing each of the phases, and to execute
each phase one after the other. The multifor strategy can
be preferable to improve data locality and thus improve the

multifor (i0 = 1, i1 = 2, i2 = 1, i3 = 2; i0 < N − 1, i1 < N − 1,
i2 < N − 1, i3 < N − 1; i0+ = 2, i1+ = 2, i2+ = 2,
i3+ = 2; 2, 2, 2, 2; 0, 1, 1, 2)

multifor (j0 = 1, j1 = 2, j2 = 2, j3 = 1; j0 < N − 1, j1 < N − 1,
j2 < N − 1, j3 < N − 1; j0+ = 2, j1+ = 2, j2+ = 2,
j3+ = 2; 2, 2, 2, 2; 0, 1, 2, 1) {

0 : u[i0][j0] =
f(u[i0][j0 + 1], u[i0][j0 − 1], u[i0 − 1][j0], u[i0 + 1][j0]);

1 : u[i1][j1] =
f(u[i1][j1 + 1], u[i1][j1 − 1], u[i1 − 1][j1], u[i1 + 1][j1]);

2 : u[i2][j2] =
f(u[i2][j2 + 1], u[i2][j2 − 1], u[i2 − 1][j2], u[i2 + 1][j2]);

3 : u[i3][j3] =
f(u[i3][j3 + 1], u[i3][j3 − 1], u[i3 − 1][j3], u[i3 + 1][j3]);

}

Figure 5: Red-Black Gauss-Seidel multifor code

i
j

:itérations (i0,j0) (red phase)

:itérations (i2,j2) (black phase)

:holes

:itérations (i1,j1) (red phase)

:itérations (i3,j3) (black phase)

i
j

Figure 6: Red-Black Gauss-Seidel referential do-

main

for (j = 1; j < N − 1; j+ = 2)
u[i][j] = f(u[i][j + 1], u[i][j − 1], u[i− 1][j], u[i+ 1][j]);
for (i = 2; i < N − 2; i+ = 2) {
for (j = 2; j < N − 1; j+ = 2) {
u[i][j] = f(u[i][j + 1], u[i][j − 1], u[i− 1][j], u[i+ 1][j]);
u[i][j + 1] = f(u[i][j + 2], u[i][j],

u[i− 1][j + 1], u[i+ 1][j + 1]); }
for (j = 1; j < N − 1; j+ = 2) {
u[i+ 1][j] = f(u[i+ 1][j + 1], u[i+ 1][j − 1],

u[i][j], u[i+ 2][j]);
u[i+ 1][j + 1] = f(u[i+ 1][j + 2], u[i+ 1][j],

u[i][j + 1], u[i+ 2][j + 1]); } }
for (j = 2; j < N − 1; j+ = 2) {
u[N − 2][j] = f(u[N − 2][j + 1], u[N − 2][j − 1],

u[N − 3][j], u[N − 1][j]); }

Figure 7: Red-Black Gauss-Seidel generated code

resulting execution time. Here, some parallelism within the
red points and within the black points can still be exploited,
but also parallelism between red and black points. As an
example, we show as a source code the sequential code that
could be generated from this multifor-loop nest in Figure 7.

Notice also that more generally, when dependencies allow
it, such a decomposition of a loop-nest computation into
separated lattices, and expressed as a multifor-loop nest,
provides another parallelization strategy that may be often
quite interesting due to data locality issues.

Matrix product by blocks: The third example is an
algorithm to compute the product of two matrices n × n,
(A × B = C), by partitioning the matrices into uniform
blocks. The matrix product is then carried out block by
block. We split the two matrices A and B as follows:

• matrix A is divided into two matrices A1 and A2 whose
dimension is n/2× n.

• matrix B is divided into two matrices B1 and B2 whose
dimension is n× n/2.

The product A × B = C translates to four products: A1 ∗
B1 = C1, A1 ∗B2 = C2, A2 ∗B1 = C3 and A2 ∗B2 = C4, i.e.,

(

A1

A2

)

×
(

B1 B2

)

=

(

C1 C2

C3 C4

)

multifor (i1 = 0, i2 = 0, i3 = n/2, i4 = n/2;
i1 < n/2, i2 < n/2, i3 < n, i4 < n;
i1 ++, i2 ++, i3 ++, i4 ++;
1, 1, 1, 1 ; 0, 0, 0, 0) {

multifor (j1 = 0, j2 = n/2, j3 = 0, j4 = n/2;
j1 < n/2, j2 < n, j3 < n/2, j4 < n;
j1 ++, j2 ++, j3 ++, j4 ++;
1, 1, 1, 1 ; 0, 0, 0, 0) {

0 : c[i1][j1] = 0;
1 : c[i2][j2] = 0;
2 : c[i3][j3] = 0;
3 : c[i4][j4] = 0;

multifor (k1 = 0, k2 = 0, k3 = 0, k4 = 0;
k1 < n, k2 < n, k3 < n, k4 < n;
k1 ++, k2 ++, k3 ++, k4 ++;
1, 1, 1, 1 ; 0, 0, 0, 0) {

0 : c[i1][j1] = c[i1][j1] + a[i1][k1]× b[k1][j1];
1 : c[i2][j2] = c[i2][j2] + a[i2][k2]× b[k2][j2];
2 : c[i3][j3] = c[i3][j3] + a[i3][k3]× b[k3][j3];
3 : c[i4][j4] = c[i4][j4] + a[i4][k4]× b[k4][j4];
}

}
}

Figure 8: Multifor matrix product code

The dimension of matrices C1, C2, C3 and C4 is (n/2×n/2).
These four products might be performed simultaneously and
can be naturally expressed using the multifor structure as
shown in figure 8.

Geometrically, the multifor iteration domain is a (n/2 ×
n/2×n) rectangle parallelepiped where each point is associ-
ated to four iterations of the four included loop-nests. This
execution scheme corresponds to the MapReduce strategy
since each for-loop nest computes a n/2 × n/2 sub-block
(map step), and the combination of all sub-blocks forms the
resulting matrix C (reduce step).

Steganography: The fourth example is the decoding phase
of a steganography code where an hidden image is extracted
from an enclosing one. It is assumed that the upper left
pixel of the hidden image is hidden within the upper left
pixel of the enclosing image; HWidth and HHeight are the
width and the height of the hidden image ; EWidth and
EHeight are the width and the height of the enclosing im-
age ; EImage is the image hiding another image ; HImage
is the extracted output image that was hidden ; MImage is
the output enclosing image hiding no more the image that
was hidden in EImage. The proposed multifor code version
is composed of four simultaneous for-loop nests, the first
being dedicated to the extraction of the hidden image, the
second to the extraction of the part of the enclosing image
which is hiding the hidden image, the third and the fourth
being dedicated to copy the pixels directly to the retrieved
enclosing image. Since the union of the third and fourth
domain is not convex, two loop-nests are necessary to scan
it. Notice that we introduce a shortcut in the syntax such
that similar loop bodies can be instantiated differently de-
pending on their associated loop-nest. The multifor code is
shown in Figure 9 and a view of the enclosing and hidden
images, and how the multifor-loop nest scan them is shown
in Figure 10. Notice that full parallelism is exhibited with
this code.

RGBApixel decode hidden(i, j)
{
RGBApixel P ixel1 = ∗EImage(i, j);
RGBApixel P ixel2;
Pixel2.Red = Pixel1.Red%2;
Pixel2.Green = Pixel1.Green%2;
Pixel2.Blue = Pixel1.Blue%2;
Pixel2.Alpha = Pixel1.Alpha%2;
returnP ixel2;
}

RGBApixel decode main(i, j)
{
RGBApixel P ixel1 = ∗EImage(i, j);
RGBApixel P ixel2;
Pixel2.Red = Pixel1.Red− Pixel1.Red%2;
Pixel2.Green = Pixel1.Green− Pixel1.Green%2;
Pixel2.Blue = Pixel1.Blue− Pixel1.Blue%2;
Pixel2.Alpha = Pixel1.Alpha− Pixel1.Alpha%2;
returnP ixel2;
}

multifor (i1 = 0, i2 = 0; i3 = 0, i4 = HWidth; i1 < HWidth,
i2 < HWidth, i3 < HWidth, i4 < EWidth;
i1 ++, i2 ++, i3 ++, i4 ++; 1, 1, 1, 1; 0, 0, 0, 0)

multifor (j1 = 0, j2 = 0, j3 = HHeight, j4 = 0; j1 < HHeight,
j2 < HHeight, j3 < EHeight, j4 < EHeight;
j1 ++, j2 ++, j3 ++, j4 ++; 1, 1, 1, 1; 0, 0, 0, 0)

{
0 : // Retrieve the hidden image

∗HImage(i1, j1) = decode hidden(i1, j1);
1 : // Retrieve the enclosing image

∗MImage(i2, j2) = decode main(i2, j2);
[2, 3] : // Retrieve the enclosing image

∗MImage([i3, i4], [j3, j4]) = ∗EImage([i3, i4], [j3, j4]);
}

Figure 9: Multifor steganography code for the de-

coding phase

Secret key cryptosystem: The fifth example is a classic
secret key cryptosystem that manipulates binary words. It
proceeds by splitting a message m into blocks of constant
size. These cryptosystems are characterized by the length
of each block, the operating mode and the encryption system
of each block. Each cipher mode comprises:

1. Cutting in many blocks m1, ...,mk the plain text mes-
sage m;

2. Encrypting the blocks mi resulting in the encrypted
blocks c1, ..., ck;

3. Concatenating the blocks c1, ..., ck to construct the en-
crypted message c.

Each block is encrypted through the product of two cryp-
tosystems T1 and T2. It is classically computed using a loop
of the form:

for (i = 0; i < k; i++) {
c[i] = Encrypt(m[i], T1);
c[i] = Encrypt(c[i], T2); }

Suppose the encryption of each block by a given cryp-
tosytem consumes one unit of time. The time required to
encrypt the entire message using this loop is 2 × k. Let us
write this code using a multifor structure:

i
j

:itérations (i1,j1) and (i2,j2)

:itérations (i3,j3)

:itérations (i4,j4)

HHeight
EHeight

H
W

id
th

E
W

id
th

Figure 10: Enclosing and hidden images scanned by

the multifor steganography code

multifor (i1 = 0, i2 = 0; i1 < k, i2 < k;
i1 ++, i2 ++; 1, 1; 0, 1) {

0 : c[i1] = Encrypt(m[i1], T1);
1 : c[i2] = Encrypt(c[i2], T2); }

This form allows to take advantage of a pipeline scheme
where two successive blocks are encrypted in parallel re-
spectively by the cryptosystems T1 and T2. Thus, the time
required to encrypt the message is k + 1.

5. A PROMISING PERSPECTIVE:

NON-LINEAR MAPPING
Among the numerous possible extensions, an important

one is to map iteration spaces together following a non-linear
fashion, such that their shapes has no influence in the map-
ping. In general, this would allow to execute iterations of any
loop nest by any other one of the same trip count, and thus
to enlarge significantly the way iterations of different loops
can be mapped together. Hence a multifor construct could
express quite different computations in a concise way, and
augment the number of optimization and parallelization op-
portunities. Notice that loop nests with different trip counts
can also be handled by splitting the largest nest such that
one of the resulting nest has the convenient trip count.

Our idea is based on ranking Ehrhart polynomials. It has
been shown in previous works dealing with spatial data lo-
cality optimization, that it is possible to compute an Ehrhart
polynomial associated to a loop nest giving the rank of an
iteration [5, 9]. These polynomials have specific properties
as being necessarily monotonically increasing according to
the lexicographic order of the loop indices, and also defin-
ing a bijection between iteration points and the interval of
strictly positive integers between one and the total iteration
count of the loop nest.

Since ranking Ehrhart polynomials define such bijections,
the ability of inverting them would provide a way to retrieve
the loop indices corresponding to the rank of an iteration.
Hence at any iteration of a loop nest, it would be possible
to compute, from the rank, the values of loop indices that
would have been reached while running another nest. Thus,
any nest could be run by another one, and any iteration
space could be mapped onto another one, following the rank
of the iterations. Hence this Section deals with the problem
of inverting ranking Ehrhart polynomials.

Before proposing a general resolution, we first present a
2-dimensional example.

5.1 2-dimensional example
Consider the two loop nests in listings (1) and (2), where

instructionk(i1, i2) denotes the instruction block computed
at iteration (i1, i2). These loops have as respective ranking
Ehrhart polynomials:

P1(i, j) =
i(i− 1)

2
+ j and P2(i

′, j′) = i′M2 + j′

for (i = 1, i < N, i++)
for (j = 0, j < i, j ++)

instructions1(i, j);
(1)

for (i′ = 0, i′ < M1, i′ ++)
for (j′ = 0, j′ < M2, j′ ++)

instructions2(i′, j′);
(2)

Taking the assumptions that both nests have the same
iteration count and that there is no dependency between
instructions1 and instructions2, we could merge the two
former loop nests and write (3).

for (i′ = 0, i′ < M1, i′ ++)
for (j′ = 0, j′ < M2, j′ ++) {

instructions1(i, j);
instructions2(i′, j′); }

(3)

However, we need to express indices (i, j) as a function of
(i′, j′) in order to preserve the execution order of the block
instructions1. More precisely, for each iteration number K
in loop nest (3), we want to execute the Kth iteration of loop
nest (1). This is why we must invert the ranking Ehrhart
polynomial P1, to compute (i, j) = P−1

1 (P2(i
′, j′)).

For any rank K, we have to find a couple of indices (i0, j0)
such that P1(i0, j0) = K. The main idea is to cut the 2-
dimensional problem into two one-dimensional problems.

Let us define Q1(i) = P1(i, 0) = i(i−1)
2

. As ranking
Ehrhart polynomials are (strictly) increasing, the following
relation holds:

Q1(i0) = P1(i0, 0) ≤ P1(i0, j0) = K ≤ P1(i0 + 1, 0) = Q1(i0 + 1)

And, for the same reason, we know that index i0 is unique
on N+. Let us now consider polynomial Q1 as a polynomial
over R. By continuity of Q1 over R, there exists α ∈ [0, 1[
such that Q1(i0 + α) = K. This shows that the equation
Q1(x) = K has at least one real solution. So we have to find
x such that:

Q1(x) = K ⇔ Q1(x)−K = 0 ⇔
x(x− 1)

2
−K = 0

Obviously, this last equation has two real roots:

x1 =
1

2
−

√

1 + 8K

4
, x2 =

1

2
+

√

1 + 8K

4

To select the convenient root, we notice that for all K > 0,
x1 ≤ 0. As i0 ≥ 1 (according to the loop bounds in (1)),
i0 + α = x2, and thus: i0 = ⌊x2⌋. We can now replace i0 by
its value in P1(i0, j0):

P (i0, j0) =
1

2

(⌊

1

2
+

√

1 + 8K

4

⌋)(⌊

1

2
+

√

1 + 8K

4

⌋

− 1

)

+j0

and finally deduce j0:

j0 = K −
1

2

(⌊

1

2
+

√

1 + 8K

4

⌋)(⌊

1

2
+

√

1 + 8K

4

⌋

− 1

)

The resulting code is shown in listing 4.

K = 0;
for (i′ = 0, i′ < M1, i′ ++)

for (j′ = 0, j′ < M2, j′ ++) {
K ++;
i = floor(sqrt((1 + 8 ∗K)/4) + 1/2);
j = K − i ∗ (i− 1)/2;
instructions1(i, j);
instructions2(i′, j′); }

(4)

We now present the general case, which can be easily de-
duced from the 2-dimensional case.

5.2 General case
Without any loss of generality, we assume all loop indices

lower bounds equal 0. We consider the N -dimensional rank-
ing Ehrhart polynomial P (i, j, k, ...), and for each K, we seek
the tuple (i0, j0, k0, ...) such that P (i0, j0, k0, ...) = K.

Similarly to the previous example, we start with the out-
ermost loop index i0. We define Qi(i) = P (i, 0, 0, ..., 0) and
solve Qi(x)−K = 0. Here is the only issue that differs from
the 2D case: as we can’t state that Qi is monotonically in-
creasing on R+, we have to find a criterion to select the root
giving the sought index.

First, we obviously eliminate complex and negative solu-
tions, since i0 ∈ N+, and consider n ≤ N positive real roots
{x1, .., xn}. As we know that i0 is unique, a way to select the
convenient root is to check which x ∈ {x1, .., xn} satisfies :

Qi(⌊x⌋ = i0) ≤ Qi(x) ≤ Qi(⌈x⌉ = i0 + 1)

However, this strategy is only applicable at runtime, and
may add non negligible time overhead. A compile-time so-
lution is to check if Qi is monotonically increasing on R+

by examining its derivative. If so, any root in {x1, .., xn} is
suitable.

Once i0 has been found, the process starts again with
Qj(j) = P (i0, j, 0, ..., 0), and so on until all indices have
been computed.

6. CONCLUSION
We have proposed a new programming control structure

called “multifor” and showed that it allows the polytope
model to handle programming models that were not attain-
able directly before. Important related theoretical studies
have still to be conducted, as dependency analysis between
the for-loops composing a multifor-loop, or optimizing code
transformations that considers interactions between the for-
loops.

Many interesting extensions can also be studied as mak-
ing header parameters, or instructions, dependent of several
for-loop indices composing the same multifor-loop level, or
defining non-invariant grains and offsets, or introducing con-
ditionals on the effective run of the for-loops, etc. In this
paper, we showed that it may be possible to handle non-
linear mapping of iteration spaces using inverted ranking
Ehrhart polynomials.

The multifor structure can also be used as a representa-
tion model for some interacting mechanisms, as concurrent
memory accesses, as it is done for sequential codes in [7].

We are planning to implement multifor structures in the
Clang/LLVM compiler as an extension to C/C++.

7. REFERENCES
[1] U. Banerjee. Loop Transformations for Restructuring

Compilers - The Foundations. Kluwer Academic
Publishers, 1993. ISBN 0-7923-9318-X.

[2] O. A. R. Board. Openmp application program
interface, version 3.1, 2011.

[3] C. Cascaval, C. Blundell, M. Michael, H. W. Cain,
P. Wu, S. Chiras, and S. Chatterjee. Software
transactional memory: Why is it only a research toy?
Queue, 6(5):46–58, Sept. 2008.

[4] I. Christadler, G. Erbacci, and A. D. Simpson. Facing
the multicore-challenge ii. chapter Performance and
productivity of new programming languages, pages
24–35. Springer-Verlag, Berlin, Heidelberg, 2012.

[5] P. Clauss and B. Meister. Automatic memory layout
transformations to optimize spatial locality in
parameterized loop nests. SIGARCH Comput. Archit.
News, 28(1):11–19, Mar. 2000.

[6] M. Herlihy, V. Luchangco, M. Moir, and W. N.
Scherer, III. Software transactional memory for
dynamic-sized data structures. In Proc. of the 22nd
annual symp. on Principles of distributed computing,
PODC ’03, pages 92–101. ACM, 2003.

[7] A. Ketterlin and P. Clauss. Prediction and trace
compression of data access addresses through nested
loop recognition. In 6th annual IEEE/ACM int. symp.
on Code generation and optimization, pages 94–103,
Boston, United States, Apr. 2008. ACM.

[8] C. E. Leiserson. The cilk++ concurrency platform. In
Proceedings of the 46th Annual Design Automation
Conference, DAC ’09, pages 522–527, New York, NY,
USA, 2009. ACM.

[9] V. Loechner, B. Meister, and P. Clauss. Precise data
locality optimization of nested loops. J. Supercomput.,
21(1):37–76, Jan. 2002.

[10] S. Marlow, P. Maier, H.-W. Loidl, M. K. Aswad, and
P. Trinder. Seq no more: Better strategies for parallel
haskell. In Proceedings of the 3rd ACM SIGPLAN
symposium on Haskell, pages 91–102, Baltimore, MD,
United States, Sept. 2010. ACM Press.

[11] M. Odersky, L. Spoon, and B. Venners. Programming
in Scala. Artima Series. Artima Press, 2011.

[12] L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen,
J. Ramanujam, P. Sadayappan, and N. Vasilache.
Loop transformations: convexity, pruning and
optimization. In Proc. of the 38th annual ACM
SIGPLAN-SIGACT symp. on Principles of
programming languages, POPL ’11, pages 549–562,
New York, NY, USA, 2011. ACM.

[13] K. F. Sagonas. Using static analysis to detect type
errors and concurrency defects in erlang programs. In
FLOPS, pages 13–18, 2010.

[14] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C.
Minh, and B. Hertzberg. Mcrt-stm: a high
performance software transactional memory system
for a multi-core runtime. In Proc. of the 11th ACM
SIGPLAN symp. on Principles and practice of parallel
programming, PPoPP ’06, pages 187–197, New York,
NY, USA, 2006. ACM.

[15] N. Shavit and D. Touitou. Software transactional
memory. In Proc. of the 14th annual ACM symp. on
Principles of distributed computing, PODC ’95, pages
204–213, New York, NY, USA, 1995. ACM.

[16] M. J. Wolfe. High Performance Compilers for Parallel
Computing. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1995.

