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Abstract11

An algorithm to automatically detect and measure knots in CT images of12

softwood beams was developed. The algorithm is based on the use of 3D con-13

nex components and a 3D distance transform constituting a new approach14

for knot diameter measurements.15

The present work was undertaken with the objective to automatically and16

non-destructively extract the distributions of knot characteristics within trees.17

These data are valuable for further studies related to tree development and18

tree architecture, and could even contribute to satisfying the current demand19

for automatic species identification on the basis of CT images.20

A review of the literature about automatic knot detection in X-ray CT images21

is provided. Relatively few references give quantitatively accurate results of22

knot measurements (i.e., not only knot localisation but knot size and incli-23

nation as well).24

The method was tested on a set of seven beams of Norway spruce and silver25
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fir. The outputs were compared with manual measurements of knots per-26

formed on the same images.27

The results obtained are promising, with detection rates varying from 71 to28

100%, depending on the beams, and no false alarms were reported. Particu-29

lar attention was paid to the accuracy obtained for automatic measurements30

of knot size and inclination. Comparison with manual measurements led to31

a mean R2 of 0.86, 0.87, 0.59 and 0.86 for inclination, maximum diameter,32

length and volume, respectively.33

Keywords: Branchiness, 3D distance transform, Computer tomography,34

Picea abies, Abies alba35

1. Introduction36

Wood knots are the prolongation within the tree stem of the branches. By37

linking the living crown where photosynthesis occurs, to the pith of the main38

stem and, finally, to the roots where the mineral nutrients are assimilated,39

branches and knots play a vital role in tree physiology. However, despite the40

fact that trees without branches do not exist, wood users would nevertheless41

like to obtain knot free lumbers. The frequency and size of the apparent knots42

are probably the first depreciation factors considered by wood suppliers for43

estimating the price of timber. This is also one of the main criteria considered44

in the visual grading of lumber.45

The occurrence of knots within a piece of wood has several technolog-46

ical drawbacks, principally due to the deviation of the grain angle in and47

around the knots. Wood can be considered as an orthotropic material whose48

properties differ drastically along and across the grain. For example, the lon-49
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gitudinal modulus of elasticity (along the grain) is typically ten times higher50

than the transverse one. From a mechanical point of view, this means that a51

knot within a wood beam may be assimilated to a hole. In wood machining,52

the quality of the surface around the knots is often depreciated due to the53

grain deviation while the life expectancy of tools may be severely shortened54

by shocks against the knots. Finally, knots usually depreciate the aesthetic55

quality of the wood as well.56

Knowledge of knot geometry and location would be valuable in a sawmill57

for optimising cutting decisions or improving the grading of logs or lumber.58

CT scanners designed expressly for the wood industry are now available and59

some of the largest sawmills are now equipped with them. Such data are60

needed for studying tree architecture (Colin et al., 2010; Heuret et al., 2002;61

Passo et al., 2002; Meredieu and Caraglio, 1998), pruning (Seifert et al.,62

2010; Hein, 2008), branchiness (Colin and Houllier, 1991, 1992; Kershaw63

et al., 2009; Weiskittel et al., 2010; Courbet et al., 2007; Moberg, 1999;64

Meredieu et al., 1998) and knot morphology (Lemieux et al., 2001; Björk-65

lund and Petersson, 1999; Björklund, 1997; Lemieux et al., 1997; Samson66

et al., 1996; Samson, 1993). Branch and knot models for various species have67

been included into simulators for assessing wood quality (Houllier et al., 1995;68

de Coligny et al., 2003; Ikonen et al., 2009).69

Observation of branch scars may help to assess the quality of a log but is70

not sufficient to predict its knottiness. Many knots linked to branches that71

were artificially or naturally pruned several years earlier may remain deeply72

hidden within the stem, notably at the lower part of old trees. Moreover, the73

knot shape from the outer branch insertion to the stem pith is a matter of74
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guesswork.75

X-ray computer tomography has been recognised as being the most promis-76

ing method to non-destructively analyse the internal structure of logs (Hailey77

and Morris, 1987; Chang, 1992; Schad et al., 1996). A review of the existing78

methods for automatically measuring knottiness on the basis of CT images79

is presented in the next section.80

The objective of this paper was to propose an entirely automated method81

able to inventory knots from X-ray CT images of a piece of wood (round82

wood or beam) and to obtain data on knot geometry without any human in-83

tervention. Even if execution time was considered in the algorithmic choices,84

no special effort was devoted to speed optimisation. The first step of the85

algorithm, image segmentation, was not studied in details since a simple86

thresholding operation was efficient in the present case. On the contrary,87

special attention was paid to the validation step. Validation was performed88

on a large set of 428 knots using two software tools dedicated to (i) man-89

ual measurement of the knot shape on the CT images, and (ii) automatic90

matching of the manually measured and automatically detected knots. The91

challenges were to maximise the knot detection rate, to minimise the false92

alarms and to obtain an accurate and complete knot geometric description93

(including location, diameter, volume, inclination and shape descriptors).94

The knot detection software was published under the GPL license and95

made available to the public (http://www.loria.fr/equipes/adage/3DKnotDM).96
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2. Review of existing methods to non-destructively and automati-97

cally measure knottiness on the basis of CT images98

This section is dedicated to the state of the art with respect to exist-99

ing algorithms of knot detection based on the analysis of X-ray CT images.100

This review does not include some studies based on low-resolution images (for101

example, obtained from only two or three X-ray projections) performed in or-102

der to be more compatible with normal sawing speed (e.g., Pietikäinen, 1996;103

Flood et al., 2003). Indeed, comparison of accuracies with high-resolution104

images would have been of limited interest.105

The first approaches of knot detection based on X-ray CT images found106

in the literature were developed in the 1980s.107

Taylor et al. (1984) gave some general ideas for the detection of knots but108

without describing an algorithm in detail.109

The first detailed description of an algorithm was given by Funt (1985),110

followed by Funt and Bryant (1987). A thresholding of the grey level his-111

togram based on derivative methods was used to classify the pixels into four112

classes, where knots belong to the class with the highest density. Potential113

knot components were then represented by convex regions, and their size and114

orientation were analysed by the system in order to check whether they cor-115

responded to actual knots or not: (i) components that were too small were116

eliminated on the basis of a size criterion; (ii) the orientation of each region117

was compared with the axis that passed through the pith and the centre of118

gravity of the region. Indeed, branches are connected to the stem pith where119

they have their biological origin and principal knot axes pass approximately120

through the pith. The 3D aspect of CT image stacks was not used in this121
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approach and the authors do not give validation results.122

In the 1990s an Australian research team proposed several interesting and123

original approaches for segmenting knots (Wells et al., 1991; Som et al., 1993,124

1995; Davis et al., 1996), even if they do not seem to have finalised them.125

Validation results are therefore not provided.126

A first approach (Wells et al., 1991) was based on vectors of statistical cri-127

teria computed in 5 × 5 neighbourhoods and on statistical methods applied128

to these vectors, such as principal component analysis.129

A second approach (Som et al., 1993) consisted in applying edge detection130

and processing the resulting image with a 3 × 3 mask adapted to the radial131

structure of knots: if the local edge was oriented perpendicularly to a virtual132

line passing through the pith, then the pixel of interest was removed.133

A third approach (Som et al., 1993) was based on subtractions of pairs of134

consecutive CT images. This method makes it possible to detect moving com-135

ponents such as knots from one CT image to another. A similar approach was136

used by Jaeger et al. (1999). This method is particularly efficient to remove137

sapwood when it is present. However, the method is strongly dependent on138

knot size and inclination and on the distance between two consecutive CT139

images (Longuetaud, 2005).140

In a fourth approach (Som et al., 1995), the authors used mathematical mor-141

phology to detect breaks in the annual growth ring structure.142

Zhu et al. provided an interesting algorithm based on a system of rules143

for defect detection in logs. They first applied low-level operations (filtering144

with a 3D Unser filter to eliminate annual rings and to preserve important145

image details, segmentation using a multi-thresholding scheme for 2D com-146
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ponent identification, 3D volume growing) (Zhu et al., 1991b,a), followed by147

a high-level module (Zhu et al., 1991c,d), which consisted in a rule-based148

expert system for defect recognition. After selecting some features of inter-149

est (e.g., grey level mean value, distance to the centre of the log, volume),150

the authors computed confidence values for these features, depending on the151

wood characteristics. In Zhu et al. (1996), this part of the algorithm was152

refined by using the Dempster-Shafer theory of evidential reasoning. Visual153

results are provided for CT images of red oak and yellow poplar, but the154

authors do not give quantified accuracy results. Zhu and Beex (1994) tested155

another approach based on the application of spatial autoregressive modelling156

to wood-grain texture analysis.157

Another original approach was developed by Grundberg and Grönlund158

(1992) for Scots pine logs. The main objective was to develop knot models1
159

in order to reduce the amount of data to be handled in their database (the160

Swedish Stem Bank) by saving only the model parameters obtained from161

automatic knot detection rather than pixel values. A low-pass filter was first162

applied to remove annual growth rings. The originality of the method was to163

work on concentric surfaces centred on the pith (manually detected) within164

logs (i.e., similar to surfaces obtained by rotary cutting logs). Knots were de-165

tected by thresholding (fixed threshold: 875 kg.m−3) five concentric surfaces166

located in the heartwood and by analysing overlapping between successive167

surfaces. The location of knots in the sapwood was predicted (not detected)168

by using models based on the previous detections in the heartwood. Vali-169

1Models to predict tangential and longitudinal diameters and positions as functions of

the radial distance to the pith.
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dation results are given based on 177 knots from five trees. The size and170

location of knots that were predicted on the most external concentric surface171

in the sapwood were compared with manual measurements. For their best172

tested model, five knots were missed, and means and standard deviations (SD173

in brackets) of predicted minus real knot diameters were -2.55 (4.74) mm in174

the tangential direction and -8.77 (8.76) mm in the longitudinal direction.175

Oja validated and adapted the previous algorithm for Norway spruce on two176

stems (Oja, 1996) and then applied it to 12 logs (Oja, 2000). In addition,177

he provided some results about the detection of the sound knot/dead knot178

border. In this work, 80 to 100% of the knots larger than 7 mm were detected179

(94% in average). Nine false knots were found in the 12 logs. The detection180

of knots was assessed by comparing real CT images and reconstructed CT181

images on the basis of the automatically estimated knot parameters. The182

accuracy of diameter measurements (at the dead knot border) was assessed183

on 27 knots based on comparisons between measurements on real boards184

and on reconstructed boards. The mean and SD of predicted (measured on185

reconstructed boards) minus real (measured on real boards) knot diameters186

were - 2 (3) mm.187

Nordmark (2003) later extended the Swedish Stem Bank with knot parame-188

ters estimated from knot detection in CT images of young Scots pine trees.189

The segmentation of knots in CT images (first step of the algorithm) was190

done by using the Artificial Neural Network (ANN) (see details below). Then,191

similarly to the previous associated works, concentric surfaces were used to192

identify knots in 3D and to fit knot models for size and position. The accu-193

racy of the extracted descriptions was evaluated by comparing the size and194

8



position of knots measured on ten real boards from three trees with corre-195

sponding boards reconstructed on the basis of the descriptions. A total of196

84% of 185 real knots was detected. The average and SD differences between197

simulated and real diameters in tangential and longitudinal directions were198

0.6 (4.0) mm and -0.6 (3.9) mm, respectively.199

In these studies, the CT slice thickness was 5 mm and the distance between200

two consecutive slices was 5 mm for pine logs and 10 mm for spruce logs201

and young pine logs. The resolution was approximately 1.37 mm.pixel−1 for202

young pine logs.203

In our opinion, Bhandarkar et al. (1996; 1999) gave the most finalised204

algorithm that we found in the literature. The first step consisted in the205

segmentation of CT images in four pixel classes (the knots belonged to the206

class with the highest density) by using a complex form of an area-based mul-207

tiple thresholding algorithm. The algorithm then located the pith, grouped208

the pixels of the segmented images on the basis of their 2D connectivity209

(region-growing process), deleted regions that were too small, and classified210

each 2D region as a defect-like or defect-free region by computing shape,211

orientation and morphological features (considering, for example, like Funt212

and Bryant (1987), that knot principal axes pass approximately through the213

stem pith). 2D regions were then represented by convex hulls, and holes214

were filled. Finally, the 2D regions with adequate 3D support were labelled215

as true defects. Knot parameters such as knot inclination and slenderness216

were then computed from these 3D regions and helped to remove invalid knot217

regions. White ash, red oak, black walnut and hard maple logs were anal-218

ysed. Defects were manually identified and delineated in colour images of219

9



real cross-sections to enable comparisons with the corresponding automatic220

detections in CT images. The numbers of knots considered were 225, 161,221

330 and 194 for white ash, red oak, black walnut and hard maple, respec-222

tively. Detection rates were between 80.8% for red oak and 89.3% for white223

ash, and false alarm rates were between 5.1% for red oak and 12.7% for hard224

maple. Localisation accuracies were given in terms of centroid displacement,225

orientation difference and overlap factor.226

More recently, Bhandarkar et al. (2006; 2008) proposed a novel approach227

based on Kalman filter-based tracking algorithms. The defects were simul-228

taneously detected, classified, localised and reconstructed in 3D. The results229

were promising with detection rates of 100% obtained for white ash, hard230

maple and red oak logs.231

Andreu and Rinnhofer (2003a; 2003b) proposed a method to detect knots232

in CT images of Norway spruce logs. Like Grundberg and Grönlund (1992)233

earlier, they aimed to represent knots by parametric functions. First, the234

pith was detected in CT images. Then, a multi-modal histogram threshold-235

ing method was applied to classify the pixels into four classes, after several236

image pre-processing steps (e.g., annual ring structure removal by Gaus-237

sian filtering). The 2D knot areas that were detected on successive images238

were then grouped together, based on their distance to the pith and the239

direction of their principal axis in the CT image plane, in order to obtain240

a 3D support from which knot models were fitted (3D curve along which241

the 2D cross-section is swept). The validation was done based on four logs242

by making comparisons between knots that were visible on real boards and243

on corresponding virtual boards obtained on the basis of the knot models.244
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For knots larger than 10 mm, the detection and false alarm rates averaged245

96% and 10%, respectively. If all knots were considered, these rates were246

73% and 13%, respectively. Accuracy results for angular position, elevation247

position and diameter were 1.9 (2.9)˚, 0.9 (10.4) mm and 0.7 (10.1) mm,248

respectively2. In this study, CT slices were taken every 20 mm and the pixel249

resolution was 1.55 mm × 1.55 mm.250

More recently, Aguilera et al. (2008b; 2008a) proposed a novel approach251

based on active contours for the detection of wood characteristics (which252

included knots) in CT images. They defined the system constraints on the253

basis of a priori information about the characteristics to be detected. They254

tested their algorithm on Pinus radiata CT images and the results seemed to255

be promising from the visual point of view. However, they did not provide256

quantitative validation results.257

Baumgartner et al. (2010) proposed an algorithm for 2D knot detec-258

tion and measurements and validated it on 21 knots from two Scots pine259

logs. First, they used slightly adapted versions of algorithms developed by260

Longuetaud et al. for pith detection (Longuetaud et al., 2004) and heart-261

wood/sapwood boundary detection (Longuetaud et al., 2007). Then, for262

the knot detection in heartwood, they applied a thresholding, hole filling263

and some morphological operations and, last, they identified connex com-264

ponents as being knots. Validation (provided in graphical form) was done265

for azimuthal positions and maximal diameters of knots by comparison with266

manual measurements performed on corresponding real cross-sections.267

2These figures are probably means and SD of differences in "automatic minus manual

measurements", but this was not specified by the authors.
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Other approaches based on classification methods focused mainly on the268

segmentation of knots (and often other wood characteristics) in CT images.269

The results were then expressed as percentages of correctly classified pixels.270

Hagman and Grundberg (1995) tested two classification methods (back-271

propagation Artificial Neural Network (ANN) and Partial Least Squares272

modelling) in order to separate knots from clearwood in CT images and to273

distinguish between four types of knots (sound knots in sapwood, dry knots274

in sapwood, sound knots in heartwood and rotten knots in sapwood). The275

accuracies were between 85% and 97% of correctly classified pixels (based on276

163 knots). The two methods tested gave equal results.277

Li et al. (1996), He (1997) and Schmoldt et al. (1996; 1998b; 1998a) also278

used a back-propagation ANN to detect wood characteristics in CT images279

of two species of oak (Quercus rubra L. and Quercus nigra L.), yellow poplar280

and black cherry. For each pixel in the image, the network took the values281

of pixels in 5 × 5 2D or in 3 × 3 × 3 3D neighbourhoods as input, as well as282

the distance of the target pixel to the centre of the log. Species-dependent283

and species-independent classifiers were tested. As output, the target pixel284

was associated with a wood characteristic (which included knots). All tested285

classifiers had accuracies above 90% (above 95% for all species-dependent286

classifiers). Improvements by post-processing based on mathematical mor-287

phology were suggested by the authors and one specific approach was pro-288

posed by Sarigul et al. (2003).289

Nordmark also used feed-forward back-propagation ANN for segmenting knots290

in CT images of a 30-year-old Scots pine (Nordmark, 2002). The objective291

was to enlarge the Swedish Stem Bank with young trees with a small propor-292
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tion of heartwood because the algorithm previously described by Grundberg293

and Grönlund (1992) was not adapted to that case. ANN was used here as294

the first step of a more complete algorithm including parametrical descrip-295

tions of knots (Nordmark, 2003) (see above). The ANN was trained using296

five images taken at different heights from each of five trees. The ANN in-297

puts were a 9 × 9 neighbourhood, oriented in the radial direction, and the298

distance of the target pixel to the pith (manually located). They obtained299

95.9% ± 1.2% of correctly classified pixels (cross-validation method).300

Rojas et al. (2005; 2006) tested two parametric supervised classification al-301

gorithms to detect wood characteristics in sugar maple logs: a minimum302

distance classifier (MDC) and a maximum likelihood classifier (MLC). They303

used five logs (1.5 m long) from one single freshly cut tree (group 1) and304

three logs from a sawmill yard (group 2). A total of 125 and 90 CT images305

were analysed for group 1 and 2, respectively. Confusion between coloured306

heartwood and knots was observed for both groups. It should be noted that307

the authors were more interested in detecting sapwood (for which accura-308

cies were better) than knots because it is a key factor for determining sugar309

maple lumber value. The overall accuracies were 83.1% (MDC) and 82.6%310

(MLC) for group 1 (evaluation of 25 CT images), and 76.4% (MDC) and311

78.0% (MLC) for group 2. Regarding knots, correctly classified pixels were312

64.8% (MDC) and 61% (MLC) for group 1, and 47.4% (MDC) and 44.7%313

(MLC) for group 2. The slice thickness was 5 mm and the resolution was314

between 0.6 and 0.9 mm.pixel−1.315

More recently, Wei et al. (2008a; 2008b; 2009) tested both back-propagation316

ANN and MLC in order to identify internal wood characteristics (which in-317
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cluded knots) in sugar maple and black spruce logs. They tested a faster318

converging algorithm for the ANN. Nine image features were used as input319

of both classifiers: grey level values, the distance between the pixel of interest320

and the pith, and seven textural features (homogeneity, contrast, dissimilar-321

ity, mean, SD, entropy and angular second moment). The validation was322

done by comparison with manually delineated characteristics in 20 CT im-323

ages (Wei et al., 2009). The overall accuracies for the MLC classifier and324

for the ANN were 80.9% (78.3% for knots) and 97.6% (95.5% for knots),325

respectively (Wei et al., 2009).326

3. Materials and methods327

3.1. Sampling328

The knot detection software was applied to a set of seven squared beams329

(25 cm × 25 cm × 300 cm) of silver fir (Abies alba Mill.) and Norway330

spruce (Picea abies (L.) Karst.). The beams, courtesy of the sawmill, Ets.331

Siat-Braun (Alsace, France), were selected at random in the lumber yard in332

which the two species are undifferentiated. After macroscopic identification,333

it was found that there were four beams of fir (#1 to #4) and three beams334

of spruce (#5 to #7). The beams were air-dried several weeks before the335

measurements were taken.336

3.2. CT scanning337

The samples were analysed using an X-ray scanner device (BrightSpeed338

Excel by GE Healthcare) designed for medical use. The piece of wood is339

translated at approximately 2 cm/s across a ring (gantry) around which340
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the X-ray tube and the detector rotate. A volumetric reconstruction of the341

sample is delivered almost instantaneously in the form of a stack of 512 ×342

512 images. The grey-level images are expressed in Hounsfield units that343

may be converted to wood density by simple linear regression (Freyburger344

et al., 2009). In the present study, six of the seven beams were scanned345

with the X-ray generator set to 120 kV - 50 mA, and a slice thickness and346

interval between slices of 3.75 mm. Beam #1 was previously scanned with347

the generator set to 120 kV - 80 mA, the slice thickness to 1.25 mm, and348

the interval between slices to 1 mm (which means that there was overlapping349

between slices). For cost reasons, beam #1 was not scanned again with350

exactly the same settings as the six other beams. The image reconstruction351

of the beams was performed using a DETAIL filter3 with a pixel size of 0.74352

mm × 0.74 mm. Since the scanner can only process 1.50 m-long pieces, the353

beams were scanned in two passes.354

3.3. Manual knot measurements355

The knot shape and size were manually recorded using ImageJ software356

(Rasband, 2010) and a plug-in dedicated to the analysis of internal tree archi-357

tecture by X-ray CT scanning (Gourmands plug-in described in Colin et al.358

(2010)). The operator reviews the image stack and manually places markers359

along both sides of each branch, starting from the pith and progressing to-360

wards the external end. The distance between the two lines of markers gives361

the diameter profile of the knot in the plane perpendicular to the main axis362

of the beam, assuming a circular cross section. The trajectory of the pith363

3One of the seven reconstruction filters available with the scanner software.
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is also recorded using specific markers. The software makes it possible to364

compute and export the geometrical description of each measured knot. The365

following variables were used in this study to characterise each knot:366

• Starting point (SP) and end point (EP): first marker near the pith and367

mid-point of the last two markers;368

• Length: distance from SP to EP;369

• Inclination: angle between the horizontal plane and the SP to EP line4;370

• Azimuth: horizontal angle between a given axis and the SP to EP line;371

• Maximum diameter;372

• Volume: estimated by summing the volumes of truncated cones defined373

by the marker lines.374

These measurements are subjective. The operator has to decide which375

singularities correspond to a knot and the exact location of the knot bound-376

aries. For the purpose of standardising the measurements, the operator was377

asked to only consider knots for which pith (the secondary pith of the branch)378

was visible and to adjust the grey-level contrast to a fixed range (-1000 to379

+200 Hounsfield units).380

Figure 1 illustrates the variability encountered in the samples studied for381

knot size and shape.382

*****Figure 1 about here*****383

4assuming that the beam longitudinal axis is vertical

16



3.4. Algorithm for automatic knot detection and measurements384

3.4.1. Description385

• Data input386

The images created by a medical CT scanner device are stored in Di-387

CoM format with grey levels expressed in Hounsfield numbers (H),388

which are calibrated in such a way that Hounsfield numbers measured389

on air and water have a value of -1000 and 0, respectively.390

• Pith detection391

An initial thresholding with a fixed value of -700 H (≃ 300 kg.m−3) was392

applied for removing the background. The pith was then detected on393

each CT image of a beam by using the algorithm described in Longue-394

taud et al. (2004). Briefly, the algorithm is based on a Hough transform395

method and virtually draws lines perpendicular to the annual growth396

rings, looking for a maximum of accumulation with respect to the num-397

ber of intersecting lines. The pith location is estimated by linear inter-398

polation in CT images including knots, for which no clear maximum of399

accumulation is found.400

• Knot segmentation401

A thresholding was used to segment knots. The threshold value was402

selected based on the grey level histogram, smoothed by Loess local403

polynomial fitting, by searching for the rightmost minimum or inflexion404

point in a region ranging from -300 to 100 H (≃ 700 to 1100 kg.m−3).405

• Connex components (3D)406

17



Since the memory size of the whole 3D image can be very large, we407

defined a strategy that made it possible to save memory space while408

maintaining efficient extraction of connected components. The 3D im-409

age was processed slice-by-slice while maintaining the set of connected410

components in memory.411

*****Figure 2 about here*****412

Figure 2 illustrates the main idea of the algorithm. Only the current413

and previous slices (represented in red) are stored in the system mem-414

ory. From each processed voxel (in blue), the list of connected com-415

ponents is maintained by analysing the 26-connected neighbourhood416

(illustrated in cyan).417

• Processing of each component:418

– Convex hull (2D)419

The Graham scan algorithm was used to compute the convex hull420

of the pixels belonging to the component in each slice. A hole-421

filling algorithm was then applied to fill the polygons.422

– Distance transform (3D)423

The distance transform applied to a 3D space makes it possible to424

compute the minimal distance between any point and the object425

surface. To perform such a transformation, the algorithm of Saito426

and Toriwaki (1994) was applied to each connected component.427
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An example of a distance transform is illustrated in Fig. 3 with428

a real knot. The points around the surface of the object are at429

distances close to 0, represented in shades of red, while the farthest430

points are represented in shades of blue.431

*****Figure 3 about here*****432

– Principal component analysis (3D)433

The three inertia axes of the component were computed by apply-434

ing a principal component analysis to the set of 3D coordinates of435

the voxels belonging to the component.436

3.4.2. Outputs437

For each 3D component, the following data were computed (Fig. 4):438

• Starting and end points: 3D coordinates of the first and last points of439

the component projection onto the principal inertia axis. The starting440

point is the closest to the pith;441

• Length: distance from the starting point to the end point;442

• Inclination: angle between the horizontal plane and the principal inertia443

axis5. Mathematically, it ranges from -90˚to 90˚. A null value means444

that the component is horizontal; inclination is positive or negative445

when the component goes up or down, respectively;446

5Assuming that the beam longitudinal axis is vertical.
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• Elongation: ratio between the second and first eigenvalues of the 3D447

principal component analysis. Mathematically, it ranges from 0 to 1448

with values close to 0 for very elongated components;449

• Radial deviation angle (RDA): angle between the horizontal projection450

of the principal inertia axis and the horizontal axis linking tree pith451

to the centre of gravity of the component. Mathematically, it ranges452

from -90˚to 90˚. A null value means that the component has a radial453

orientation; values near 90˚or -90˚mean that the component axis is454

perpendicular to the radial direction;455

• Azimuth: angle between the horizontal projection of the principal in-456

ertia axis and a given horizontal axis in the beam coordinate system;457

• Maximum diameter: maximal value of the distance-transformed com-458

ponent;459

• Volume: product of the number of voxels belonging to the component460

with the volume of a voxel;461

*****Figure 4 about here*****462

On the basis of these output variables, some criteria were established in463

order to identify the 3D components corresponding to actual knots. Details464

about criteria computation are given in Section 3.5.465

3.4.3. Software implementation466

The 3DKnotDM software was implemented in C++ language and was467

tested on different platforms such as Linux and Mac OS X. Several common468
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libraries were included in the development to perform efficient functionality.469

The main architecture is based on the QT (2011) Development Frameworks,470

which was combined with the use of the LibQGLViewer (2011) library for471

the 3D display part. The DiCoM image files were read using the Grassroots472

library (Malaterre, 2008). The Armadillo library (Sanderson, 2010) was used473

to process the 3D image matrix and to perform the 3D principal component474

analysis. Finally, the DGtal (2011) library was also included to perform475

efficient surface extraction from the discrete set of surface elements (surfels).476

3.5. Calibration and statistical validation477

A cross-validation approach of the "leave-one-out" type was used. The478

3D components of one single beam were used as the validation data set and479

the knots of the six other beams as the calibration data set. The procedure480

was repeated until each beam had been used as a validation data set.481

3.5.1. Calibration482

The calibration procedure mainly consisted in defining criterion bounds483

for deciding whether an automatically detected 3D component was a knot or484

not.485

Three criteria were used and were defined on the basis of the biologic486

knowledge about knots: inclination, elongation and RDA of the 3D compo-487

nents (details about the computation are given in Section 3.4.2). Spruce and488

fir knots are slightly tilted and preferentially up oriented. Knots are charac-489

terised by an elongated shape. Biologically, knots are connected to the pith490

and their principal axis intersects the pith line.491
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First, the observations used for calibration were defined as the 3D com-492

ponents belonging to the calibration data set that most likely corresponded493

to actual knots. This was done by searching the 3D component, when it ex-494

isted, that was the closest to each manually delineated knot within a window495

40˚wide in azimuth (20˚on each side of the actual knot) and 40 mm high496

in the longitudinal direction (20 mm above and below the actual knot). In497

addition, among these components, only the ones with diameter and inclina-498

tion sufficiently close to the manual measurements were retained. This was499

done by computing the corresponding residuals and by removing the 3D com-500

ponents whose residuals were identified as outliers. Outliers were detected501

on the basis of the classical criterion used in the boxplot statistical method502

(Zuur et al., 2010). The 3D components for which the corresponding pith503

location was not correctly detected were removed, based on the same crite-504

rion. Finally, the number of observations used for calibration are indicated505

in Table 1 for each single beam when it was used for validation.506

The second step was to define upper bounds for each criterion based on507

the calibration observations. Statistical distributions were fitted from the ob-508

served distributions of the criteria. The theoretical distributions were chosen509

on the basis of their shape and support. Our goal was to approximate the510

maximal possible value of each criterion. A Weibull distribution (support on511

[0; +∞[) was fitted to the absolute value of the tangent of the inclination.512

The absolute value was used because the signed value would have depended513

on the beam orientation, which is not always easy to assess (Fig. 1), partic-514

ularly in the case of an industrial process. A beta distribution (support on515

[0; 1]) was fitted to the elongation criterion. Once again, a Weibull distri-516
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bution was fitted to the absolute value of the tangent of the RDA. For each517

criterion, based on the fitted distribution, the quantile corresponding to p =518

0.999 was chosen as the upper bound. Table 1 gives the upper bounds that519

were obtained from the calibration data sets and then used on the respective520

validation data sets. For an application of the algorithm to other logs or521

beams, the upper bounds would be the means of the values given in Table522

1 for the seven beams. Hence, the overall upper bounds would be: 53.1˚for523

the inclination, 0.25 for the elongation criterion and 15.9˚for the RDA.524

*****Table 1 about here*****525

3.5.2. Validation526

The observations used for validation were defined as being the 3D compo-527

nents belonging to the validation data set that had been identified as being528

knots by the algorithm based on the three criteria described above. For vali-529

dation purposes, it was necessary to establish a correspondence with manual530

knot measurements. This was done by searching the 3D component, when531

it existed, that was the closest to each manually delineated knot within a532

window 40˚wide in azimuth and 40 mm high in the longitudinal direction.533

The validation of the algorithm was performed on the basis of several cri-534

teria and aimed at both quantitatively and qualitatively assessing the knot535

detection . We were interested in the percentage of detected knots and in536

the rate of false alarms, depending on the knot size. We were also interested537

in the measurement accuracy for the following variables that were available538

among the manual measurements: inclination, maximum diameter, length539

and volume. Since the correspondences between automatic and manual de-540

tections were looked for within windows restricted in azimuth and height, it541
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would not have been relevant to analyse the accuracy for azimuth and height542

of insertion. For assessing accuracy, the following criteria were computed:543

r-square (R2), root-mean-square error (RMSE), mean of errors (i.e., auto-544

matic minus manual measurements) and standard deviation of errors. Plots545

of manual measurements vs. automatic measurements were drawn for each546

variable by tree species (Mayer and Butler, 1993).547

R statistical software was used for all computations included in Section548

3.5 (R Development Core Team, 2009).549

4. Results550

4.1. Detection rate551

Table 2 shows the detection rates observed for each beam. Depending on552

the sample, 71 to 100% of the measured knots were detected (85% over the553

whole data set). Figure 5 shows an example of a correctly detected whorl of554

knots.555

*****Table 2 about here*****556

*****Figure 5 about here*****557

The observation of the 63 missing knots showed that only five of them558

were really missing in the set of components delivered by the algorithm.559

In the other cases, a component was actually delivered but either (i) not560

associated with the measured knot (one case only), or (ii) not identified as a561

knot due to the merging of several knots within the same component. Knot562

merging was observed near the pith for 21 knots, 15 of which belonged to563

beam #7, probably due to the presence of denser compression wood around564
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the pith (Fig. 6). Merging was also observed for 28 knots of beams #3565

and #4 due to wet areas (Fig. 7). In both cases, the merged components566

were logically rejected with respect to the elongation or orientation criteria,567

resulting in lower detection rates.568

*****Figure 6 about here*****569

*****Figure 7 about here*****570

The fourth column of Table 2 gives the number of components that were571

considered as knots by the automatic algorithm but not associated with a572

manually measured knot. Careful observation of the CT slices showed that573

all of the 149 supplemental components actually corresponded to a knot or574

a bud trace. In most cases, the knot was not measured because of its small575

size; some other knots were measured but delivered several fragments from576

which only one was associated with the knot.577

Figure 8 shows the distributions of detected knots (manually measured578

or not) and missing detections by diameter classes. In particular, it may be579

observed that the algorithm was able to detect more knots than the operator580

for the smallest diameters. Indeed, the operator was asked not to measure581

the very small branches for which the pith was not visible. The proportion582

of missing detections was relatively low, regardless of the diameter class.583

*****Figure 8 about here*****584

4.2. Detection accuracy585

The accuracy of the automatic measurements was analysed on the basis586

of the 365 detected knots for which manual measurements were available.587
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The variables that were considered for accuracy were: inclination, maxi-588

mum diameter, length and volume of knots.589

Figure 9 shows plots of manual vs. automatic measurements for each of590

these four variables compared to the Y=X line. R2, RMSE, mean of errors591

and standard deviation of errors are given for each single beam in Table 3.592

Regarding inclination measurements, the mean RMSE was 4.5̊ . The re-593

sults were globally satisfactory with a mean R2 of 0.86. The least accurate594

results were obtained for beam #6 with a RMSE of 6.9̊ and inclinations595

underestimated by the algorithm, especially for the two branches that were596

the most bottom oriented. Like beams #1 and #7, beam #6 had the partic-597

ularity of having its knots quite horizontal and even bottom oriented (Fig.598

1).599

Regarding the diameter measurements, the mean RMSE was 3.4 mm.600

The results were globally satisfactory with a mean R2 of 0.87. The least601

accurate results were obtained for beams #6 and #7 with RMSE of 5.3 and602

4.4 mm, respectively. This was due to the biggest branches for which the603

maximum diameter was underestimated by the algorithm. In addition, a604

slight bias was observed for most of the beams, with automatically measured605

diameters often smaller than the manually measured ones. Beam #6 had606

the particularity of having bigger knots than the other beams and a quite607

high variability of knot maximum diameters. The averages of mean errors608

and standard deviations were -1.8 (2.9) mm.609

Regarding the length measurements, the mean RMSE was 3.3 cm. This610

was the variable that was the least accurately measured by the algorithm,611

with a mean R2 of 0.59. The least accurate results were obtained for beam612
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#2 with a RMSE of 5.2 cm. A bias was observed for all of the beams since613

automatically measured lengths were generally shorter than the manually614

measured ones. Figure 10 shows that the biggest errors essentially occurred615

for knots with small diameters that sometimes led to fragmented 3D compo-616

nents due to the thresholding.617

Regarding the volume measurements, the RMSE for all the beams to-618

gether was 12.0 cm3. The results were satisfactory with a mean R2 of 0.86,619

except for beam #7 (RMSE of 20.0 cm3), essentially due to two branches for620

which the volumes were overestimated by the algorithm.621

For knot diameter and length, no difference in accuracy was observed622

between spruce and fir. For knot inclination and volume, the results were623

slightly better for fir than for spruce (statistically assessed by t-tests).624

The moisture content of the beams (not controlled here) was probably an625

important factor in relation to the accuracy of the automatic measurements626

since wood density was similar for knots and wet wood areas, which led to627

some problems in the automatic detection.628

*****Figure 9 about here*****629

*****Table 3 about here*****630

*****Figure 10 about here*****631

5. Discussion632

When aiming to analyse the distributions of knot characteristics within633

trees (e.g., Colin and Houllier, 1992; Kershaw et al., 2009; Weiskittel et al.,634

2010), it is particularly important to identify and accurately measure each635
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knot individually. Such data are particularly valuable for studying tree de-636

velopment and tree architecture, and for linking tree growth conditions to637

wood quality. In addition, there is a demand for the development of au-638

tomatic methods of species identification on the basis of various markers639

measurable in stacks of CT images. Possible markers could include knot dis-640

tribution within the stem, knot size, inclination and density. Since a simple641

grey level thresholding was effective for segmenting the knots, we decided642

to focus our efforts in this study on the identification of individual knots643

and on the validation of knot detection and measurements. On the other644

hand, many references found in the literature focus on the segmentation of645

CT images alone (which would be the first step of a more complete knot646

detection algorithm) without ultimately providing a method to detect each647

knot individually. The accuracy results are therefore presented in the form648

of percentages of correctly classified pixels, which are not easy to interpret649

by the end-users.650

The percentage of detected knots (detection rate) is a more powerful651

criterion that is widely used in studies about individual knot detection. It is652

important to associate this rate with the corresponding percentage of false653

alarms (i.e., the number of invalid detections divided by the total number654

of detected knots). Our detection rates (obtained on the basis of a total655

of 428 manually detected knots) ranged between 71 and 100%, depending656

on the beam (85% for all beams together), with no false alarms (i.e., all657

the 3D components identified as being knots by the algorithm were actual658

knots, even if they were not all manually measured), which was comparable659

to the results found in the literature (see Section 2). Our algorithm was660
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particularly efficient for detecting even small branches while maintaining a661

zero false alarm level.662

Relatively few validation results are available in the literature with respect663

to the automatic measurement of knots, especially their size and inclination.664

This specific point was particularly emphasized in this study. Diameter is665

the most widely measured and studied knot characteristic. A total of four666

references provided quantitative results for diameter measurements (Grund-667

berg and Grönlund, 1992; Oja, 2000; Nordmark, 2003; Andreu and Rinnhofer,668

2003a). However, validation methods were highly variable (see Section 2).669

In the present work, we obtained error means and SD of -1.8 (2.9) mm,670

which could be considered to be very accurate. No quantitative results were671

found in the literature regarding knot inclination, length or volume measure-672

ments. The accuracies obtained by applying our algorithm for the automatic673

measurements of inclination and volume were satisfactory. The knot length674

measurement was the least accurate. As shown in Section 4, this lack of675

accuracy generally occurred for small-diameter knots that could lead to frag-676

mented 3D components due to the thresholding. Some improvements such as677

a radial dilatation of the 3D components toward the outside of the stem or678

the connexion of the 3D components on the basis of their azimuth could solve679

most of the problems. These ideas have not yet been tested in the present680

version of our algorithm.681

As reported above, some authors (Oja, 2000; Nordmark, 2003; Andreu682

and Rinnhofer, 2003a; Baumgartner et al., 2010) validated their algorithm by683

comparison with manual measurements made on real boards or cross-sections.684

We chose to validate our results by comparison with manual measurements685
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performed on original CT images. The reason is that we consider that the686

comparison between knot borders visible on colour images (i.e., based on687

wood colour variations) and on corresponding CT images (i.e., based on688

wood density variations) is a distinct problem, totally independent of the689

algorithm performance, and which should be studied separately.690

In our study, the manual measurements of knot diameters were performed691

on CT images, i.e., in a transversal plane, whereas the automatic measure-692

ments were performed by using the 3D distance transform method that gave693

the minimum diameter at the knot profile location where the diameter was694

maximum. That implies to hypothesize that the knot section is circular695

or larger in the longitudinal direction than in the transverse direction. For696

Norway spruce, a ratio of 1.057 between diameters measured vertically and697

horizontally was reported by Merkel (1967) in Skovsgaard (1988), which rep-698

resents a very slight ovality.699

Finally, regardless of the type of images being dealt with, manual mea-700

surements are prone to subjectivity. Although knots are easily visible on701

images, it is not easy to accurately determine the borders between knots and702

the surrounding wood (Nordmark, 2005).703

It should be observed that the use of the 3D distance map offers other po-704

tential geometric feature extractions such as the knot diameter profile. Such705

a feature could be available after defining a surface tracking algorithm (by706

using, for example, the tracking discrete surface algorithm from the DGtal707

(2011) library) and by focusing on the principal inertia axis.708

In the current version of the algorithm, the inclination was defined as709

the angle between the horizontal plane and the line linking the starting point710
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and the end point of the knot, both for manual and automatic measurements.711

This definition was totally satisfactory in relation to the way the inclination712

was used in this study, whereas it is questionable from a biological point of713

view since it depends on the length of the knot and on the stem diameter.714

The definitions that are often used in existing biological studies about the715

distribution of knot inclinations within trees (e.g., Colin et al., 1993; Makinen716

and Colin, 1998; Achim et al., 2006) are questionable for similar reasons: the717

branch inclination is measured outside of the stem for practical reasons and718

therefore depends on the stem diameter. CT image analysis makes it possible719

to non-destructively investigate the inner part of the stem, and it would be720

more relevant to measure inclination in the first part of the knot that is not721

visible outside of the stem. In further versions of the algorithm, additional722

definitions of the inclination will be added to the outputs.723

A question arose about the sensitivity of our algorithm to the longitudi-724

nal and transversal resolutions of CT images. For example, Schmoldt et al.725

(1998b) compared the results obtained with an artificial neural network for726

two transversal resolutions of 1 mm/pixel and 3 mm/pixel. No significant727

difference was observed. In our case, the results obtained for beam #1 are728

better than for the other beams. This could be due to the fact that beam729

#1 was scanned with a longitudinal resolution about three times better than730

the other beams. This specific point should be further investigated by scan-731

ning some materials with different resolutions and by comparing the results732

of the knot detection, but it has not yet been done due to cost and time733

considerations.734

The detection failures due to the merging of several knots within the735
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same component at the location of their connexion to the tree pith could be736

easily solved by using a black circular mask of 10 mm in diameter around the737

pith. Indeed, among the 21 knots that were not detected because they were738

connected together at the pith location (Section 4.1), 20 could be detected by739

using such a mask, leading to a detection rate of 91% on average (compared740

to 85% without using the circular mask). However, this method is quite741

rough, depending on the mask diameter, and more subtle methods should742

exist, perhaps based on skeletonisation, in order to find the location where743

the knots are connected together.744

Several authors (e.g., Funt and Bryant, 1987; Andreu and Rinnhofer,745

2003a; Nordmark, 2005; Rojas et al., 2006; Wei et al., 2009) encountered diffi-746

culties in detecting knots in the presence of high moisture content or sapwood747

(when it was visible) on CT images, especially when knots were connected748

to sapwood because of comparable density levels. This major problem is still749

unresolved in the literature. For example, Rojas et al. (2007) demonstrated750

the effect of moisture content on the accuracy of sapwood detection in sugar751

maple logs. In our study, the material was not fresh, but some remaining752

areas of high moisture content led to the merging of several knots within the753

same 3D component. Longuetaud (2005) proposed a method to overcome754

this problem but without actual implementation. Further developments of755

our algorithm will be devoted to this specific problem with the objective of756

applying the algorithm to fresh beams or logs.757

Since cross-validation was used in this study, the method was not applied758

to a true independent validation sample. Nevertheless a small log (approxi-759

mately 15 cm in diameter × 100 cm in length, taken from a 30-year-old spruce760
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tree) for which the manual measurements were available was processed using761

the overall upper bounds given in the Materials and Methods section. The762

results were quite satisfactory since 73 of the 74 knots measured in this log763

were successfully detected without any false alarm. The R2 between manual764

and automatic measurements was 0.94, 0.96, 0.34 and 0.91 for knot inclina-765

tion, maximal diameter, length and volume, respectively. The results were766

particularly accurate for maximal diameter, with an error mean and SD of767

0.0 (0.9) mm.768

6. Conclusion769

A fully automated algorithm was developed for the detection of knots770

within silver fir and Norway spruce beams or logs. The detection was non-771

destructive since it was based on the analysis of CT images acquired by a772

medical X-ray CT scanner. The algorithm detected and measured knots773

directly in 3D, based on a connex component analysis and a 3D distance774

transform.775

The algorithm was able to detect a total of 85% of 428 knots in seven sil-776

ver fir and Norway spruce beams (91% when applying a special process to777

disconnect knots when they were connected together at the pith location).778

Particular attention was paid to the automatic measurements of knot char-779

acteristics: inclination, diameter, length and volume. The comparison with780

manual measurements resulted in an R2 of 0.86, 0.87, 0.59 and 0.86 for incli-781

nation, maximum diameter, length and volume, respectively.782

This study could be extended in the future to solve the problem of the connec-783

tion of knot components together at the pith location or due to the presence784
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of an area of high moisture content, to validate and adapt the algorithm to785

other species, and to apply the algorithm to whole stems in order to study786

the distribution of knot characteristics within trees.787
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Table 1: Upper bounds for the three criteria that were used for each validation data set.

They were computed from the corresponding calibration data set of the cross-validation

approach

Validation data set Species ncalibration Inclination (˚) Elongation RDA (˚)

Beam #1 fir 298 52.1 0.26 16.3

Beam #2 fir 273 48.2 0.26 15.3

Beam #3 fir 290 54.0 0.23 15.0

Beam #4 fir 268 57.5 0.25 17.0

Beam #5 spruce 276 53.0 0.26 16.8

Beam #6 spruce 297 53.5 0.23 15.5

Beam #7 spruce 305 53.4 0.24 15.4
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Table 2: Detection rates for each validation data set and for the whole data set

Validation

data set

Number of

manually

measured

knots

Number of

automatically

detected knots

Detection

ratea (%)

manually

measured

not

measured

Beam #1 39 39 24 100

Beam #2 70 64 16 91

Beam #3 63 49 15 78

Beam #4 92 73 8 79

Beam #5 59 55 28 93

Beam #6 50 46 28 92

Beam #7 55 39 30 71

All beams 428 365 149 85

aNumber of automatically detected knots that were measured divided by the number

of manually measured knots
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Table 3: Accuracy of automatic measurements for each validation data set

Variable of interest Validation data set n R2 RMSE Mean error SD error

Inclination (̊ ) Beam #1 39 0.98 4.5 -3.6 2.7

Beam #2 64 0.87 4.2 2.1 3.6

Beam #3 49 0.82 4.0 1.5 3.7

Beam #4 73 0.75 2.6 1.2 2.3

Beam #5 55 0.87 4.5 0.2 4.6

Beam #6 46 0.87 6.9 -5.8 3.8

Beam #7 39 0.90 4.5 -3.2 3.2

Maximum diameter (mm) Beam #1 39 0.91 2.4 -1.6 1.7

Beam #2 64 0.91 3.2 -2.4 2.2

Beam #3 49 0.89 3.1 -2.3 2.1

Beam #4 73 0.94 2.9 -1.4 2.6

Beam #5 55 0.87 2.7 -0.8 2.6

Beam #6 46 0.88 5.3 -2.9 4.5

Beam #7 39 0.68 4.4 -1.3 4.2

Length (cm) Beam #1 39 0.97 0.9 -0.6 0.7

Beam #2 64 0.27 5.2 -3.4 3.9

Beam #3 49 0.63 3.7 -2.4 2.8

Beam #4 73 0.42 3.4 -2.0 2.7

Beam #5 55 0.57 4.5 -2.5 3.8

Beam #6 46 0.54 3.4 -2.0 2.8

Beam #7 39 0.74 2.2 -0.7 2.1

Volume (cm3) Beam #1 39 0.97 6.5 3.2 5.7

Beam #2 64 0.95 5.8 -2.9 5.1

Beam #3 49 0.88 7.8 -2.8 7.3

Beam #4 73 0.92 15.1 2.9 15.0

Beam #5 55 0.88 11.8 3.1 11.5

Beam #6 46 0.96 17.0 8.0 15.2

Beam #7 39 0.44 20.0 9.2 18.0
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Figure 1: General view of the scanned beams with the manual measurements. Each beam

was scanned in two 1.5-m length sections that are merged in the view. The beams are

orientated according to their position in the standing tree based on the counting of annual

growth rings.
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Figure 2: Illustration of the 3D scan algorithm. At each step, only the two red slices need

to be loaded into the system memory. The current voxel is represented in blue while the

17 neighbour voxels (part of the 26-neighbourhood) processed at each step are given in

cyan. The previous processed slices are illustrated in grey, whereas the future ones are

represented by empty transparent boxes.
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(a) (b)

Figure 3: Illustration of the 3D distance map computed from a knot. The resulting distance

map is represented by gradient colours from red (nearest points) to blue (farthest points)

on the cutting plane represented in (b).
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Figure 4: Schematic view of the horizontal projection of a detected component and compu-

tation of starting point (SP), end point (EP), length, azimuth and radial deviation angle

(RDA).
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(a) (c)

(b) (d)

Figure 5: View of a whorl of beam #2. (a) Initial CT slice with manual measurements;

(b) 3D view after knot segmentation; (c) Segmented slice with a specific colour for each

component; (d) Convex hull of the segmented components. Note that a component corre-

sponding to the support table was detected but will be removed later when considering the

knot criteria.
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(a) (b) (c)

Figure 6: Knot connexion near the pith of beam #7. (a) Initial CT slice; (b) 3D view

after knot segmentation; (c) Segmented slice with a specific colour for each component.

(a) (b) (c)

Figure 7: Knot connexion due to wet areas in beam #4. (a) Initial CT slice; (b) 3D view

after knot segmentation,; (c) Segmented slice with specific colour for each component.

58



Figure 8: Number of knots from the seven beams that were manually measured and

detected (grey), manually measured and not detected (red), not manually measured but

detected (blue).
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Figure 9: Accuracy results for inclination, diameter, length and volume automatic mea-

surements. The black line corresponds to the y=x axis.
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Figure 10: Residuals for the knot length measurement as a function of the size of knots.
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